Properties

Label 912.6.a.c.1.1
Level $912$
Weight $6$
Character 912.1
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 912.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -54.0000 q^{5} -104.000 q^{7} +81.0000 q^{9} +330.000 q^{11} -46.0000 q^{13} +486.000 q^{15} -618.000 q^{17} -361.000 q^{19} +936.000 q^{21} +402.000 q^{23} -209.000 q^{25} -729.000 q^{27} -2628.00 q^{29} +2368.00 q^{31} -2970.00 q^{33} +5616.00 q^{35} -12130.0 q^{37} +414.000 q^{39} -18864.0 q^{41} +10408.0 q^{43} -4374.00 q^{45} +4770.00 q^{47} -5991.00 q^{49} +5562.00 q^{51} -19452.0 q^{53} -17820.0 q^{55} +3249.00 q^{57} -30528.0 q^{59} +11138.0 q^{61} -8424.00 q^{63} +2484.00 q^{65} -49508.0 q^{67} -3618.00 q^{69} -7572.00 q^{71} +2342.00 q^{73} +1881.00 q^{75} -34320.0 q^{77} -22424.0 q^{79} +6561.00 q^{81} +46734.0 q^{83} +33372.0 q^{85} +23652.0 q^{87} -70104.0 q^{89} +4784.00 q^{91} -21312.0 q^{93} +19494.0 q^{95} +105710. q^{97} +26730.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −54.0000 −0.965981 −0.482991 0.875625i \(-0.660450\pi\)
−0.482991 + 0.875625i \(0.660450\pi\)
\(6\) 0 0
\(7\) −104.000 −0.802210 −0.401105 0.916032i \(-0.631374\pi\)
−0.401105 + 0.916032i \(0.631374\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 330.000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) −46.0000 −0.0754917 −0.0377459 0.999287i \(-0.512018\pi\)
−0.0377459 + 0.999287i \(0.512018\pi\)
\(14\) 0 0
\(15\) 486.000 0.557710
\(16\) 0 0
\(17\) −618.000 −0.518640 −0.259320 0.965791i \(-0.583498\pi\)
−0.259320 + 0.965791i \(0.583498\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 0 0
\(21\) 936.000 0.463156
\(22\) 0 0
\(23\) 402.000 0.158455 0.0792276 0.996857i \(-0.474755\pi\)
0.0792276 + 0.996857i \(0.474755\pi\)
\(24\) 0 0
\(25\) −209.000 −0.0668800
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −2628.00 −0.580270 −0.290135 0.956986i \(-0.593700\pi\)
−0.290135 + 0.956986i \(0.593700\pi\)
\(30\) 0 0
\(31\) 2368.00 0.442565 0.221283 0.975210i \(-0.428976\pi\)
0.221283 + 0.975210i \(0.428976\pi\)
\(32\) 0 0
\(33\) −2970.00 −0.474757
\(34\) 0 0
\(35\) 5616.00 0.774920
\(36\) 0 0
\(37\) −12130.0 −1.45665 −0.728327 0.685230i \(-0.759702\pi\)
−0.728327 + 0.685230i \(0.759702\pi\)
\(38\) 0 0
\(39\) 414.000 0.0435852
\(40\) 0 0
\(41\) −18864.0 −1.75257 −0.876283 0.481798i \(-0.839984\pi\)
−0.876283 + 0.481798i \(0.839984\pi\)
\(42\) 0 0
\(43\) 10408.0 0.858413 0.429206 0.903206i \(-0.358793\pi\)
0.429206 + 0.903206i \(0.358793\pi\)
\(44\) 0 0
\(45\) −4374.00 −0.321994
\(46\) 0 0
\(47\) 4770.00 0.314973 0.157487 0.987521i \(-0.449661\pi\)
0.157487 + 0.987521i \(0.449661\pi\)
\(48\) 0 0
\(49\) −5991.00 −0.356459
\(50\) 0 0
