L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (0.978 + 0.207i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (0.104 − 0.181i)11-s + (0.669 − 0.743i)12-s + (−0.978 − 1.69i)13-s + (1.08 − 1.20i)15-s + (−0.5 + 0.866i)16-s + (0.104 + 0.994i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 + 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (0.978 + 0.207i)6-s − 0.999·8-s + (−0.809 + 0.587i)9-s − 1.61·10-s + (0.104 − 0.181i)11-s + (0.669 − 0.743i)12-s + (−0.978 − 1.69i)13-s + (1.08 − 1.20i)15-s + (−0.5 + 0.866i)16-s + (0.104 + 0.994i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7377477879\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7377477879\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + (0.809 + 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.104 + 0.181i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.978 + 1.69i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.669 - 1.15i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.978 - 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.809 + 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.913 + 1.58i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.209T + T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.973867243513517661232743811460, −8.116431325730820265547297800561, −7.42735658366170388236890811491, −5.69123749485070751656888932915, −5.14567224547635529360986498998, −4.79851247708633225951509546469, −3.54222145757376375999772435805, −3.39886045127905311738490455685, −1.90512145991574026194646274759, −0.36592648421615334169519745721,
2.17410898921313512216720859954, 2.96277415362287566625268236106, 3.86242863986529287022263680697, 4.65421266311294312497095285270, 5.90553512470438406699376963814, 6.72982655807128968237240318451, 7.07841089127807594081823678237, 7.48082333061912539771300756200, 8.429615106178552535114094036492, 9.072361568064547331964403747495