Properties

Label 3960.1.eg.b.1619.3
Level 39603960
Weight 11
Character 3960.1619
Analytic conductor 1.9761.976
Analytic rank 00
Dimension 1616
Projective image D20D_{20}
CM discriminant -40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(899,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 5, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.899");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3960=2332511 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3960.eg (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.976297450031.97629745003
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

Embedding invariants

Embedding label 1619.3
Root 0.453990+0.891007i0.453990 + 0.891007i of defining polynomial
Character χ\chi == 3960.1619
Dual form 3960.1.eg.b.3779.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.309017+0.951057i)q2+(0.8090170.587785i)q4+(0.9510570.309017i)q5+(0.183900+0.253116i)q7+(0.8090170.587785i)q8+1.00000iq10+(0.987688+0.156434i)q11+(1.694800.550672i)q13+(0.1839000.253116i)q14+(0.309017+0.951057i)q16+(0.3632710.500000i)q19+(0.9510570.309017i)q20+(0.1564340.987688i)q221.61803iq23+(0.8090170.587785i)q25+(1.047441.44168i)q26+(0.2975560.0966818i)q281.00000q32+(0.0966818+0.297556i)q35+(0.734572+0.533698i)q37+(0.5877850.190983i)q38+(0.5877850.809017i)q40+(1.598111.16110i)q41+(0.891007+0.453990i)q44+(1.53884+0.500000i)q46+(1.118031.53884i)q47+(0.278768+0.857960i)q49+(0.309017+0.951057i)q50+(1.04744+1.44168i)q52+(1.118030.363271i)q53+(0.891007+0.453990i)q55+0.312869iq56+(0.5336980.734572i)q59+(0.3090170.951057i)q641.78201q65+(0.2531160.183900i)q70+(0.734572+0.533698i)q74+0.618034iq76+(0.1420400.278768i)q77+(0.587785+0.809017i)q80+(0.610425+1.87869i)q82+(0.707107+0.707107i)q881.97538iq89+(0.4510570.327712i)q91+(0.951057+1.30902i)q92+(1.809020.587785i)q94+(0.5000000.363271i)q950.902113q98+O(q100)q+(-0.309017 + 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(0.951057 - 0.309017i) q^{5} +(-0.183900 + 0.253116i) q^{7} +(0.809017 - 0.587785i) q^{8} +1.00000i q^{10} +(-0.987688 + 0.156434i) q^{11} +(-1.69480 - 0.550672i) q^{13} +(-0.183900 - 0.253116i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-0.363271 - 0.500000i) q^{19} +(-0.951057 - 0.309017i) q^{20} +(0.156434 - 0.987688i) q^{22} -1.61803i q^{23} +(0.809017 - 0.587785i) q^{25} +(1.04744 - 1.44168i) q^{26} +(0.297556 - 0.0966818i) q^{28} -1.00000 q^{32} +(-0.0966818 + 0.297556i) q^{35} +(0.734572 + 0.533698i) q^{37} +(0.587785 - 0.190983i) q^{38} +(0.587785 - 0.809017i) q^{40} +(1.59811 - 1.16110i) q^{41} +(0.891007 + 0.453990i) q^{44} +(1.53884 + 0.500000i) q^{46} +(-1.11803 - 1.53884i) q^{47} +(0.278768 + 0.857960i) q^{49} +(0.309017 + 0.951057i) q^{50} +(1.04744 + 1.44168i) q^{52} +(-1.11803 - 0.363271i) q^{53} +(-0.891007 + 0.453990i) q^{55} +0.312869i q^{56} +(0.533698 - 0.734572i) q^{59} +(0.309017 - 0.951057i) q^{64} -1.78201 q^{65} +(-0.253116 - 0.183900i) q^{70} +(-0.734572 + 0.533698i) q^{74} +0.618034i q^{76} +(0.142040 - 0.278768i) q^{77} +(0.587785 + 0.809017i) q^{80} +(0.610425 + 1.87869i) q^{82} +(-0.707107 + 0.707107i) q^{88} -1.97538i q^{89} +(0.451057 - 0.327712i) q^{91} +(-0.951057 + 1.30902i) q^{92} +(1.80902 - 0.587785i) q^{94} +(-0.500000 - 0.363271i) q^{95} -0.902113 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q24q4+4q84q16+4q2516q32+4q494q504q644q778q91+20q948q95+16q98+O(q100) 16 q + 4 q^{2} - 4 q^{4} + 4 q^{8} - 4 q^{16} + 4 q^{25} - 16 q^{32} + 4 q^{49} - 4 q^{50} - 4 q^{64} - 4 q^{77} - 8 q^{91} + 20 q^{94} - 8 q^{95} + 16 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3960Z)×\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times.