\(51\) 5562.00 0.299437
\(52\) 0 0
\(53\) −19452.0 −0.951206 −0.475603 0.879660i \(-0.657770\pi\)
−0.475603 + 0.879660i \(0.657770\pi\)
\(54\) 0 0
\(55\) −17820.0 −0.794330
\(56\) 0 0
\(57\) 3249.00 0.132453
\(58\) 0 0
\(59\) −30528.0 −1.14174 −0.570871 0.821039i \(-0.693395\pi\)
−0.570871 + 0.821039i \(0.693395\pi\)
\(60\) 0 0
\(61\) 11138.0 0.383250 0.191625 0.981468i \(-0.438624\pi\)
0.191625 + 0.981468i \(0.438624\pi\)
\(62\) 0 0
\(63\) −8424.00 −0.267403
\(64\) 0 0
\(65\) 2484.00 0.0729236
\(66\) 0 0
\(67\) −49508.0 −1.34737 −0.673687 0.739016i \(-0.735291\pi\)
−0.673687 + 0.739016i \(0.735291\pi\)
\(68\) 0 0
\(69\) −3618.00 −0.0914841
\(70\) 0 0
\(71\) −7572.00 −0.178264 −0.0891322 0.996020i \(-0.528409\pi\)
−0.0891322 + 0.996020i \(0.528409\pi\)
\(72\) 0 0
\(73\) 2342.00 0.0514375 0.0257187 0.999669i \(-0.491813\pi\)
0.0257187 + 0.999669i \(0.491813\pi\)
\(74\) 0 0
\(75\) 1881.00 0.0386132
\(76\) 0 0
\(77\) −34320.0 −0.659660
\(78\) 0 0
\(79\) −22424.0 −0.404246 −0.202123 0.979360i \(-0.564784\pi\)
−0.202123 + 0.979360i \(0.564784\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 46734.0 0.744625 0.372313 0.928107i \(-0.378565\pi\)
0.372313 + 0.928107i \(0.378565\pi\)
\(84\) 0 0
\(85\) 33372.0 0.500997
\(86\) 0 0
\(87\) 23652.0 0.335019
\(88\) 0 0
\(89\) −70104.0 −0.938140 −0.469070 0.883161i \(-0.655411\pi\)
−0.469070 + 0.883161i \(0.655411\pi\)
\(90\) 0 0
\(91\) 4784.00 0.0605603
\(92\) 0 0
\(93\) −21312.0 −0.255515
\(94\) 0 0
\(95\) 19494.0 0.221611
\(96\) 0 0
\(97\) 105710. 1.14074 0.570370 0.821388i \(-0.306800\pi\)
0.570370 + 0.821388i \(0.306800\pi\)
\(98\) 0 0
\(99\) 26730.0 0.274101
\(100\) 0 0
\(101\) 124542. 1.21482 0.607411 0.794388i \(-0.292208\pi\)
0.607411 + 0.794388i \(0.292208\pi\)
\(102\) 0 0
\(103\) −6488.00 −0.0602584 −0.0301292 0.999546i \(-0.509592\pi\)
−0.0301292 + 0.999546i \(0.509592\pi\)
\(104\) 0 0
\(105\) −50544.0 −0.447400
\(106\) 0 0
\(107\) −50040.0 −0.422530 −0.211265 0.977429i \(-0.567758\pi\)
−0.211265 + 0.977429i \(0.567758\pi\)
\(108\) 0 0
\(109\) 88706.0 0.715133 0.357566 0.933888i \(-0.383607\pi\)
0.357566 + 0.933888i \(0.383607\pi\)
\(110\) 0 0
\(111\) 109170. 0.841000
\(112\) 0 0
\(113\) −156792. −1.15512 −0.577561 0.816348i \(-0.695995\pi\)
−0.577561 + 0.816348i \(0.695995\pi\)
\(114\) 0 0
\(115\) −21708.0 −0.153065
\(116\) 0 0
\(117\) −3726.00 −0.0251639
\(118\) 0 0
\(119\) 64272.0 0.416059
\(120\) 0 0
\(121\) −52151.0 −0.323817
\(122\) 0 0
\(123\) 169776. 1.01184
\(124\) 0 0
\(125\) 180036. 1.03059
\(126\) 0 0
\(127\) 211768. 1.16507 0.582534 0.812807i \(-0.302061\pi\)
0.582534 + 0.812807i \(0.302061\pi\)
\(128\) 0 0
\(129\) −93672.0 −0.495605
\(130\) 0 0
