L(s) = 1 | + 1.81i·2-s − 2.41·3-s + 0.713·4-s + 4.05·5-s − 4.37i·6-s − 13.5i·7-s + 8.54i·8-s − 3.17·9-s + 7.34i·10-s + (−8.89 − 6.47i)11-s − 1.72·12-s − 22.1i·13-s + 24.4·14-s − 9.78·15-s − 12.6·16-s + 2.51i·17-s + ⋯ |
L(s) = 1 | + 0.906i·2-s − 0.804·3-s + 0.178·4-s + 0.810·5-s − 0.729i·6-s − 1.92i·7-s + 1.06i·8-s − 0.352·9-s + 0.734i·10-s + (−0.808 − 0.588i)11-s − 0.143·12-s − 1.70i·13-s + 1.74·14-s − 0.652·15-s − 0.789·16-s + 0.148i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.808 + 0.588i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.808 + 0.588i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.15187 - 0.374805i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15187 - 0.374805i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (8.89 + 6.47i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 - 1.81iT - 4T^{2} \) |
| 3 | \( 1 + 2.41T + 9T^{2} \) |
| 5 | \( 1 - 4.05T + 25T^{2} \) |
| 7 | \( 1 + 13.5iT - 49T^{2} \) |
| 13 | \( 1 + 22.1iT - 169T^{2} \) |
| 17 | \( 1 - 2.51iT - 289T^{2} \) |
| 19 | \( 1 + 18.9iT - 361T^{2} \) |
| 29 | \( 1 - 44.4iT - 841T^{2} \) |
| 31 | \( 1 - 58.9T + 961T^{2} \) |
| 37 | \( 1 - 27.8T + 1.36e3T^{2} \) |
| 41 | \( 1 + 35.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 23.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 18.3T + 2.20e3T^{2} \) |
| 53 | \( 1 + 10.6T + 2.80e3T^{2} \) |
| 59 | \( 1 - 12.3T + 3.48e3T^{2} \) |
| 61 | \( 1 - 33.3iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 97.8T + 4.48e3T^{2} \) |
| 71 | \( 1 + 92.8T + 5.04e3T^{2} \) |
| 73 | \( 1 - 59.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 82.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 26.5iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 28.0T + 7.92e3T^{2} \) |
| 97 | \( 1 - 54.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42822259386098573082594804948, −10.59842350051955697717219236403, −10.25868143392952325126766686115, −8.416312285675155369432580693553, −7.56123355774180777346553048057, −6.61041044618905311783284873914, −5.72389038151155898348591884794, −4.92952150009889541707984818932, −2.96613948138804081514354623760, −0.66297517991029214456001012008,
1.93971096835823087078090457115, 2.64647919345810754359469459312, 4.68927096150755117192681309527, 5.97753023333632246730555972250, 6.36052728904400159196611695929, 8.199477937702869170533707662943, 9.521229274946354392296020159221, 9.941117692062691845218146661341, 11.33648444666270011088424814178, 11.81220817636649018582114065116