L(s) = 1 | − 2.43·2-s + 3.93·4-s + 3.79i·5-s + 0.367i·7-s − 4.71·8-s − 9.24i·10-s − 0.948i·13-s − 0.896i·14-s + 3.61·16-s − 3.43·17-s + 4.26i·19-s + 14.9i·20-s + 4.96i·23-s − 9.40·25-s + 2.31i·26-s + ⋯ |
L(s) = 1 | − 1.72·2-s + 1.96·4-s + 1.69i·5-s + 0.139i·7-s − 1.66·8-s − 2.92i·10-s − 0.263i·13-s − 0.239i·14-s + 0.904·16-s − 0.833·17-s + 0.977i·19-s + 3.34i·20-s + 1.03i·23-s − 1.88·25-s + 0.453i·26-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(−0.972+0.231i)Λ(2−s)
Λ(s)=(=(1089s/2ΓC(s+1/2)L(s)(−0.972+0.231i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
−0.972+0.231i
|
Analytic conductor: |
8.69570 |
Root analytic conductor: |
2.94884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(1088,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :1/2), −0.972+0.231i)
|
Particular Values
L(1) |
≈ |
0.2902085954 |
L(21) |
≈ |
0.2902085954 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+2.43T+2T2 |
| 5 | 1−3.79iT−5T2 |
| 7 | 1−0.367iT−7T2 |
| 13 | 1+0.948iT−13T2 |
| 17 | 1+3.43T+17T2 |
| 19 | 1−4.26iT−19T2 |
| 23 | 1−4.96iT−23T2 |
| 29 | 1+2.48T+29T2 |
| 31 | 1−3.51T+31T2 |
| 37 | 1+7.18T+37T2 |
| 41 | 1+2.71T+41T2 |
| 43 | 1+1.88iT−43T2 |
| 47 | 1−0.0206iT−47T2 |
| 53 | 1+5.54iT−53T2 |
| 59 | 1+6.62iT−59T2 |
| 61 | 1−9.75iT−61T2 |
| 67 | 1−4.46T+67T2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1−4.39iT−73T2 |
| 79 | 1−10.9iT−79T2 |
| 83 | 1+9.18T+83T2 |
| 89 | 1+3.04iT−89T2 |
| 97 | 1+15.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19116671087564725155100742111, −9.659825728375226606288910237872, −8.660251266215841459501006329769, −7.88087598729276182783857001913, −7.12191493927450181128236273420, −6.60631919215030036856128197388, −5.63560395915246864087765718958, −3.74460925830925112486475350559, −2.71084964315007959743580427594, −1.76134495542290762331392165882,
0.23600968729111307105706260439, 1.30492980399026857215308234693, 2.41893417288374219102995254190, 4.24956708819211652331820602001, 5.10226307252524744673554936567, 6.36938163211037379726028965745, 7.20852008654909486287121125540, 8.157391774747920734857841004557, 8.816613948352231354422520921037, 9.098465762272512833095743770795