L(s) = 1 | + (−1.92 + 1.92i)3-s − 2.39i·5-s + 1.01i·7-s − 4.44i·9-s + (2.07 − 2.07i)11-s − 1.30i·13-s + (4.62 + 4.62i)15-s + (3.78 + 3.78i)17-s + (3.70 − 3.70i)19-s + (−1.96 − 1.96i)21-s + 4.28i·23-s − 0.746·25-s + (2.79 + 2.79i)27-s + (3.15 + 4.36i)29-s + (−2.93 + 2.93i)31-s + ⋯ |
L(s) = 1 | + (−1.11 + 1.11i)3-s − 1.07i·5-s + 0.385i·7-s − 1.48i·9-s + (0.624 − 0.624i)11-s − 0.361i·13-s + (1.19 + 1.19i)15-s + (0.917 + 0.917i)17-s + (0.849 − 0.849i)19-s + (−0.429 − 0.429i)21-s + 0.894i·23-s − 0.149·25-s + (0.537 + 0.537i)27-s + (0.585 + 0.810i)29-s + (−0.527 + 0.527i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.957 - 0.288i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00294 + 0.147669i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00294 + 0.147669i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 29 | \( 1 + (-3.15 - 4.36i)T \) |
good | 3 | \( 1 + (1.92 - 1.92i)T - 3iT^{2} \) |
| 5 | \( 1 + 2.39iT - 5T^{2} \) |
| 7 | \( 1 - 1.01iT - 7T^{2} \) |
| 11 | \( 1 + (-2.07 + 2.07i)T - 11iT^{2} \) |
| 13 | \( 1 + 1.30iT - 13T^{2} \) |
| 17 | \( 1 + (-3.78 - 3.78i)T + 17iT^{2} \) |
| 19 | \( 1 + (-3.70 + 3.70i)T - 19iT^{2} \) |
| 23 | \( 1 - 4.28iT - 23T^{2} \) |
| 31 | \( 1 + (2.93 - 2.93i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.63 - 1.63i)T - 37iT^{2} \) |
| 41 | \( 1 + (-8.28 + 8.28i)T - 41iT^{2} \) |
| 43 | \( 1 + (-8.05 + 8.05i)T - 43iT^{2} \) |
| 47 | \( 1 + (-4.09 - 4.09i)T + 47iT^{2} \) |
| 53 | \( 1 - 6.32T + 53T^{2} \) |
| 59 | \( 1 - 4.26iT - 59T^{2} \) |
| 61 | \( 1 + (8.36 + 8.36i)T + 61iT^{2} \) |
| 67 | \( 1 + 9.62T + 67T^{2} \) |
| 71 | \( 1 + 11.5T + 71T^{2} \) |
| 73 | \( 1 + (2.47 - 2.47i)T - 73iT^{2} \) |
| 79 | \( 1 + (-10.5 + 10.5i)T - 79iT^{2} \) |
| 83 | \( 1 + 0.320iT - 83T^{2} \) |
| 89 | \( 1 + (8.21 + 8.21i)T + 89iT^{2} \) |
| 97 | \( 1 + (-1.53 + 1.53i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96335145919676565082273191815, −10.36498463559711939578804462212, −9.172191824879672424223601679517, −8.862067507479546081325681586536, −7.39369832683007947532979196646, −5.82071229954035039410882835800, −5.50300186812009185383965587811, −4.48908971524345596172284796639, −3.43971916179367268002275191192, −0.989503998671296186057152787187,
1.11271067324653218719776058036, 2.67073765808992756340683290509, 4.26505426645619006848664728158, 5.67883287700071369773553417086, 6.43391740138368443795629132869, 7.26085747500021313465546173449, 7.69703098989160339823779500692, 9.424881205777763256386376626409, 10.34397442814046781479393126324, 11.15939441127963934510814077884