nn 991991 19811981 23772377 25212521 35213521
χ(n)\chi(n) 1-1 1-1 1-1 e(110)e\left(\frac{1}{10}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.309017 + 0.951057i −0.309017 + 0.951057i
33 0 0
44 −0.809017 0.587785i −0.809017 0.587785i
55 0.951057 0.309017i 0.951057 0.309017i
66 0 0
77 −0.183900 + 0.253116i −0.183900 + 0.253116i −0.891007 0.453990i 0.850000π-0.850000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
88 0.809017 0.587785i 0.809017 0.587785i
99 0 0
1010 1.00000i 1.00000i
1111 −0.987688 + 0.156434i −0.987688 + 0.156434i
1212 0 0
1313 −1.69480 0.550672i −1.69480 0.550672i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
1414 −0.183900 0.253116i −0.183900 0.253116i
1515 0 0
1616 0.309017 + 0.951057i 0.309017 + 0.951057i
1717 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
1818 0 0
1919 −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
2020 −0.951057 0.309017i −0.951057 0.309017i
2121 0 0
2222 0.156434 0.987688i 0.156434 0.987688i
2323 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
2424 0 0
2525 0.809017 0.587785i 0.809017 0.587785i
2626 1.04744 1.44168i 1.04744 1.44168i
2727 0 0
2828 0.297556 0.0966818i 0.297556 0.0966818i
2929 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3030 0 0
3131 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0 0
3535 −0.0966818 + 0.297556i −0.0966818 + 0.297556i
3636 0 0
3737 0.734572 + 0.533698i 0.734572 + 0.533698i 0.891007 0.453990i 0.150000π-0.150000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
3838 0.587785 0.190983i 0.587785 0.190983i
3939 0 0
4040 0.587785 0.809017i 0.587785 0.809017i
4141 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i 0.250000π-0.250000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0.891007 + 0.453990i 0.891007 + 0.453990i
4545 0 0
4646 1.53884 + 0.500000i 1.53884 + 0.500000i
4747 −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
4848 0 0
4949 0.278768 + 0.857960i 0.278768 + 0.857960i
5050 0.309017 + 0.951057i 0.309017 + 0.951057i
5151 0 0
5252 1.04744 + 1.44168i 1.04744 + 1.44168i
5353 −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
5454 0 0
5555 −0.891007 + 0.453990i −0.891007 + 0.453990i
5656 0.312869i 0.312869i
5757 0 0
5858 0 0
5959 0.533698 0.734572i 0.533698 0.734572i −0.453990 0.891007i 0.650000π-0.650000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
6060 0 0
6161 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
6262 0 0
6363 0 0
6464 0.309017 0.951057i 0.309017 0.951057i
6565 −1.78201 −1.78201
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 −0.253116 0.183900i −0.253116 0.183900i
7171 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
7272 0 0
7373 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7474 −0.734572 + 0.533698i −0.734572 + 0.533698i
7575 0 0
7676 0.618034i 0.618034i
7777 0.142040 0.278768i 0.142040 0.278768i
7878 0 0
7979 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
8080 0.587785 + 0.809017i 0.587785 + 0.809017i
8181 0 0
8282 0.610425 + 1.87869i 0.610425 + 1.87869i
8383 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.707107 + 0.707107i −0.707107 + 0.707107i
8989 1.97538i 1.97538i −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
9090 0 0
9191 0.451057 0.327712i 0.451057 0.327712i
9292 −0.951057 + 1.30902i −0.951057 + 1.30902i
9393 0 0
9494 1.80902 0.587785i 1.80902 0.587785i
9595 −0.500000 0.363271i −0.500000 0.363271i
9696 0 0
9797 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 −0.902113 −0.902113
9999 0 0
100100 −1.00000 −1.00000
101101 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
102102 0 0
103103 −1.44168 1.04744i −1.44168 1.04744i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
104104 −1.69480 + 0.550672i −1.69480 + 0.550672i
105105 0 0
106106 0.690983 0.951057i 0.690983 0.951057i
107107 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 −0.156434 0.987688i −0.156434 0.987688i
111111 0 0
112112 −0.297556 0.0966818i −0.297556 0.0966818i
113113 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
114114 0 0
115115 −0.500000 1.53884i −0.500000 1.53884i
116116 0 0
117117 0 0
118118 0.533698 + 0.734572i 0.533698 + 0.734572i
119119 0 0