\(131\) 4410.00 0.0224523 0.0112261 0.999937i \(-0.496427\pi\)
0.0112261 + 0.999937i \(0.496427\pi\)
\(132\) 0 0
\(133\) 37544.0 0.184040
\(134\) 0 0
\(135\) 39366.0 0.185903
\(136\) 0 0
\(137\) 205974. 0.937586 0.468793 0.883308i \(-0.344689\pi\)
0.468793 + 0.883308i \(0.344689\pi\)
\(138\) 0 0
\(139\) −315908. −1.38683 −0.693416 0.720538i \(-0.743895\pi\)
−0.693416 + 0.720538i \(0.743895\pi\)
\(140\) 0 0
\(141\) −42930.0 −0.181850
\(142\) 0 0
\(143\) −15180.0 −0.0620771
\(144\) 0 0
\(145\) 141912. 0.560530
\(146\) 0 0
\(147\) 53919.0 0.205801
\(148\) 0 0
\(149\) 211158. 0.779187 0.389594 0.920987i \(-0.372615\pi\)
0.389594 + 0.920987i \(0.372615\pi\)
\(150\) 0 0
\(151\) 118120. 0.421581 0.210791 0.977531i \(-0.432396\pi\)
0.210791 + 0.977531i \(0.432396\pi\)
\(152\) 0 0
\(153\) −50058.0 −0.172880
\(154\) 0 0
\(155\) −127872. −0.427510
\(156\) 0 0
\(157\) −163990. −0.530968 −0.265484 0.964115i \(-0.585532\pi\)
−0.265484 + 0.964115i \(0.585532\pi\)
\(158\) 0 0
\(159\) 175068. 0.549179
\(160\) 0 0
\(161\) −41808.0 −0.127114
\(162\) 0 0
\(163\) −26948.0 −0.0794433 −0.0397217 0.999211i \(-0.512647\pi\)
−0.0397217 + 0.999211i \(0.512647\pi\)
\(164\) 0 0
\(165\) 160380. 0.458607
\(166\) 0 0
\(167\) −5808.00 −0.0161152 −0.00805759 0.999968i \(-0.502565\pi\)
−0.00805759 + 0.999968i \(0.502565\pi\)
\(168\) 0 0
\(169\) −369177. −0.994301
\(170\) 0 0
\(171\) −29241.0 −0.0764719
\(172\) 0 0
\(173\) 37104.0 0.0942552 0.0471276 0.998889i \(-0.484993\pi\)
0.0471276 + 0.998889i \(0.484993\pi\)
\(174\) 0 0
\(175\) 21736.0 0.0536518
\(176\) 0 0
\(177\) 274752. 0.659186
\(178\) 0 0
\(179\) −198360. −0.462723 −0.231362 0.972868i \(-0.574318\pi\)
−0.231362 + 0.972868i \(0.574318\pi\)
\(180\) 0 0
\(181\) −276838. −0.628101 −0.314050 0.949406i \(-0.601686\pi\)
−0.314050 + 0.949406i \(0.601686\pi\)
\(182\) 0 0
\(183\) −100242. −0.221270
\(184\) 0 0
\(185\) 655020. 1.40710
\(186\) 0 0
\(187\) −203940. −0.426480
\(188\) 0 0
\(189\) 75816.0 0.154385
\(190\) 0 0
\(191\) 531222. 1.05364 0.526820 0.849977i \(-0.323384\pi\)
0.526820 + 0.849977i \(0.323384\pi\)
\(192\) 0 0
\(193\) −245062. −0.473568 −0.236784 0.971562i \(-0.576093\pi\)
−0.236784 + 0.971562i \(0.576093\pi\)
\(194\) 0 0
\(195\) −22356.0 −0.0421025
\(196\) 0 0
\(197\) 219906. 0.403712 0.201856 0.979415i \(-0.435303\pi\)
0.201856 + 0.979415i \(0.435303\pi\)
\(198\) 0 0
\(199\) 1.01820e6 1.82265 0.911323 0.411693i \(-0.135062\pi\)
0.911323 + 0.411693i \(0.135062\pi\)
\(200\) 0 0
\(201\) 445572. 0.777907
\(202\) 0 0
\(203\) 273312. 0.465499
\(204\) 0 0
\(205\) 1.01866e6 1.69295
\(206\) 0 0
\(207\) 32562.0 0.0528184
\(208\) 0 0
\(209\) −119130. −0.188649
\(210\) 0 0
