L(s) = 1 | − 9·3-s − 54·5-s − 104·7-s + 81·9-s + 330·11-s − 46·13-s + 486·15-s − 618·17-s − 361·19-s + 936·21-s + 402·23-s − 209·25-s − 729·27-s − 2.62e3·29-s + 2.36e3·31-s − 2.97e3·33-s + 5.61e3·35-s − 1.21e4·37-s + 414·39-s − 1.88e4·41-s + 1.04e4·43-s − 4.37e3·45-s + 4.77e3·47-s − 5.99e3·49-s + 5.56e3·51-s − 1.94e4·53-s − 1.78e4·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.965·5-s − 0.802·7-s + 1/3·9-s + 0.822·11-s − 0.0754·13-s + 0.557·15-s − 0.518·17-s − 0.229·19-s + 0.463·21-s + 0.158·23-s − 0.0668·25-s − 0.192·27-s − 0.580·29-s + 0.442·31-s − 0.474·33-s + 0.774·35-s − 1.45·37-s + 0.0435·39-s − 1.75·41-s + 0.858·43-s − 0.321·45-s + 0.314·47-s − 0.356·49-s + 0.299·51-s − 0.951·53-s − 0.794·55-s + ⋯ |
Λ(s)=(=(912s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(912s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.5279299315 |
L(21) |
≈ |
0.5279299315 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+p2T |
| 19 | 1+p2T |
good | 5 | 1+54T+p5T2 |
| 7 | 1+104T+p5T2 |
| 11 | 1−30pT+p5T2 |
| 13 | 1+46T+p5T2 |
| 17 | 1+618T+p5T2 |
| 23 | 1−402T+p5T2 |
| 29 | 1+2628T+p5T2 |
| 31 | 1−2368T+p5T2 |
| 37 | 1+12130T+p5T2 |
| 41 | 1+18864T+p5T2 |
| 43 | 1−10408T+p5T2 |
| 47 | 1−4770T+p5T2 |
| 53 | 1+19452T+p5T2 |
| 59 | 1+30528T+p5T2 |
| 61 | 1−11138T+p5T2 |
| 67 | 1+49508T+p5T2 |
| 71 | 1+7572T+p5T2 |
| 73 | 1−2342T+p5T2 |
| 79 | 1+22424T+p5T2 |
| 83 | 1−46734T+p5T2 |
| 89 | 1+70104T+p5T2 |
| 97 | 1−105710T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.344609162207410367768075489974, −8.567015209724859307575485216278, −7.50771335869958083661693555558, −6.76230324248476894147518426848, −6.06362638032569195607839007589, −4.86992569219605215559856718215, −3.97697538226408777281271315033, −3.20294688703784200765036653309, −1.67268856680033577133971851547, −0.33116197167016676691995846755,
0.33116197167016676691995846755, 1.67268856680033577133971851547, 3.20294688703784200765036653309, 3.97697538226408777281271315033, 4.86992569219605215559856718215, 6.06362638032569195607839007589, 6.76230324248476894147518426848, 7.50771335869958083661693555558, 8.567015209724859307575485216278, 9.344609162207410367768075489974