120120 0 0
121121 0.951057 0.309017i 0.951057 0.309017i
122122 0 0
123123 0 0
124124 0 0
125125 0.587785 0.809017i 0.587785 0.809017i
126126 0 0
127127 −0.863541 + 0.280582i −0.863541 + 0.280582i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
128128 0.809017 + 0.587785i 0.809017 + 0.587785i
129129 0 0
130130 0.550672 1.69480i 0.550672 1.69480i
131131 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
132132 0 0
133133 0.193364 0.193364
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
138138 0 0
139139 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
140140 0.253116 0.183900i 0.253116 0.183900i
141141 0 0
142142 0 0
143143 1.76007 + 0.278768i 1.76007 + 0.278768i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −0.280582 0.863541i −0.280582 0.863541i
149149 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
150150 0 0
151151 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
152152 −0.587785 0.190983i −0.587785 0.190983i
153153 0 0
154154 0.221232 + 0.221232i 0.221232 + 0.221232i
155155 0 0
156156 0 0
157157 0.253116 0.183900i 0.253116 0.183900i −0.453990 0.891007i 0.650000π-0.650000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
158158 0 0
159159 0 0
160160 −0.951057 + 0.309017i −0.951057 + 0.309017i
161161 0.409551 + 0.297556i 0.409551 + 0.297556i
162162 0 0
163163 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
164164 −1.97538 −1.97538
165165 0 0
166166 0 0
167167 −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i 0.5π0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
168168 0 0
169169 1.76007 + 1.27877i 1.76007 + 1.27877i
170170 0 0
171171 0 0
172172 0 0
173173 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
174174 0 0
175175 0.312869i 0.312869i
176176 −0.453990 0.891007i −0.453990 0.891007i
177177 0 0
178178 1.87869 + 0.610425i 1.87869 + 0.610425i
179179 1.16110 + 1.59811i 1.16110 + 1.59811i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
180180 0 0
181181 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
182182 0.172288 + 0.530249i 0.172288 + 0.530249i
183183 0 0
184184 −0.951057 1.30902i −0.951057 1.30902i
185185 0.863541 + 0.280582i 0.863541 + 0.280582i
186186 0 0
187187 0 0
188188 1.90211i 1.90211i
189189 0 0
190190 0.500000 0.363271i 0.500000 0.363271i
191191 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
192192 0 0
193193 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
194194 0 0
195195 0 0
196196 0.278768 0.857960i 0.278768 0.857960i
197197 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0.309017 0.951057i 0.309017 0.951057i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 1.16110 1.59811i 1.16110 1.59811i
206206 1.44168 1.04744i 1.44168 1.04744i
207207 0 0
208208 1.78201i 1.78201i
209209 0.437016 + 0.437016i 0.437016 + 0.437016i
210210 0 0
211211 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
212212 0.690983 + 0.951057i 0.690983 + 0.951057i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0.987688 + 0.156434i 0.987688 + 0.156434i
221221 0 0
222222 0 0
223223 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i 0.250000π-0.250000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
224224 0.183900 0.253116i 0.183900 0.253116i
225225 0 0
226226 0 0
227227 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
228228 0 0
229229 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
230230 1.61803 1.61803
231231 0 0
232232 0 0
233233 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
234234 0 0
235235 −1.53884 1.11803i −1.53884 1.11803i
236236 −0.863541 + 0.280582i −0.863541 + 0.280582i
237237 0 0
238238 0 0
239239 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
240240 0 0
241241 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
242242 1.00000i 1.00000i
243243 0 0
244244 0 0
245245 0.530249 + 0.729825i 0.530249 + 0.729825i
246246 0 0
247247 0.340334 + 1.04744i 0.340334 + 1.04744i
248248 0 0
249249 0 0
250250 0.587785 + 0.809017i 0.587785 + 0.809017i
251251 1.87869 + 0.610425i 1.87869 + 0.610425i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
252252 0 0
253253 0.253116 + 1.59811i 0.253116 + 1.59811i
254254 0.907981i 0.907981i
255255 0 0
