Properties

Label 2-912-1.1-c5-0-5
Degree $2$
Conductor $912$
Sign $1$
Analytic cond. $146.270$
Root an. cond. $12.0942$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 54·5-s − 104·7-s + 81·9-s + 330·11-s − 46·13-s + 486·15-s − 618·17-s − 361·19-s + 936·21-s + 402·23-s − 209·25-s − 729·27-s − 2.62e3·29-s + 2.36e3·31-s − 2.97e3·33-s + 5.61e3·35-s − 1.21e4·37-s + 414·39-s − 1.88e4·41-s + 1.04e4·43-s − 4.37e3·45-s + 4.77e3·47-s − 5.99e3·49-s + 5.56e3·51-s − 1.94e4·53-s − 1.78e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.965·5-s − 0.802·7-s + 1/3·9-s + 0.822·11-s − 0.0754·13-s + 0.557·15-s − 0.518·17-s − 0.229·19-s + 0.463·21-s + 0.158·23-s − 0.0668·25-s − 0.192·27-s − 0.580·29-s + 0.442·31-s − 0.474·33-s + 0.774·35-s − 1.45·37-s + 0.0435·39-s − 1.75·41-s + 0.858·43-s − 0.321·45-s + 0.314·47-s − 0.356·49-s + 0.299·51-s − 0.951·53-s − 0.794·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.270\)
Root analytic conductor: \(12.0942\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5279299315\)
\(L(\frac12)\) \(\approx\) \(0.5279299315\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
19 \( 1 + p^{2} T \)
good5 \( 1 + 54 T + p^{5} T^{2} \)
7 \( 1 + 104 T + p^{5} T^{2} \)
11 \( 1 - 30 p T + p^{5} T^{2} \)
13 \( 1 + 46 T + p^{5} T^{2} \)
17 \( 1 + 618 T + p^{5} T^{2} \)
23 \( 1 - 402 T + p^{5} T^{2} \)
29 \( 1 + 2628 T + p^{5} T^{2} \)
31 \( 1 - 2368 T + p^{5} T^{2} \)
37 \( 1 + 12130 T + p^{5} T^{2} \)
41 \( 1 + 18864 T + p^{5} T^{2} \)
43 \( 1 - 10408 T + p^{5} T^{2} \)
47 \( 1 - 4770 T + p^{5} T^{2} \)
53 \( 1 + 19452 T + p^{5} T^{2} \)
59 \( 1 + 30528 T + p^{5} T^{2} \)
61 \( 1 - 11138 T + p^{5} T^{2} \)
67 \( 1 + 49508 T + p^{5} T^{2} \)
71 \( 1 + 7572 T + p^{5} T^{2} \)
73 \( 1 - 2342 T + p^{5} T^{2} \)
79 \( 1 + 22424 T + p^{5} T^{2} \)
83 \( 1 - 46734 T + p^{5} T^{2} \)
89 \( 1 + 70104 T + p^{5} T^{2} \)
97 \( 1 - 105710 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.344609162207410367768075489974, −8.567015209724859307575485216278, −7.50771335869958083661693555558, −6.76230324248476894147518426848, −6.06362638032569195607839007589, −4.86992569219605215559856718215, −3.97697538226408777281271315033, −3.20294688703784200765036653309, −1.67268856680033577133971851547, −0.33116197167016676691995846755, 0.33116197167016676691995846755, 1.67268856680033577133971851547, 3.20294688703784200765036653309, 3.97697538226408777281271315033, 4.86992569219605215559856718215, 6.06362638032569195607839007589, 6.76230324248476894147518426848, 7.50771335869958083661693555558, 8.567015209724859307575485216278, 9.344609162207410367768075489974

Graph of the $Z$-function along the critical line