\(211\) −105020. −0.162392 −0.0811962 0.996698i \(-0.525874\pi\)
−0.0811962 + 0.996698i \(0.525874\pi\)
\(212\) 0 0
\(213\) 68148.0 0.102921
\(214\) 0 0
\(215\) −562032. −0.829211
\(216\) 0 0
\(217\) −246272. −0.355031
\(218\) 0 0
\(219\) −21078.0 −0.0296974
\(220\) 0 0
\(221\) 28428.0 0.0391531
\(222\) 0 0
\(223\) −988304. −1.33085 −0.665424 0.746466i \(-0.731749\pi\)
−0.665424 + 0.746466i \(0.731749\pi\)
\(224\) 0 0
\(225\) −16929.0 −0.0222933
\(226\) 0 0
\(227\) 515940. 0.664561 0.332280 0.943181i \(-0.392182\pi\)
0.332280 + 0.943181i \(0.392182\pi\)
\(228\) 0 0
\(229\) −277354. −0.349499 −0.174749 0.984613i \(-0.555912\pi\)
−0.174749 + 0.984613i \(0.555912\pi\)
\(230\) 0 0
\(231\) 308880. 0.380855
\(232\) 0 0
\(233\) 1.54151e6 1.86019 0.930096 0.367317i \(-0.119724\pi\)
0.930096 + 0.367317i \(0.119724\pi\)
\(234\) 0 0
\(235\) −257580. −0.304258
\(236\) 0 0
\(237\) 201816. 0.233391
\(238\) 0 0
\(239\) 314310. 0.355929 0.177965 0.984037i \(-0.443049\pi\)
0.177965 + 0.984037i \(0.443049\pi\)
\(240\) 0 0
\(241\) 24566.0 0.0272453 0.0136227 0.999907i \(-0.495664\pi\)
0.0136227 + 0.999907i \(0.495664\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 323514. 0.344332
\(246\) 0 0
\(247\) 16606.0 0.0173190
\(248\) 0 0
\(249\) −420606. −0.429910
\(250\) 0 0
\(251\) −661290. −0.662533 −0.331267 0.943537i \(-0.607476\pi\)
−0.331267 + 0.943537i \(0.607476\pi\)
\(252\) 0 0
\(253\) 132660. 0.130298
\(254\) 0 0
\(255\) −300348. −0.289251
\(256\) 0 0
\(257\) 1.05035e6 0.991974 0.495987 0.868330i \(-0.334806\pi\)
0.495987 + 0.868330i \(0.334806\pi\)
\(258\) 0 0
\(259\) 1.26152e6 1.16854
\(260\) 0 0
\(261\) −212868. −0.193423
\(262\) 0 0
\(263\) 465510. 0.414992 0.207496 0.978236i \(-0.433469\pi\)
0.207496 + 0.978236i \(0.433469\pi\)
\(264\) 0 0
\(265\) 1.05041e6 0.918847
\(266\) 0 0
\(267\) 630936. 0.541636
\(268\) 0 0
\(269\) −317112. −0.267197 −0.133599 0.991036i \(-0.542653\pi\)
−0.133599 + 0.991036i \(0.542653\pi\)
\(270\) 0 0
\(271\) 1.48901e6 1.23162 0.615808 0.787897i \(-0.288830\pi\)
0.615808 + 0.787897i \(0.288830\pi\)
\(272\) 0 0
\(273\) −43056.0 −0.0349645
\(274\) 0 0
\(275\) −68970.0 −0.0549957
\(276\) 0 0
\(277\) −1.54028e6 −1.20615 −0.603074 0.797685i \(-0.706058\pi\)
−0.603074 + 0.797685i \(0.706058\pi\)
\(278\) 0 0
\(279\) 191808. 0.147522
\(280\) 0 0
\(281\) 1.99595e6 1.50794 0.753969 0.656910i \(-0.228137\pi\)
0.753969 + 0.656910i \(0.228137\pi\)
\(282\) 0 0
\(283\) 946936. 0.702837 0.351418 0.936219i \(-0.385699\pi\)
0.351418 + 0.936219i \(0.385699\pi\)
\(284\) 0 0
\(285\) −175446. −0.127947
\(286\) 0 0
\(287\) 1.96186e6 1.40593
\(288\) 0 0
\(289\) −1.03793e6 −0.731012
\(290\) 0 0
\(291\) −951390. −0.658607
\(292\) 0 0