256256 −0.809017 + 0.587785i −0.809017 + 0.587785i
257257 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
258258 0 0
259259 −0.270175 + 0.0877853i −0.270175 + 0.0877853i
260260 1.44168 + 1.04744i 1.44168 + 1.04744i
261261 0 0
262262 0.437016 1.34500i 0.437016 1.34500i
263263 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
264264 0 0
265265 −1.17557 −1.17557
266266 −0.0597526 + 0.183900i −0.0597526 + 0.183900i
267267 0 0
268268 0 0
269269 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
270270 0 0
271271 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
272272 0 0
273273 0 0
274274 0 0
275275 −0.707107 + 0.707107i −0.707107 + 0.707107i
276276 0 0
277277 −1.87869 0.610425i −1.87869 0.610425i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.891007 0.453990i 0.850000π-0.850000\pi
278278 −0.690983 0.951057i −0.690983 0.951057i
279279 0 0
280280 0.0966818 + 0.297556i 0.0966818 + 0.297556i
281281 −0.437016 1.34500i −0.437016 1.34500i −0.891007 0.453990i 0.850000π-0.850000\pi
0.453990 0.891007i 0.350000π-0.350000\pi
282282 0 0
283283 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
284284 0 0
285285 0 0
286286 −0.809017 + 1.58779i −0.809017 + 1.58779i
287287 0.618034i 0.618034i
288288 0 0
289289 −0.809017 + 0.587785i −0.809017 + 0.587785i
290290 0 0
291291 0 0
292292 0 0
293293 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
294294 0 0
295295 0.280582 0.863541i 0.280582 0.863541i
296296 0.907981 0.907981
297297 0 0
298298 0 0
299299 −0.891007 + 2.74224i −0.891007 + 2.74224i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0.363271 0.500000i 0.363271 0.500000i
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 −0.278768 + 0.142040i −0.278768 + 0.142040i
309309 0 0
310310 0 0
311311 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
312312 0 0
313313 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
314314 0.0966818 + 0.297556i 0.0966818 + 0.297556i
315315 0 0
316316 0 0
317317 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 1.00000i 1.00000i
321321 0 0
322322 −0.409551 + 0.297556i −0.409551 + 0.297556i
323323 0 0
324324 0 0
325325 −1.69480 + 0.550672i −1.69480 + 0.550672i
326326 0 0
327327 0 0
328328 0.610425 1.87869i 0.610425 1.87869i
329329 0.595112 0.595112
330330 0 0
331331 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
332332 0 0
333333 0 0
334334 −1.53884 1.11803i −1.53884 1.11803i
335335 0 0
336336 0 0
337337 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
338338 −1.76007 + 1.27877i −1.76007 + 1.27877i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −0.565985 0.183900i −0.565985 0.183900i
344344 0 0
345345 0 0
346346 0.500000 + 1.53884i 0.500000 + 1.53884i
347347 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
348348 0 0
349349 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
350350 −0.297556 0.0966818i −0.297556 0.0966818i
351351 0 0
352352 0.987688 0.156434i 0.987688 0.156434i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 −1.16110 + 1.59811i −1.16110 + 1.59811i
357357 0 0
358358 −1.87869 + 0.610425i −1.87869 + 0.610425i
359359 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
360360 0 0
361361 0.190983 0.587785i 0.190983 0.587785i
362362 0 0
363363 0 0
364364 −0.557537 −0.557537
365365 0 0
366366 0 0
367367 1.14412 + 0.831254i 1.14412 + 0.831254i 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
368368 1.53884 0.500000i 1.53884 0.500000i
369369 0 0
370370 −0.533698 + 0.734572i −0.533698 + 0.734572i
371371 0.297556 0.216187i 0.297556 0.216187i
372372 0 0
373373 0.907981i 0.907981i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
374374 0 0
375375 0 0
376376 −1.80902 0.587785i −1.80902 0.587785i
377377 0 0
378378 0 0
379379 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
380380 0.190983 + 0.587785i 0.190983 + 0.587785i
381381 0 0
382382 0 0
383383 1.11803 + 0.363271i 1.11803 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
384384 0 0
385385 0.0489435 0.309017i 0.0489435 0.309017i
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
390390 0 0
391391 0 0
392392 0.729825 + 0.530249i 0.729825 + 0.530249i
393393 0 0
394394 0.363271 1.11803i 0.363271 1.11803i
395395 0 0
