L(s) = 1 | + 1.81i·2-s − 2.41·3-s + 0.713·4-s + 4.05·5-s − 4.37i·6-s − 13.5i·7-s + 8.54i·8-s − 3.17·9-s + 7.34i·10-s + (−8.89 − 6.47i)11-s − 1.72·12-s − 22.1i·13-s + 24.4·14-s − 9.78·15-s − 12.6·16-s + 2.51i·17-s + ⋯ |
L(s) = 1 | + 0.906i·2-s − 0.804·3-s + 0.178·4-s + 0.810·5-s − 0.729i·6-s − 1.92i·7-s + 1.06i·8-s − 0.352·9-s + 0.734i·10-s + (−0.808 − 0.588i)11-s − 0.143·12-s − 1.70i·13-s + 1.74·14-s − 0.652·15-s − 0.789·16-s + 0.148i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.808+0.588i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.808+0.588i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.808+0.588i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.808+0.588i)
|
Particular Values
L(23) |
≈ |
1.15187−0.374805i |
L(21) |
≈ |
1.15187−0.374805i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(8.89+6.47i)T |
| 23 | 1+4.79T |
good | 2 | 1−1.81iT−4T2 |
| 3 | 1+2.41T+9T2 |
| 5 | 1−4.05T+25T2 |
| 7 | 1+13.5iT−49T2 |
| 13 | 1+22.1iT−169T2 |
| 17 | 1−2.51iT−289T2 |
| 19 | 1+18.9iT−361T2 |
| 29 | 1−44.4iT−841T2 |
| 31 | 1−58.9T+961T2 |
| 37 | 1−27.8T+1.36e3T2 |
| 41 | 1+35.5iT−1.68e3T2 |
| 43 | 1+23.8iT−1.84e3T2 |
| 47 | 1+18.3T+2.20e3T2 |
| 53 | 1+10.6T+2.80e3T2 |
| 59 | 1−12.3T+3.48e3T2 |
| 61 | 1−33.3iT−3.72e3T2 |
| 67 | 1−97.8T+4.48e3T2 |
| 71 | 1+92.8T+5.04e3T2 |
| 73 | 1−59.0iT−5.32e3T2 |
| 79 | 1+82.0iT−6.24e3T2 |
| 83 | 1−26.5iT−6.88e3T2 |
| 89 | 1−28.0T+7.92e3T2 |
| 97 | 1−54.0T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42822259386098573082594804948, −10.59842350051955697717219236403, −10.25868143392952325126766686115, −8.416312285675155369432580693553, −7.56123355774180777346553048057, −6.61041044618905311783284873914, −5.72389038151155898348591884794, −4.92952150009889541707984818932, −2.96613948138804081514354623760, −0.66297517991029214456001012008,
1.93971096835823087078090457115, 2.64647919345810754359469459312, 4.68927096150755117192681309527, 5.97753023333632246730555972250, 6.36052728904400159196611695929, 8.199477937702869170533707662943, 9.521229274946354392296020159221, 9.941117692062691845218146661341, 11.33648444666270011088424814178, 11.81220817636649018582114065116