L(s) = 1 | + 5·2-s + 9·3-s + 9·4-s − 4·5-s + 45·6-s + 5·7-s + 8·8-s + 45·9-s − 20·10-s − 11-s + 81·12-s + 13-s + 25·14-s − 36·15-s + 15·16-s + 2·17-s + 225·18-s + 9·19-s − 36·20-s + 45·21-s − 5·22-s − 4·23-s + 72·24-s − 14·25-s + 5·26-s + 165·27-s + 45·28-s + ⋯ |
L(s) = 1 | + 3.53·2-s + 5.19·3-s + 9/2·4-s − 1.78·5-s + 18.3·6-s + 1.88·7-s + 2.82·8-s + 15·9-s − 6.32·10-s − 0.301·11-s + 23.3·12-s + 0.277·13-s + 6.68·14-s − 9.29·15-s + 15/4·16-s + 0.485·17-s + 53.0·18-s + 2.06·19-s − 8.04·20-s + 9.81·21-s − 1.06·22-s − 0.834·23-s + 14.6·24-s − 2.79·25-s + 0.980·26-s + 31.7·27-s + 8.50·28-s + ⋯ |
Λ(s)=(=((39⋅2918)s/2ΓC(s)9L(s)Λ(2−s)
Λ(s)=(=((39⋅2918)s/2ΓC(s+1/2)9L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
627.5357647 |
L(21) |
≈ |
627.5357647 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1−T)9 |
| 29 | 1 |
good | 2 | 1−5T+p4T2−43T3+3p5T4−187T5+335T6−137p2T7+105p3T8−1225T9+105p4T10−137p4T11+335p3T12−187p4T13+3p10T14−43p6T15+p11T16−5p8T17+p9T18 |
| 5 | 1+4T+6pT2+92T3+433T4+1113T5+4008T6+8849T7+26633T8+51301T9+26633pT10+8849p2T11+4008p3T12+1113p4T13+433p5T14+92p6T15+6p8T16+4p8T17+p9T18 |
| 7 | 1−5T+47T2−172T3+137pT4−2893T5+12304T6−4576pT7+113343T8−258348T9+113343pT10−4576p3T11+12304p3T12−2893p4T13+137p6T14−172p6T15+47p7T16−5p8T17+p9T18 |
| 11 | 1+T+49T2+1099T4−1345T5+15750T6−39934T7+180715T8−581228T9+180715pT10−39934p2T11+15750p3T12−1345p4T13+1099p5T14+49p7T16+p8T17+p9T18 |
| 13 | 1−T+30T2−149T3+716T4−2996T5+20065T6−53796T7+270263T8−1030329T9+270263pT10−53796p2T11+20065p3T12−2996p4T13+716p5T14−149p6T15+30p7T16−p8T17+p9T18 |
| 17 | 1−2T+90T2−154T3+4290T4−6733T5+135098T6−189810T7+3077115T8−3827129T9+3077115pT10−189810p2T11+135098p3T12−6733p4T13+4290p5T14−154p6T15+90p7T16−2p8T17+p9T18 |
| 19 | 1−9T+92T2−594T3+4533T4−24609T5+146900T6−687176T7+3585054T8−14915472T9+3585054pT10−687176p2T11+146900p3T12−24609p4T13+4533p5T14−594p6T15+92p7T16−9p8T17+p9T18 |
| 23 | 1+4T+88T2+262T3+3461T4+8620T5+92680T6+254144T7+2259442T8+6737116T9+2259442pT10+254144p2T11+92680p3T12+8620p4T13+3461p5T14+262p6T15+88p7T16+4p8T17+p9T18 |
| 31 | 1−8T+223T2−1452T3+22492T4−124237T5+1395045T6−6653364T7+59826447T8−245448446T9+59826447pT10−6653364p2T11+1395045p3T12−124237p4T13+22492p5T14−1452p6T15+223p7T16−8p8T17+p9T18 |
| 37 | 1−27T+544T2−7852T3+96462T4−991317T5+9025832T6−71977894T7+517158242T8−3306525525T9+517158242pT10−71977894p2T11+9025832p3T12−991317p4T13+96462p5T14−7852p6T15+544p7T16−27p8T17+p9T18 |
| 41 | 1−12T+226T2−2136T3+24552T4−199425T5+1767092T6−12614876T7+94224175T8−594125521T9+94224175pT10−12614876p2T11+1767092p3T12−199425p4T13+24552p5T14−2136p6T15+226p7T16−12p8T17+p9T18 |
| 43 | 1−16T+349T2−4222T3+53464T4−515381T5+4875605T6−38702340T7+298086737T8−1984494250T9+298086737pT10−38702340p2T11+4875605p3T12−515381p4T13+53464p5T14−4222p6T15+349p7T16−16p8T17+p9T18 |
| 47 | 1+8T+380T2+2565T3+65031T4+372743T5+6647480T6+32363927T7+451278644T8+1849968562T9+451278644pT10+32363927p2T11+6647480p3T12+372743p4T13+65031p5T14+2565p6T15+380p7T16+8p8T17+p9T18 |
| 53 | 1+8T+273T2+2044T3+36211T4+260714T5+3153661T6+21870087T7+207103767T8+1338205431T9+207103767pT10+21870087p2T11+3153661p3T12+260714p4T13+36211p5T14+2044p6T15+273p7T16+8p8T17+p9T18 |
| 59 | 1+16T+393T2+3630T3+49303T4+216050T5+1990154T6−10149150T7−52334721T8−1597546588T9−52334721pT10−10149150p2T11+1990154p3T12+216050p4T13+49303p5T14+3630p6T15+393p7T16+16p8T17+p9T18 |