396396 0 0
397397 0.312869 0.312869 0.156434 0.987688i 0.450000π-0.450000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
398398 0 0
399399 0 0
400400 0.809017 + 0.587785i 0.809017 + 0.587785i
401401 −0.863541 + 0.280582i −0.863541 + 0.280582i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 −0.809017 0.412215i −0.809017 0.412215i
408408 0 0
409409 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
410410 1.16110 + 1.59811i 1.16110 + 1.59811i
411411 0 0
412412 0.550672 + 1.69480i 0.550672 + 1.69480i
413413 0.0877853 + 0.270175i 0.0877853 + 0.270175i
414414 0 0
415415 0 0
416416 1.69480 + 0.550672i 1.69480 + 0.550672i
417417 0 0
418418 −0.550672 + 0.280582i −0.550672 + 0.280582i
419419 1.78201i 1.78201i −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 0.891007i 0.350000π-0.350000\pi
420420 0 0
421421 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 0 0
423423 0 0
424424 −1.11803 + 0.363271i −1.11803 + 0.363271i
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
432432 0 0
433433 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.809017 + 0.587785i −0.809017 + 0.587785i
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 −0.453990 + 0.891007i −0.453990 + 0.891007i
441441 0 0
442442 0 0
443443 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
444444 0 0
445445 −0.610425 1.87869i −0.610425 1.87869i
446446 0.610425 + 1.87869i 0.610425 + 1.87869i
447447 0 0
448448 0.183900 + 0.253116i 0.183900 + 0.253116i
449449 1.69480 + 0.550672i 1.69480 + 0.550672i 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
450450 0 0
451451 −1.39680 + 1.39680i −1.39680 + 1.39680i
452452 0 0
453453 0 0
454454 0 0
455455 0.327712 0.451057i 0.327712 0.451057i
456456 0 0
457457 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
458458 0 0
459459 0 0
460460 −0.500000 + 1.53884i −0.500000 + 1.53884i
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0.907981 0.907981 0.453990 0.891007i 0.350000π-0.350000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
468468 0 0
469469 0 0
470470 1.53884 1.11803i 1.53884 1.11803i
471471 0 0
472472 0.907981i 0.907981i
473473 0 0
474474 0 0
475475 −0.587785 0.190983i −0.587785 0.190983i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
480480 0 0
481481 −0.951057 1.30902i −0.951057 1.30902i
482482 −1.53884 0.500000i −1.53884 0.500000i
483483 0 0
484484 −0.951057 0.309017i −0.951057 0.309017i
485485 0 0
486486 0 0
487487 1.14412 0.831254i 1.14412 0.831254i 0.156434 0.987688i 0.450000π-0.450000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
488488 0 0
489489 0 0
490490 −0.857960 + 0.278768i −0.857960 + 0.278768i
491491 −1.44168 1.04744i −1.44168 1.04744i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
492492 0 0
493493 0 0
494494 −1.10134 −1.10134
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
500500 −0.951057 + 0.309017i −0.951057 + 0.309017i
501501 0 0
502502 −1.16110 + 1.59811i −1.16110 + 1.59811i
503503 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
504504 0 0
505505 0 0
506506 −1.59811 0.253116i −1.59811 0.253116i
507507 0 0
508508 0.863541 + 0.280582i 0.863541 + 0.280582i
509509 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
510510 0 0
511511 0 0
512512 −0.309017 0.951057i −0.309017 0.951057i
513513 0 0
514514 0 0
515515 −1.69480 0.550672i −1.69480 0.550672i
516516 0 0
517517 1.34500 + 1.34500i 1.34500 + 1.34500i
518518 0.284079i 0.284079i
519519 0 0
520520 −1.44168 + 1.04744i −1.44168 + 1.04744i
521521 −1.16110 + 1.59811i −1.16110 + 1.59811i −0.453990 + 0.891007i 0.650000π0.650000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
522522 0 0
523523 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
524524 1.14412 + 0.831254i 1.14412 + 0.831254i
525525 0 0
526526 −0.587785 + 1.80902i −0.587785 + 1.80902i
527527 0 0
528528 0 0
529529 −1.61803 −1.61803
530530 0.363271 1.11803i 0.363271 1.11803i
531531 0 0
532532 −0.156434 0.113656i −0.156434 0.113656i
533533 −3.34786 + 1.08779i −3.34786 + 1.08779i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −0.409551 0.803789i −0.409551 0.803789i
540540 0 0
541541 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
548548 0 0
549549 0 0
