L(s) = 1 | + 9·9-s − 9·11-s + 45·81-s − 81·99-s + 36·121-s − 3·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
L(s) = 1 | + 9·9-s − 9·11-s + 45·81-s − 81·99-s + 36·121-s − 3·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(1231^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(1231^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{9} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.020204729\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.020204729\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 1231 | \( ( 1 - T )^{9} \) |
good | 2 | \( 1 + T^{9} + T^{18} \) |
| 3 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 5 | \( ( 1 + T^{3} + T^{6} )^{3} \) |
| 7 | \( 1 + T^{9} + T^{18} \) |
| 11 | \( ( 1 + T + T^{2} )^{9} \) |
| 13 | \( 1 + T^{9} + T^{18} \) |
| 17 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 19 | \( 1 + T^{9} + T^{18} \) |
| 23 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 29 | \( 1 + T^{9} + T^{18} \) |
| 31 | \( 1 + T^{9} + T^{18} \) |
| 37 | \( 1 + T^{9} + T^{18} \) |
| 41 | \( ( 1 + T^{3} + T^{6} )^{3} \) |
| 43 | \( 1 + T^{9} + T^{18} \) |
| 47 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 53 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 59 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 61 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 67 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 71 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 73 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 79 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 83 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 89 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
| 97 | \( ( 1 - T )^{9}( 1 + T )^{9} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{18} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.07050807193790152805794230708, −3.98953800957068807004764085591, −3.94129093183214650654431639324, −3.79891695791888238425725397052, −3.65842163410070198444329343305, −3.54392702770010665107888378622, −3.35007976591417720130544691342, −3.09676090257665378141499944733, −3.08653982574192236552040030317, −2.91842069071775297032371020689, −2.83381129697977903833987383107, −2.61479930184212261364147563914, −2.51590730218013224964821478321, −2.44592759454280781024526174074, −2.26419953767933857565612073433, −2.24304184492118921224254544458, −1.97270572324976271889704481617, −1.85626242171254914029837963548, −1.81485133252442433225241432872, −1.74299005132515802554900071663, −1.38997760743280179312350544517, −1.22589870290827693519469929606, −1.13861655597210217583624361786, −0.943898240394586313257273430629, −0.55418433231011362117618300890,
0.55418433231011362117618300890, 0.943898240394586313257273430629, 1.13861655597210217583624361786, 1.22589870290827693519469929606, 1.38997760743280179312350544517, 1.74299005132515802554900071663, 1.81485133252442433225241432872, 1.85626242171254914029837963548, 1.97270572324976271889704481617, 2.24304184492118921224254544458, 2.26419953767933857565612073433, 2.44592759454280781024526174074, 2.51590730218013224964821478321, 2.61479930184212261364147563914, 2.83381129697977903833987383107, 2.91842069071775297032371020689, 3.08653982574192236552040030317, 3.09676090257665378141499944733, 3.35007976591417720130544691342, 3.54392702770010665107888378622, 3.65842163410070198444329343305, 3.79891695791888238425725397052, 3.94129093183214650654431639324, 3.98953800957068807004764085591, 4.07050807193790152805794230708
Plot not available for L-functions of degree greater than 10.