\(293\) 2.18170e6 1.48465 0.742327 0.670038i \(-0.233722\pi\)
0.742327 + 0.670038i \(0.233722\pi\)
\(294\) 0 0
\(295\) 1.64851e6 1.10290
\(296\) 0 0
\(297\) −240570. −0.158252
\(298\) 0 0
\(299\) −18492.0 −0.0119621
\(300\) 0 0
\(301\) −1.08243e6 −0.688628
\(302\) 0 0
\(303\) −1.12088e6 −0.701377
\(304\) 0 0
\(305\) −601452. −0.370213
\(306\) 0 0
\(307\) 2.50414e6 1.51640 0.758198 0.652024i \(-0.226080\pi\)
0.758198 + 0.652024i \(0.226080\pi\)
\(308\) 0 0
\(309\) 58392.0 0.0347902
\(310\) 0 0
\(311\) 785658. 0.460609 0.230305 0.973119i \(-0.426028\pi\)
0.230305 + 0.973119i \(0.426028\pi\)
\(312\) 0 0
\(313\) 364334. 0.210203 0.105101 0.994462i \(-0.466483\pi\)
0.105101 + 0.994462i \(0.466483\pi\)
\(314\) 0 0
\(315\) 454896. 0.258307
\(316\) 0 0
\(317\) −1.46938e6 −0.821268 −0.410634 0.911800i \(-0.634693\pi\)
−0.410634 + 0.911800i \(0.634693\pi\)
\(318\) 0 0
\(319\) −867240. −0.477158
\(320\) 0 0
\(321\) 450360. 0.243948
\(322\) 0 0
\(323\) 223098. 0.118984
\(324\) 0 0
\(325\) 9614.00 0.00504889
\(326\) 0 0
\(327\) −798354. −0.412882
\(328\) 0 0
\(329\) −496080. −0.252675
\(330\) 0 0
\(331\) −1.67414e6 −0.839889 −0.419944 0.907550i \(-0.637950\pi\)
−0.419944 + 0.907550i \(0.637950\pi\)
\(332\) 0 0
\(333\) −982530. −0.485551
\(334\) 0 0
\(335\) 2.67343e6 1.30154
\(336\) 0 0
\(337\) 3.02010e6 1.44859 0.724297 0.689488i \(-0.242164\pi\)
0.724297 + 0.689488i \(0.242164\pi\)
\(338\) 0 0
\(339\) 1.41113e6 0.666910
\(340\) 0 0
\(341\) 781440. 0.363923
\(342\) 0 0
\(343\) 2.37099e6 1.08817
\(344\) 0 0
\(345\) 195372. 0.0883720
\(346\) 0 0
\(347\) −2.79531e6 −1.24625 −0.623127 0.782121i \(-0.714138\pi\)
−0.623127 + 0.782121i \(0.714138\pi\)
\(348\) 0 0
\(349\) −3.92975e6 −1.72703 −0.863517 0.504320i \(-0.831743\pi\)
−0.863517 + 0.504320i \(0.831743\pi\)
\(350\) 0 0
\(351\) 33534.0 0.0145284
\(352\) 0 0
\(353\) −1.56554e6 −0.668693 −0.334347 0.942450i \(-0.608516\pi\)
−0.334347 + 0.942450i \(0.608516\pi\)
\(354\) 0 0
\(355\) 408888. 0.172200
\(356\) 0 0
\(357\) −578448. −0.240211
\(358\) 0 0
\(359\) 2.19680e6 0.899609 0.449805 0.893127i \(-0.351494\pi\)
0.449805 + 0.893127i \(0.351494\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) 469359. 0.186956
\(364\) 0 0
\(365\) −126468. −0.0496877
\(366\) 0 0
\(367\) 4.24772e6 1.64623 0.823115 0.567875i \(-0.192234\pi\)
0.823115 + 0.567875i \(0.192234\pi\)
\(368\) 0 0
\(369\) −1.52798e6 −0.584188
\(370\) 0 0
\(371\) 2.02301e6 0.763067
\(372\) 0 0
\(373\) 4.24597e6 1.58018 0.790088 0.612994i \(-0.210035\pi\)
0.790088 + 0.612994i \(0.210035\pi\)
\(374\) 0 0
\(375\) −1.62032e6 −0.595009
\(376\) 0 0
\(377\) 120888. 0.0438056
\(378\) 0 0
\(379\) −3.06794e6 −1.09711 −0.548553 0.836116i \(-0.684821\pi\)
