L(s) = 1 | + (1 − 1.73i)2-s + (1.5 + 2.59i)3-s + (−1.99 − 3.46i)4-s + (−2.5 + 4.33i)5-s + 6·6-s − 7.99·8-s + (9 − 15.5i)9-s + (5 + 8.66i)10-s + (8.5 + 14.7i)11-s + (6.00 − 10.3i)12-s − 81·13-s − 15.0·15-s + (−8 + 13.8i)16-s + (45.5 + 78.8i)17-s + (−18 − 31.1i)18-s + (−51 + 88.3i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.408·6-s − 0.353·8-s + (0.333 − 0.577i)9-s + (0.158 + 0.273i)10-s + (0.232 + 0.403i)11-s + (0.144 − 0.249i)12-s − 1.72·13-s − 0.258·15-s + (−0.125 + 0.216i)16-s + (0.649 + 1.12i)17-s + (−0.235 − 0.408i)18-s + (−0.615 + 1.06i)19-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)(−0.386−0.922i)Λ(4−s)
Λ(s)=(=(490s/2ΓC(s+3/2)L(s)(−0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
490
= 2⋅5⋅72
|
Sign: |
−0.386−0.922i
|
Analytic conductor: |
28.9109 |
Root analytic conductor: |
5.37688 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ490(471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 490, ( :3/2), −0.386−0.922i)
|
Particular Values
L(2) |
≈ |
1.002880658 |
L(21) |
≈ |
1.002880658 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1+1.73i)T |
| 5 | 1+(2.5−4.33i)T |
| 7 | 1 |
good | 3 | 1+(−1.5−2.59i)T+(−13.5+23.3i)T2 |
| 11 | 1+(−8.5−14.7i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+81T+2.19e3T2 |
| 17 | 1+(−45.5−78.8i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(51−88.3i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−45+77.9i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+129T+2.43e4T2 |
| 31 | 1+(58+100.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(157−271.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+124T+6.89e4T2 |
| 43 | 1+434T+7.95e4T2 |
| 47 | 1+(248.5−430.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−292−505.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−166−287.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(110−190.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(192+332.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+664T+3.57e5T2 |
| 73 | 1+(115+199.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(180.5−312.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−1.17e3T+5.71e5T2 |
| 89 | 1+(20−34.6i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+175T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57008077507323082531613537551, −10.09763049182849821061936742125, −9.379049872101267325123945917934, −8.236397924584690690118901958643, −7.14452600246217062658953551468, −6.10780251559037002648656274849, −4.79712136615398120286490716957, −3.96462540800582875329562099558, −3.00826073633262746989049859498, −1.67905153712234932726601862466,
0.25284674047600444708128237707, 2.07461690951247887983695099257, 3.35778008061874873853911664770, 4.85088696188358942287210006021, 5.28383253281939190261231757165, 7.02088306134278847687574229716, 7.23690921335504237567878646511, 8.292144243457909312595558124102, 9.176855228990429572957950978137, 10.10655963713706728285976052855