L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.951 − 0.309i)5-s + (−0.183 + 0.253i)7-s + (0.809 − 0.587i)8-s + 0.999i·10-s + (−0.987 + 0.156i)11-s + (−1.69 − 0.550i)13-s + (−0.183 − 0.253i)14-s + (0.309 + 0.951i)16-s + (−0.363 − 0.5i)19-s + (−0.951 − 0.309i)20-s + (0.156 − 0.987i)22-s − 1.61i·23-s + (0.809 − 0.587i)25-s + (1.04 − 1.44i)26-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.951 − 0.309i)5-s + (−0.183 + 0.253i)7-s + (0.809 − 0.587i)8-s + 0.999i·10-s + (−0.987 + 0.156i)11-s + (−1.69 − 0.550i)13-s + (−0.183 − 0.253i)14-s + (0.309 + 0.951i)16-s + (−0.363 − 0.5i)19-s + (−0.951 − 0.309i)20-s + (0.156 − 0.987i)22-s − 1.61i·23-s + (0.809 − 0.587i)25-s + (1.04 − 1.44i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.700+0.713i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.700+0.713i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.700+0.713i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(1619,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.700+0.713i)
|
Particular Values
L(21) |
≈ |
0.7246886684 |
L(21) |
≈ |
0.7246886684 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.309−0.951i)T |
| 3 | 1 |
| 5 | 1+(−0.951+0.309i)T |
| 11 | 1+(0.987−0.156i)T |
good | 7 | 1+(0.183−0.253i)T+(−0.309−0.951i)T2 |
| 13 | 1+(1.69+0.550i)T+(0.809+0.587i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
| 23 | 1+1.61iT−T2 |
| 29 | 1+(−0.309−0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−0.734−0.533i)T+(0.309+0.951i)T2 |
| 41 | 1+(−1.59+1.16i)T+(0.309−0.951i)T2 |
| 43 | 1+T2 |
| 47 | 1+(1.11+1.53i)T+(−0.309+0.951i)T2 |
| 53 | 1+(1.11+0.363i)T+(0.809+0.587i)T2 |
| 59 | 1+(−0.533+0.734i)T+(−0.309−0.951i)T2 |
| 61 | 1+(−0.809+0.587i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.809+0.587i)T2 |
| 73 | 1+(0.309+0.951i)T2 |
| 79 | 1+(−0.809−0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+1.97iT−T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.482574747722734675760319290621, −7.82117781790747488862686464160, −7.05719413122585773083628233118, −6.36662764978008248958202451359, −5.58948555045842812317350395169, −4.96964983808520353156904825269, −4.46412963115344089580883952733, −2.80091412680833316876344820724, −2.12352777116065178785801289378, −0.43695981798257153839927964775,
1.43214921403448145097296640256, 2.42499591466296938701961123239, 2.90754120762772124436827162102, 4.04989958509836348092191642003, 4.94217013518638586312485494492, 5.56082314087060207625491007027, 6.56182604501615659225934368215, 7.62069204225928416710377310953, 7.83356033690376033295804298731, 9.128175038588413475063138372960