−0.548553 + 0.836116i \(0.684821\pi\)
\(380\) 0 0
\(381\) −1.90591e6 −0.672652
\(382\) 0 0
\(383\) −5.23012e6 −1.82186 −0.910929 0.412564i \(-0.864633\pi\)
−0.910929 + 0.412564i \(0.864633\pi\)
\(384\) 0 0
\(385\) 1.85328e6 0.637220
\(386\) 0 0
\(387\) 843048. 0.286138
\(388\) 0 0
\(389\) −3.36209e6 −1.12651 −0.563256 0.826282i \(-0.690452\pi\)
−0.563256 + 0.826282i \(0.690452\pi\)
\(390\) 0 0
\(391\) −248436. −0.0821812
\(392\) 0 0
\(393\) −39690.0 −0.0129628
\(394\) 0 0
\(395\) 1.21090e6 0.390494
\(396\) 0 0
\(397\) 2.92432e6 0.931211 0.465606 0.884992i \(-0.345836\pi\)
0.465606 + 0.884992i \(0.345836\pi\)
\(398\) 0 0
\(399\) −337896. −0.106255
\(400\) 0 0
\(401\) 5.80702e6 1.80340 0.901700 0.432362i \(-0.142320\pi\)
0.901700 + 0.432362i \(0.142320\pi\)
\(402\) 0 0
\(403\) −108928. −0.0334100
\(404\) 0 0
\(405\) −354294. −0.107331
\(406\) 0 0
\(407\) −4.00290e6 −1.19781
\(408\) 0 0
\(409\) 1.80028e6 0.532147 0.266073 0.963953i \(-0.414274\pi\)
0.266073 + 0.963953i \(0.414274\pi\)
\(410\) 0 0
\(411\) −1.85377e6 −0.541315
\(412\) 0 0
\(413\) 3.17491e6 0.915918
\(414\) 0 0
\(415\) −2.52364e6 −0.719294
\(416\) 0 0
\(417\) 2.84317e6 0.800687
\(418\) 0 0
\(419\) 1.38477e6 0.385339 0.192669 0.981264i \(-0.438286\pi\)
0.192669 + 0.981264i \(0.438286\pi\)
\(420\) 0 0
\(421\) −315598. −0.0867819 −0.0433909 0.999058i \(-0.513816\pi\)
−0.0433909 + 0.999058i \(0.513816\pi\)
\(422\) 0 0
\(423\) 386370. 0.104991
\(424\) 0 0
\(425\) 129162. 0.0346867
\(426\) 0 0
\(427\) −1.15835e6 −0.307447
\(428\) 0 0
\(429\) 136620. 0.0358403
\(430\) 0 0
\(431\) 6.52696e6 1.69246 0.846228 0.532821i \(-0.178868\pi\)
0.846228 + 0.532821i \(0.178868\pi\)
\(432\) 0 0
\(433\) 2.63139e6 0.674473 0.337237 0.941420i \(-0.390508\pi\)
0.337237 + 0.941420i \(0.390508\pi\)
\(434\) 0 0
\(435\) −1.27721e6 −0.323622
\(436\) 0 0
\(437\) −145122. −0.0363521
\(438\) 0 0
\(439\) −3.09445e6 −0.766341 −0.383170 0.923678i \(-0.625168\pi\)
−0.383170 + 0.923678i \(0.625168\pi\)
\(440\) 0 0
\(441\) −485271. −0.118820
\(442\) 0 0
\(443\) −985086. −0.238487 −0.119244 0.992865i \(-0.538047\pi\)
−0.119244 + 0.992865i \(0.538047\pi\)
\(444\) 0 0
\(445\) 3.78562e6 0.906226
\(446\) 0 0
\(447\) −1.90042e6 −0.449864
\(448\) 0 0
\(449\) −2.91582e6 −0.682566 −0.341283 0.939961i \(-0.610862\pi\)
−0.341283 + 0.939961i \(0.610862\pi\)
\(450\) 0 0
\(451\) −6.22512e6 −1.44114
\(452\) 0 0
\(453\) −1.06308e6 −0.243400
\(454\) 0 0
\(455\) −258336. −0.0585001
\(456\) 0 0
\(457\) −3.54721e6 −0.794505 −0.397252 0.917709i \(-0.630036\pi\)
−0.397252 + 0.917709i \(0.630036\pi\)
\(458\) 0 0
\(459\) 450522. 0.0998124
\(460\) 0 0
\(461\) 4.57057e6 1.00165 0.500827 0.865547i \(-0.333029\pi\)
