Properties

Label 912.6.a.c
Level 912912
Weight 66
Character orbit 912.a
Self dual yes
Analytic conductor 146.270146.270
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.270043669146.270043669
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 114)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9q354q5104q7+81q9+330q1146q13+486q15618q17361q19+936q21+402q23209q25729q272628q29+2368q312970q33++26730q99+O(q100) q - 9 q^{3} - 54 q^{5} - 104 q^{7} + 81 q^{9} + 330 q^{11} - 46 q^{13} + 486 q^{15} - 618 q^{17} - 361 q^{19} + 936 q^{21} + 402 q^{23} - 209 q^{25} - 729 q^{27} - 2628 q^{29} + 2368 q^{31} - 2970 q^{33}+ \cdots + 26730 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −9.00000 0 −54.0000 0 −104.000 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.c 1
4.b odd 2 1 114.6.a.a 1
12.b even 2 1 342.6.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.a 1 4.b odd 2 1
342.6.a.f 1 12.b even 2 1
912.6.a.c 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+54 T_{5} + 54 acting on S6new(Γ0(912))S_{6}^{\mathrm{new}}(\Gamma_0(912)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T+54 T + 54 Copy content Toggle raw display
77 T+104 T + 104 Copy content Toggle raw display
1111 T330 T - 330 Copy content Toggle raw display
1313 T+46 T + 46 Copy content Toggle raw display
1717 T+618 T + 618 Copy content Toggle raw display
1919 T+361 T + 361 Copy content Toggle raw display
2323 T402 T - 402 Copy content Toggle raw display
2929 T+2628 T + 2628 Copy content Toggle raw display
3131 T2368 T - 2368 Copy content Toggle raw display
3737 T+12130 T + 12130 Copy content Toggle raw display
4141 T+18864 T + 18864 Copy content Toggle raw display
4343 T10408 T - 10408 Copy content Toggle raw display
4747 T4770 T - 4770 Copy content Toggle raw display
5353 T+19452 T + 19452 Copy content Toggle raw display
5959 T+30528 T + 30528 Copy content Toggle raw display
6161 T11138 T - 11138 Copy content Toggle raw display
6767 T+49508 T + 49508 Copy content Toggle raw display
7171 T+7572 T + 7572 Copy content Toggle raw display
7373 T2342 T - 2342 Copy content Toggle raw display
7979 T+22424 T + 22424 Copy content Toggle raw display
8383 T46734 T - 46734 Copy content Toggle raw display
8989 T+70104 T + 70104 Copy content Toggle raw display
9797 T105710 T - 105710 Copy content Toggle raw display
show more
show less