Properties

Label 2-160-40.19-c4-0-9
Degree 22
Conductor 160160
Sign 0.6030.797i0.603 - 0.797i
Analytic cond. 16.539116.5391
Root an. cond. 4.066844.06684
Motivic weight 44
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.2i·3-s + (−17.9 − 17.4i)5-s + 84.8·7-s − 23.1·9-s − 71.3·11-s + 109.·13-s + (177. − 182. i)15-s − 151. i·17-s + 368.·19-s + 865. i·21-s + 358.·23-s + (16.8 + 624. i)25-s + 590. i·27-s + 387. i·29-s + 1.68e3i·31-s + ⋯
L(s)  = 1  + 1.13i·3-s + (−0.716 − 0.697i)5-s + 1.73·7-s − 0.285·9-s − 0.589·11-s + 0.646·13-s + (0.790 − 0.812i)15-s − 0.523i·17-s + 1.02·19-s + 1.96i·21-s + 0.676·23-s + (0.0269 + 0.999i)25-s + 0.810i·27-s + 0.460i·29-s + 1.75i·31-s + ⋯

Functional equation

Λ(s)=(160s/2ΓC(s)L(s)=((0.6030.797i)Λ(5s)\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(5-s) \end{aligned}
Λ(s)=(160s/2ΓC(s+2)L(s)=((0.6030.797i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 160160    =    2552^{5} \cdot 5
Sign: 0.6030.797i0.603 - 0.797i
Analytic conductor: 16.539116.5391
Root analytic conductor: 4.066844.06684
Motivic weight: 44
Rational: no
Arithmetic: yes
Character: χ160(79,)\chi_{160} (79, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 160, ( :2), 0.6030.797i)(2,\ 160,\ (\ :2),\ 0.603 - 0.797i)

Particular Values

L(52)L(\frac{5}{2}) \approx 1.80343+0.897000i1.80343 + 0.897000i
L(12)L(\frac12) \approx 1.80343+0.897000i1.80343 + 0.897000i
L(3)L(3) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(17.9+17.4i)T 1 + (17.9 + 17.4i)T
good3 110.2iT81T2 1 - 10.2iT - 81T^{2}
7 184.8T+2.40e3T2 1 - 84.8T + 2.40e3T^{2}
11 1+71.3T+1.46e4T2 1 + 71.3T + 1.46e4T^{2}
13 1109.T+2.85e4T2 1 - 109.T + 2.85e4T^{2}
17 1+151.iT8.35e4T2 1 + 151. iT - 8.35e4T^{2}
19 1368.T+1.30e5T2 1 - 368.T + 1.30e5T^{2}
23 1358.T+2.79e5T2 1 - 358.T + 2.79e5T^{2}
29 1387.iT7.07e5T2 1 - 387. iT - 7.07e5T^{2}
31 11.68e3iT9.23e5T2 1 - 1.68e3iT - 9.23e5T^{2}
37 11.15e3T+1.87e6T2 1 - 1.15e3T + 1.87e6T^{2}
41 1+2.54e3T+2.82e6T2 1 + 2.54e3T + 2.82e6T^{2}
43 11.35e3iT3.41e6T2 1 - 1.35e3iT - 3.41e6T^{2}
47 1901.T+4.87e6T2 1 - 901.T + 4.87e6T^{2}
53 13.40e3T+7.89e6T2 1 - 3.40e3T + 7.89e6T^{2}
59 11.45e3T+1.21e7T2 1 - 1.45e3T + 1.21e7T^{2}
61 1+5.32e3iT1.38e7T2 1 + 5.32e3iT - 1.38e7T^{2}
67 1+657.iT2.01e7T2 1 + 657. iT - 2.01e7T^{2}
71 1+6.74e3iT2.54e7T2 1 + 6.74e3iT - 2.54e7T^{2}
73 1+4.13e3iT2.83e7T2 1 + 4.13e3iT - 2.83e7T^{2}
79 1+2.30e3iT3.89e7T2 1 + 2.30e3iT - 3.89e7T^{2}
83 1+2.14e3iT4.74e7T2 1 + 2.14e3iT - 4.74e7T^{2}
89 15.11e3T+6.27e7T2 1 - 5.11e3T + 6.27e7T^{2}
97 19.16e3iT8.85e7T2 1 - 9.16e3iT - 8.85e7T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.06151281197882829495649520041, −11.23415252899902936913459246593, −10.52020821573441040155825766065, −9.167438183231429660007285542419, −8.353512170449444356540942243401, −7.39237361974203979368967402064, −5.08550044810980707015917115485, −4.86223929605148465555977339859, −3.48360990661710555179389504313, −1.24504847065828227518791032617, 1.00437875591018459466059527539, 2.35138360309546054606804760191, 4.14039761011167712352643206034, 5.62803349330889621039155606211, 7.06525281747640682501795036568, 7.78832032366844223920108451254, 8.431970469185465419649538882799, 10.32218211050857635435805804216, 11.41071113444472734184258341992, 11.78218690026861009636622556525

Graph of the ZZ-function along the critical line