550550 −0.453990 0.891007i −0.453990 0.891007i
551551 0 0
552552 0 0
553553 0 0
554554 1.16110 1.59811i 1.16110 1.59811i
555555 0 0
556556 1.11803 0.363271i 1.11803 0.363271i
557557 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
558558 0 0
559559 0 0
560560 −0.312869 −0.312869
561561 0 0
562562 1.41421 1.41421
563563 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0.253116 0.183900i 0.253116 0.183900i −0.453990 0.891007i 0.650000π-0.650000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
570570 0 0
571571 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
572572 −1.26007 1.26007i −1.26007 1.26007i
573573 0 0
574574 −0.587785 0.190983i −0.587785 0.190983i
575575 −0.951057 1.30902i −0.951057 1.30902i
576576 0 0
577577 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
578578 −0.309017 0.951057i −0.309017 0.951057i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 1.16110 + 0.183900i 1.16110 + 0.183900i
584584 0 0
585585 0 0
586586 0.951057 0.690983i 0.951057 0.690983i
587587 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
588588 0 0
589589 0 0
590590 0.734572 + 0.533698i 0.734572 + 0.533698i
591591 0 0
592592 −0.280582 + 0.863541i −0.280582 + 0.863541i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −2.33269 1.69480i −2.33269 1.69480i
599599 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
600600 0 0
601601 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.809017 0.587785i 0.809017 0.587785i
606606 0 0
607607 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
608608 0.363271 + 0.500000i 0.363271 + 0.500000i
609609 0 0
610610 0 0
611611 1.04744 + 3.22369i 1.04744 + 3.22369i
612612 0 0
613613 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
614614 0 0
615615 0 0
616616 −0.0489435 0.309017i −0.0489435 0.309017i
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0.500000 + 0.363271i 0.500000 + 0.363271i
624624 0 0
625625 0.309017 0.951057i 0.309017 0.951057i
626626 0 0
627627 0 0
628628 −0.312869 −0.312869
629629 0 0
630630 0 0
631631 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
632632 0 0
633633 0 0
634634 −0.363271 + 0.500000i −0.363271 + 0.500000i
635635 −0.734572 + 0.533698i −0.734572 + 0.533698i
636636 0 0
637637 1.60758i 1.60758i
638638 0 0
639639 0 0
640640 0.951057 + 0.309017i 0.951057 + 0.309017i
641641 −1.04744 1.44168i −1.04744 1.44168i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.156434 0.987688i 0.550000π-0.550000\pi
642642 0 0
643643 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
644644 −0.156434 0.481456i −0.156434 0.481456i
645645 0 0
646646 0 0
647647 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
648648 0 0
649649 −0.412215 + 0.809017i −0.412215 + 0.809017i
650650 1.78201i 1.78201i
651651 0 0
652652 0 0
653653 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
654654 0 0
655655 −1.34500 + 0.437016i −1.34500 + 0.437016i
656656 1.59811 + 1.16110i 1.59811 + 1.16110i
657657 0 0
658658 −0.183900 + 0.565985i −0.183900 + 0.565985i
659659 1.97538 1.97538 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0.587785 1.80902i 0.587785 1.80902i
663663 0 0
664664 0 0
665665 0.183900 0.0597526i 0.183900 0.0597526i
666666 0 0
667667 0 0
668668 1.53884 1.11803i 1.53884 1.11803i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
674674 0 0
675675 0 0
676676 −0.672288 2.06909i −0.672288 2.06909i
677677 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0.349798 0.481456i 0.349798 0.481456i
687687 0 0
688688 0 0
689689 1.69480 + 1.23134i 1.69480 + 1.23134i
690690 0 0
691691 0.363271 1.11803i 0.363271 1.11803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
692692 −1.61803 −1.61803
693693 0 0
694694 0 0
695695 −0.363271 + 1.11803i −0.363271 + 1.11803i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.183900 0.253116i 0.183900 0.253116i
701701 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
702702 0 0
703703 0.561163i 0.561163i
704704 −0.156434 + 0.987688i −0.156434 + 0.987688i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 0 0
712712 −1.16110 1.59811i −1.16110 1.59811i
713713 0 0
714714 0 0
715715 1.76007 0.278768i 1.76007 0.278768i
716716 1.97538i 1.97538i
717717 0 0
