L(s) = 1 | + 10.2i·3-s + (−17.9 − 17.4i)5-s + 84.8·7-s − 23.1·9-s − 71.3·11-s + 109.·13-s + (177. − 182. i)15-s − 151. i·17-s + 368.·19-s + 865. i·21-s + 358.·23-s + (16.8 + 624. i)25-s + 590. i·27-s + 387. i·29-s + 1.68e3i·31-s + ⋯ |
L(s) = 1 | + 1.13i·3-s + (−0.716 − 0.697i)5-s + 1.73·7-s − 0.285·9-s − 0.589·11-s + 0.646·13-s + (0.790 − 0.812i)15-s − 0.523i·17-s + 1.02·19-s + 1.96i·21-s + 0.676·23-s + (0.0269 + 0.999i)25-s + 0.810i·27-s + 0.460i·29-s + 1.75i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.80343 + 0.897000i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80343 + 0.897000i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (17.9 + 17.4i)T \) |
good | 3 | \( 1 - 10.2iT - 81T^{2} \) |
| 7 | \( 1 - 84.8T + 2.40e3T^{2} \) |
| 11 | \( 1 + 71.3T + 1.46e4T^{2} \) |
| 13 | \( 1 - 109.T + 2.85e4T^{2} \) |
| 17 | \( 1 + 151. iT - 8.35e4T^{2} \) |
| 19 | \( 1 - 368.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 358.T + 2.79e5T^{2} \) |
| 29 | \( 1 - 387. iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 1.68e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.15e3T + 1.87e6T^{2} \) |
| 41 | \( 1 + 2.54e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 1.35e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 901.T + 4.87e6T^{2} \) |
| 53 | \( 1 - 3.40e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 1.45e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + 5.32e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 657. iT - 2.01e7T^{2} \) |
| 71 | \( 1 + 6.74e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 + 4.13e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 2.30e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 2.14e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 5.11e3T + 6.27e7T^{2} \) |
| 97 | \( 1 - 9.16e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06151281197882829495649520041, −11.23415252899902936913459246593, −10.52020821573441040155825766065, −9.167438183231429660007285542419, −8.353512170449444356540942243401, −7.39237361974203979368967402064, −5.08550044810980707015917115485, −4.86223929605148465555977339859, −3.48360990661710555179389504313, −1.24504847065828227518791032617,
1.00437875591018459466059527539, 2.35138360309546054606804760191, 4.14039761011167712352643206034, 5.62803349330889621039155606211, 7.06525281747640682501795036568, 7.78832032366844223920108451254, 8.431970469185465419649538882799, 10.32218211050857635435805804216, 11.41071113444472734184258341992, 11.78218690026861009636622556525