| 61 | 1−21T+593T2−9039T3+147416T4−1763827T5+20995514T6−203924756T7+1916422141T8−15273534255T9+1916422141pT10−203924756p2T11+20995514p3T12−1763827p4T13+147416p5T14−9039p6T15+593p7T16−21p8T17+p9T18 |
| 67 | 1−3T+379T2−1384T3+72420T4−274006T5+9106607T6−32870880T7+821083453T8−2656323014T9+821083453pT10−32870880p2T11+9106607p3T12−274006p4T13+72420p5T14−1384p6T15+379p7T16−3p8T17+p9T18 |
| 71 | 1+33T+817T2+13790T3+199530T4+2418510T5+27125871T6+276226520T7+2646386681T8+23124430206T9+2646386681pT10+276226520p2T11+27125871p3T12+2418510p4T13+199530p5T14+13790p6T15+817p7T16+33p8T17+p9T18 |
| 73 | 1−3T+369T2−774T3+68199T4−91024T5+8591261T6−8183155T7+814407150T8−656168425T9+814407150pT10−8183155p2T11+8591261p3T12−91024p4T13+68199p5T14−774p6T15+369p7T16−3p8T17+p9T18 |
| 79 | 1−3T+439T2−408T3+88556T4+87082T5+11391461T6+27467106T7+1100412555T8+3084319398T9+1100412555pT10+27467106p2T11+11391461p3T12+87082p4T13+88556p5T14−408p6T15+439p7T16−3p8T17+p9T18 |
| 83 | 1−13T+543T2−7006T3+147206T4−1731416T5+25372343T6−259949004T7+2994947111T8−26073244458T9+2994947111pT10−259949004p2T11+25372343p3T12−1731416p4T13+147206p5T14−7006p6T15+543p7T16−13p8T17+p9T18 |
| 89 | 1−6T+228T2−913T3+24716T4+30276T5+2218155T6+9025240T7+212571166T8+639205597T9+212571166pT10+9025240p2T11+2218155p3T12+30276p4T13+24716p5T14−913p6T15+228p7T16−6p8T17+p9T18 |
| 97 | 1−4T+518T2−2545T3+130982T4−678282T5+21974185T6−107665712T7+2747966160T8−12054120693T9+2747966160pT10−107665712p2T11+21974185p3T12−678282p4T13+130982p5T14−2545p6T15+518p7T16−4p8T17+p9T18 |
show more | |
show less | |
L(s)=p∏ j=1∏18(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.43448914141439926461674312816, −3.40230527357239877693083830086, −3.24817154899435048336131539653, −3.14682224521119589944545929300, −3.14610368748903989360520842296, −3.02201255042069963681506184636, −2.90097920997988230652501350914, −2.68188503314939395436645158944, −2.56615714909296442090323605982, −2.50901362565075512605969087619, −2.48011741041165369734746377531, −2.24123475052888654306924849141, −2.15217765472860767494570991290, −2.05643331633323160761695515692, −1.83479030865817921238710486721, −1.79528675127940766775274433485, −1.56704000455200897424971009654, −1.54636845532489597001089895428, −1.49190814597990825638163341905, −1.19977192444543495548080064216, −1.11711739091424323293047672640, −0.951545780565455695204273454301, −0.818623466191123082196960760735, −0.58088187010590330080946710141, −0.20132559531369548418947833989,
0.20132559531369548418947833989, 0.58088187010590330080946710141, 0.818623466191123082196960760735, 0.951545780565455695204273454301, 1.11711739091424323293047672640, 1.19977192444543495548080064216, 1.49190814597990825638163341905, 1.54636845532489597001089895428, 1.56704000455200897424971009654, 1.79528675127940766775274433485, 1.83479030865817921238710486721, 2.05643331633323160761695515692, 2.15217765472860767494570991290, 2.24123475052888654306924849141, 2.48011741041165369734746377531, 2.50901362565075512605969087619, 2.56615714909296442090323605982, 2.68188503314939395436645158944, 2.90097920997988230652501350914, 3.02201255042069963681506184636, 3.14610368748903989360520842296, 3.14682224521119589944545929300, 3.24817154899435048336131539653, 3.40230527357239877693083830086, 3.43448914141439926461674312816
Plot not available for L-functions of degree greater than 10.