718718 0 0
719719 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
720720 0 0
721721 0.530249 0.172288i 0.530249 0.172288i
722722 0.500000 + 0.363271i 0.500000 + 0.363271i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0.312869 0.312869 0.156434 0.987688i 0.450000π-0.450000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
728728 0.172288 0.530249i 0.172288 0.530249i
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
734734 −1.14412 + 0.831254i −1.14412 + 0.831254i
735735 0 0
736736 1.61803i 1.61803i
737737 0 0
738738 0 0
739739 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
740740 −0.533698 0.734572i −0.533698 0.734572i
741741 0 0
742742 0.113656 + 0.349798i 0.113656 + 0.349798i
743743 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
744744 0 0
745745 0 0
746746 −0.863541 0.280582i −0.863541 0.280582i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 1.11803 1.53884i 1.11803 1.53884i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 −1.61803 −1.61803
759759 0 0
760760 −0.618034 −0.618034
761761 −0.437016 + 1.34500i −0.437016 + 1.34500i 0.453990 + 0.891007i 0.350000π0.350000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −0.690983 + 0.951057i −0.690983 + 0.951057i
767767 −1.30902 + 0.951057i −1.30902 + 0.951057i
768768 0 0
769769 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
770770 0.278768 + 0.142040i 0.278768 + 0.142040i
771771 0 0
772772 0 0
773773 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −1.16110 0.377263i −1.16110 0.377263i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.729825 + 0.530249i −0.729825 + 0.530249i
785785 0.183900 0.253116i 0.183900 0.253116i
786786 0 0
787787 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
788788 0.951057 + 0.690983i 0.951057 + 0.690983i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −0.0966818 + 0.297556i −0.0966818 + 0.297556i
795795 0 0
796796 0 0
797797 1.80902 0.587785i 1.80902 0.587785i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000 00
798798 0 0
799799 0 0
800800 −0.809017 + 0.587785i −0.809017 + 0.587785i
801801 0 0
802802 0.907981i 0.907981i
803803 0 0
804804 0 0
805805 0.481456 + 0.156434i 0.481456 + 0.156434i
806806 0 0
807807 0 0
808808 0 0
809809 −0.550672 1.69480i −0.550672 1.69480i −0.707107 0.707107i 0.750000π-0.750000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
810810 0 0
811811 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0.642040 0.642040i 0.642040 0.642040i
815815 0 0
816816 0 0
817817 0 0
818818 −1.11803 + 1.53884i −1.11803 + 1.53884i
819819 0 0
820820 −1.87869 + 0.610425i −1.87869 + 0.610425i
821821 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
822822 0 0
823823 −0.550672 + 1.69480i −0.550672 + 1.69480i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
824824 −1.78201 −1.78201
825825 0 0
826826 −0.284079 −0.284079
827827 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
828828 0 0
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 −1.04744 + 1.44168i −1.04744 + 1.44168i
833833 0 0
834834 0 0
835835 1.90211i 1.90211i
836836 −0.0966818 0.610425i −0.0966818 0.610425i
837837 0 0
838838 1.69480 + 0.550672i 1.69480 + 0.550672i
839839 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
840840 0 0
841841 0.309017 + 0.951057i 0.309017 + 0.951057i
842842 0 0
843843 0 0
844844 0 0
845845 2.06909 + 0.672288i 2.06909 + 0.672288i
846846 0 0
847847 −0.0966818 + 0.297556i −0.0966818 + 0.297556i
848848 1.17557i 1.17557i
849849 0 0
850850 0 0
851851 0.863541 1.18856i 0.863541 1.18856i
852852 0 0
853853 1.87869 0.610425i 1.87869 0.610425i 0.891007 0.453990i 0.150000π-0.150000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0.951057 1.30902i 0.951057 1.30902i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −0.309017 0.951057i −0.309017 0.951057i
875875 0.0966818 + 0.297556i 0.0966818 + 0.297556i
876876 0 0
877877 −0.533698 0.734572i −0.533698 0.734572i 0.453990 0.891007i 0.350000π-0.350000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
878878 0 0
879879 0 0
880880 −0.707107 0.707107i −0.707107 0.707107i
881881 0.312869i 0.312869i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
882882 0 0