0.500827 + 0.865547i \(0.333029\pi\)
\(462\) 0 0
\(463\) −5.91304e6 −1.28191 −0.640957 0.767577i \(-0.721462\pi\)
−0.640957 + 0.767577i \(0.721462\pi\)
\(464\) 0 0
\(465\) 1.15085e6 0.246823
\(466\) 0 0
\(467\) 3.73808e6 0.793152 0.396576 0.918002i \(-0.370198\pi\)
0.396576 + 0.918002i \(0.370198\pi\)
\(468\) 0 0
\(469\) 5.14883e6 1.08088
\(470\) 0 0
\(471\) 1.47591e6 0.306554
\(472\) 0 0
\(473\) 3.43464e6 0.705876
\(474\) 0 0
\(475\) 75449.0 0.0153433
\(476\) 0 0
\(477\) −1.57561e6 −0.317069
\(478\) 0 0
\(479\) 3.79193e6 0.755130 0.377565 0.925983i \(-0.376761\pi\)
0.377565 + 0.925983i \(0.376761\pi\)
\(480\) 0 0
\(481\) 557980. 0.109965
\(482\) 0 0
\(483\) 376272. 0.0733895
\(484\) 0 0
\(485\) −5.70834e6 −1.10193
\(486\) 0 0
\(487\) −2.78559e6 −0.532225 −0.266112 0.963942i \(-0.585739\pi\)
−0.266112 + 0.963942i \(0.585739\pi\)
\(488\) 0 0
\(489\) 242532. 0.0458666
\(490\) 0 0
\(491\) −1.70523e6 −0.319212 −0.159606 0.987181i \(-0.551022\pi\)
−0.159606 + 0.987181i \(0.551022\pi\)
\(492\) 0 0
\(493\) 1.62410e6 0.300952
\(494\) 0 0
\(495\) −1.44342e6 −0.264777
\(496\) 0 0
\(497\) 787488. 0.143006
\(498\) 0 0
\(499\) −3.60026e6 −0.647266 −0.323633 0.946183i \(-0.604904\pi\)
−0.323633 + 0.946183i \(0.604904\pi\)
\(500\) 0 0
\(501\) 52272.0 0.00930411
\(502\) 0 0
\(503\) 8.68129e6 1.52990 0.764952 0.644087i \(-0.222763\pi\)
0.764952 + 0.644087i \(0.222763\pi\)
\(504\) 0 0
\(505\) −6.72527e6 −1.17349
\(506\) 0 0
\(507\) 3.32259e6 0.574060
\(508\) 0 0
\(509\) −1.09767e7 −1.87792 −0.938962 0.344022i \(-0.888211\pi\)
−0.938962 + 0.344022i \(0.888211\pi\)
\(510\) 0 0
\(511\) −243568. −0.0412637
\(512\) 0 0
\(513\) 263169. 0.0441511
\(514\) 0 0
\(515\) 350352. 0.0582085
\(516\) 0 0
\(517\) 1.57410e6 0.259004
\(518\) 0 0
\(519\) −333936. −0.0544183
\(520\) 0 0
\(521\) −9.09036e6 −1.46719 −0.733596 0.679586i \(-0.762159\pi\)
−0.733596 + 0.679586i \(0.762159\pi\)
\(522\) 0 0
\(523\) −8.46276e6 −1.35287 −0.676437 0.736500i \(-0.736477\pi\)
−0.676437 + 0.736500i \(0.736477\pi\)
\(524\) 0 0
\(525\) −195624. −0.0309759
\(526\) 0 0
\(527\) −1.46342e6 −0.229532
\(528\) 0 0
\(529\) −6.27474e6 −0.974892
\(530\) 0 0
\(531\) −2.47277e6 −0.380581
\(532\) 0 0
\(533\) 867744. 0.132304
\(534\) 0 0
\(535\) 2.70216e6 0.408156
\(536\) 0 0
\(537\) 1.78524e6 0.267154
\(538\) 0 0
\(539\) −1.97703e6 −0.293117
\(540\) 0 0
\(541\) −8.03851e6 −1.18082 −0.590408 0.807105i \(-0.701033\pi\)
−0.590408 + 0.807105i \(0.701033\pi\)
\(542\) 0 0
\(543\) 2.49154e6 0.362634
\(544\) 0 0
\(545\) −4.79012e6 −0.690805
\(546\) 0 0
\(547\) 1.32779e7 1.89741 0.948704 0.316167i \(-0.102396\pi\)
0.948704 + 0.316167i \(0.102396\pi\)
\(548\) 0 0
