L(s) = 1 | + (1 − 1.73i)2-s + (1.5 + 2.59i)3-s + (−1.99 − 3.46i)4-s + (−2.5 + 4.33i)5-s + 6·6-s − 7.99·8-s + (9 − 15.5i)9-s + (5 + 8.66i)10-s + (8.5 + 14.7i)11-s + (6.00 − 10.3i)12-s − 81·13-s − 15.0·15-s + (−8 + 13.8i)16-s + (45.5 + 78.8i)17-s + (−18 − 31.1i)18-s + (−51 + 88.3i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.408·6-s − 0.353·8-s + (0.333 − 0.577i)9-s + (0.158 + 0.273i)10-s + (0.232 + 0.403i)11-s + (0.144 − 0.249i)12-s − 1.72·13-s − 0.258·15-s + (−0.125 + 0.216i)16-s + (0.649 + 1.12i)17-s + (−0.235 − 0.408i)18-s + (−0.615 + 1.06i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.002880658\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.002880658\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + 1.73i)T \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T + (-13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-8.5 - 14.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 81T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-45.5 - 78.8i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (51 - 88.3i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-45 + 77.9i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 129T + 2.43e4T^{2} \) |
| 31 | \( 1 + (58 + 100. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (157 - 271. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 124T + 6.89e4T^{2} \) |
| 43 | \( 1 + 434T + 7.95e4T^{2} \) |
| 47 | \( 1 + (248.5 - 430. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-292 - 505. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-166 - 287. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (110 - 190. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (192 + 332. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 664T + 3.57e5T^{2} \) |
| 73 | \( 1 + (115 + 199. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (180.5 - 312. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 1.17e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (20 - 34.6i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 175T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57008077507323082531613537551, −10.09763049182849821061936742125, −9.379049872101267325123945917934, −8.236397924584690690118901958643, −7.14452600246217062658953551468, −6.10780251559037002648656274849, −4.79712136615398120286490716957, −3.96462540800582875329562099558, −3.00826073633262746989049859498, −1.67905153712234932726601862466,
0.25284674047600444708128237707, 2.07461690951247887983695099257, 3.35778008061874873853911664770, 4.85088696188358942287210006021, 5.28383253281939190261231757165, 7.02088306134278847687574229716, 7.23690921335504237567878646511, 8.292144243457909312595558124102, 9.176855228990429572957950978137, 10.10655963713706728285976052855