883883 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
884884 0 0
885885 0 0
886886 0 0
887887 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
888888 0 0
889889 0.0877853 0.270175i 0.0877853 0.270175i
890890 1.97538 1.97538
891891 0 0
892892 −1.97538 −1.97538
893893 −0.363271 + 1.11803i −0.363271 + 1.11803i
894894 0 0
895895 1.59811 + 1.16110i 1.59811 + 1.16110i
896896 −0.297556 + 0.0966818i −0.297556 + 0.0966818i
897897 0 0
898898 −1.04744 + 1.44168i −1.04744 + 1.44168i
899899 0 0
900900 0 0
901901 0 0
902902 −0.896802 1.76007i −0.896802 1.76007i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
908908 0 0
909909 0 0
910910 0.327712 + 0.451057i 0.327712 + 0.451057i
911911 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0.260074 0.357960i 0.260074 0.357960i
918918 0 0
919919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
920920 −1.30902 0.951057i −1.30902 0.951057i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0.907981 0.907981
926926 −0.280582 + 0.863541i −0.280582 + 0.863541i
927927 0 0
928928 0 0
929929 −0.297556 + 0.0966818i −0.297556 + 0.0966818i −0.453990 0.891007i 0.650000π-0.650000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
930930 0 0
931931 0.327712 0.451057i 0.327712 0.451057i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
938938 0 0
939939 0 0
940940 0.587785 + 1.80902i 0.587785 + 1.80902i
941941 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
942942 0 0
943943 −1.87869 2.58580i −1.87869 2.58580i
944944 0.863541 + 0.280582i 0.863541 + 0.280582i
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0.363271 0.500000i 0.363271 0.500000i
951951 0 0
952952 0 0
953953 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.809017 0.587785i −0.809017 0.587785i
962962 1.53884 0.500000i 1.53884 0.500000i
963963 0 0
964964 0.951057 1.30902i 0.951057 1.30902i
965965 0 0
966966 0 0
967967 1.78201i 1.78201i 0.453990 + 0.891007i 0.350000π0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
968968 0.587785 0.809017i 0.587785 0.809017i
969969 0 0
970970 0 0
971971 −0.183900 0.253116i −0.183900 0.253116i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
972972 0 0
973973 −0.113656 0.349798i −0.113656 0.349798i
974974 0.437016 + 1.34500i 0.437016 + 1.34500i
975975 0 0
976976 0 0
977977 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
978978 0 0
979979 0.309017 + 1.95106i 0.309017 + 1.95106i
980980 0.902113i 0.902113i
981981 0 0
982982 1.44168 1.04744i 1.44168 1.04744i
983983 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
984984 0 0
985985 −1.11803 + 0.363271i −1.11803 + 0.363271i
986986 0 0
987987 0 0
988988 0.340334 1.04744i 0.340334 1.04744i
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
998998 0.951057 0.690983i 0.951057 0.690983i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.eg.b.1619.3 yes 16
3.2 odd 2 3960.1.eg.a.1619.1 16
5.4 even 2 3960.1.eg.a.1619.2 yes 16
8.3 odd 2 3960.1.eg.a.1619.2 yes 16
11.6 odd 10 3960.1.eg.a.3779.1 yes 16
15.14 odd 2 inner 3960.1.eg.b.1619.4 yes 16
24.11 even 2 inner 3960.1.eg.b.1619.4 yes 16
33.17 even 10 inner 3960.1.eg.b.3779.3 yes 16
40.19 odd 2 CM 3960.1.eg.b.1619.3 yes 16
55.39 odd 10 inner 3960.1.eg.b.3779.4 yes 16
88.83 even 10 inner 3960.1.eg.b.3779.4 yes 16
120.59 even 2 3960.1.eg.a.1619.1 16
165.149 even 10 3960.1.eg.a.3779.2 yes 16
264.83 odd 10 3960.1.eg.a.3779.2 yes 16
440.259 even 10 3960.1.eg.a.3779.1 yes 16
1320.1139 odd 10 inner 3960.1.eg.b.3779.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.eg.a.1619.1 16 3.2 odd 2
3960.1.eg.a.1619.1 16 120.59 even 2
3960.1.eg.a.1619.2 yes 16 5.4 even 2
3960.1.eg.a.1619.2 yes 16 8.3 odd 2
3960.1.eg.a.3779.1 yes 16 11.6 odd 10
3960.1.eg.a.3779.1 yes 16 440.259 even 10
3960.1.eg.a.3779.2 yes 16 165.149 even 10
3960.1.eg.a.3779.2 yes 16 264.83 odd 10
3960.1.eg.b.1619.3 yes 16 1.1 even 1 trivial
3960.1.eg.b.1619.3 yes 16 40.19 odd 2 CM
3960.1.eg.b.1619.4 yes 16 15.14 odd 2 inner
3960.1.eg.b.1619.4 yes 16 24.11 even 2 inner
3960.1.eg.b.3779.3 yes 16 33.17 even 10 inner
3960.1.eg.b.3779.3 yes 16 1320.1139 odd 10 inner
3960.1.eg.b.3779.4 yes 16 55.39 odd 10 inner
3960.1.eg.b.3779.4 yes 16 88.83 even 10 inner