L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (0.978 + 0.207i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (0.104 − 0.181i)11-s + (0.669 − 0.743i)12-s + (−0.978 − 1.69i)13-s + (1.08 − 1.20i)15-s + (−0.5 + 0.866i)16-s + (0.104 + 0.994i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (0.978 + 0.207i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (0.104 − 0.181i)11-s + (0.669 − 0.743i)12-s + (−0.978 − 1.69i)13-s + (1.08 − 1.20i)15-s + (−0.5 + 0.866i)16-s + (0.104 + 0.994i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.997−0.0697i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.997−0.0697i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
−0.997−0.0697i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1627,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), −0.997−0.0697i)
|
Particular Values
L(21) |
≈ |
0.7377477879 |
L(21) |
≈ |
0.7377477879 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(−0.309−0.951i)T |
| 37 | 1+T |
good | 5 | 1+(0.809+1.40i)T+(−0.5+0.866i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.104+0.181i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.978+1.69i)T+(−0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.669−1.15i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.978−1.69i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.809+1.40i)T+(−0.5+0.866i)T2 |
| 41 | 1+(0.309+0.535i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.913+1.58i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.913+1.58i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+0.209T+T2 |
| 79 | 1+(−0.309+0.535i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.973867243513517661232743811460, −8.116431325730820265547297800561, −7.42735658366170388236890811491, −5.69123749485070751656888932915, −5.14567224547635529360986498998, −4.79851247708633225951509546469, −3.54222145757376375999772435805, −3.39886045127905311738490455685, −1.90512145991574026194646274759, −0.36592648421615334169519745721,
2.17410898921313512216720859954, 2.96277415362287566625268236106, 3.86242863986529287022263680697, 4.65421266311294312497095285270, 5.90553512470438406699376963814, 6.72982655807128968237240318451, 7.07841089127807594081823678237, 7.48082333061912539771300756200, 8.429615106178552535114094036492, 9.072361568064547331964403747495