L(s) = 1 | + (0.809 − 0.587i)3-s + (0.809 + 0.587i)4-s + (0.309 + 0.951i)5-s + (0.309 − 0.951i)9-s + 12-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (−0.309 + 0.951i)20-s − 2·23-s + (−0.809 + 0.587i)25-s + (−0.309 − 0.951i)27-s + (0.618 − 1.90i)31-s + (0.809 − 0.587i)36-s + 45-s + (−1.61 + 1.17i)47-s + (0.809 + 0.587i)48-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + (0.809 + 0.587i)4-s + (0.309 + 0.951i)5-s + (0.309 − 0.951i)9-s + 12-s + (0.809 + 0.587i)15-s + (0.309 + 0.951i)16-s + (−0.309 + 0.951i)20-s − 2·23-s + (−0.809 + 0.587i)25-s + (−0.309 − 0.951i)27-s + (0.618 − 1.90i)31-s + (0.809 − 0.587i)36-s + 45-s + (−1.61 + 1.17i)47-s + (0.809 + 0.587i)48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.840662764\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.840662764\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 5 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + 2T + T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (1.61 - 1.17i)T + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639425621504580191521693573095, −8.378314304960135305199617144675, −7.85804492829460603653058399781, −7.25104127957423472371838856686, −6.35556549788546608468668614745, −5.99605176218627479266010625220, −4.15684443637186762001407951090, −3.38144855573687194262805480722, −2.49155590994682791374078139547, −1.86586363846880906882406590842,
1.51730003409549472460613265647, 2.34137705233346790571998974515, 3.49856094264172595686549764941, 4.54857317189007985036241576170, 5.30329429578696702667737345503, 6.11449448705083067891280772583, 7.10900269519336955703568354151, 8.073574926583927336260868079150, 8.619669449526333634203592261444, 9.511232506295505346981006049401