\(549\) 902178. 0.127750
\(550\) 0 0
\(551\) 948708. 0.133123
\(552\) 0 0
\(553\) 2.33210e6 0.324290
\(554\) 0 0
\(555\) −5.89518e6 −0.812390
\(556\) 0 0
\(557\) −9.11080e6 −1.24428 −0.622141 0.782905i \(-0.713737\pi\)
−0.622141 + 0.782905i \(0.713737\pi\)
\(558\) 0 0
\(559\) −478768. −0.0648031
\(560\) 0 0
\(561\) 1.83546e6 0.246228
\(562\) 0 0
\(563\) 5.07313e6 0.674536 0.337268 0.941409i \(-0.390497\pi\)
0.337268 + 0.941409i \(0.390497\pi\)
\(564\) 0 0
\(565\) 8.46677e6 1.11583
\(566\) 0 0
\(567\) −682344. −0.0891345
\(568\) 0 0
\(569\) 2.30192e6 0.298065 0.149032 0.988832i \(-0.452384\pi\)
0.149032 + 0.988832i \(0.452384\pi\)
\(570\) 0 0
\(571\) 1.14948e7 1.47540 0.737702 0.675127i \(-0.235911\pi\)
0.737702 + 0.675127i \(0.235911\pi\)
\(572\) 0 0
\(573\) −4.78100e6 −0.608320
\(574\) 0 0
\(575\) −84018.0 −0.0105975
\(576\) 0 0
\(577\) 308198. 0.0385381 0.0192690 0.999814i \(-0.493866\pi\)
0.0192690 + 0.999814i \(0.493866\pi\)
\(578\) 0 0
\(579\) 2.20556e6 0.273415
\(580\) 0 0
\(581\) −4.86034e6 −0.597346
\(582\) 0 0
\(583\) −6.41916e6 −0.782180
\(584\) 0 0
\(585\) 201204. 0.0243079
\(586\) 0 0
\(587\) −5.02053e6 −0.601387 −0.300694 0.953721i \(-0.597218\pi\)
−0.300694 + 0.953721i \(0.597218\pi\)
\(588\) 0 0
\(589\) −854848. −0.101531
\(590\) 0 0
\(591\) −1.97915e6 −0.233083
\(592\) 0 0
\(593\) 1.70294e7 1.98867 0.994335 0.106288i \(-0.0338967\pi\)
0.994335 + 0.106288i \(0.0338967\pi\)
\(594\) 0 0
\(595\) −3.47069e6 −0.401905
\(596\) 0 0
\(597\) −9.16384e6 −1.05230
\(598\) 0 0
\(599\) −2.86572e6 −0.326337 −0.163169 0.986598i \(-0.552171\pi\)
−0.163169 + 0.986598i \(0.552171\pi\)
\(600\) 0 0
\(601\) −1.03461e7 −1.16840 −0.584200 0.811609i \(-0.698592\pi\)
−0.584200 + 0.811609i \(0.698592\pi\)
\(602\) 0 0
\(603\) −4.01015e6 −0.449125
\(604\) 0 0
\(605\) 2.81615e6 0.312801
\(606\) 0 0
\(607\) −3.56084e6 −0.392266 −0.196133 0.980577i \(-0.562838\pi\)
−0.196133 + 0.980577i \(0.562838\pi\)
\(608\) 0 0
\(609\) −2.45981e6 −0.268756
\(610\) 0 0
\(611\) −219420. −0.0237779
\(612\) 0 0
\(613\) 7.56115e6 0.812712 0.406356 0.913715i \(-0.366799\pi\)
0.406356 + 0.913715i \(0.366799\pi\)
\(614\) 0 0
\(615\) −9.16790e6 −0.977422
\(616\) 0 0
\(617\) 5.03233e6 0.532177 0.266088 0.963949i \(-0.414269\pi\)
0.266088 + 0.963949i \(0.414269\pi\)
\(618\) 0 0
\(619\) 5.87528e6 0.616313 0.308157 0.951336i \(-0.400288\pi\)
0.308157 + 0.951336i \(0.400288\pi\)
\(620\) 0 0
\(621\) −293058. −0.0304947
\(622\) 0 0
\(623\) 7.29082e6 0.752586
\(624\) 0 0
\(625\) −9.06882e6 −0.928647
\(626\) 0 0
\(627\) 1.07217e6 0.108917
\(628\) 0 0
\(629\) 7.49634e6 0.755479
\(630\) 0 0
\(631\) 4.33809e6 0.433735 0.216868 0.976201i \(-0.430416\pi\)
0.216868 + 0.976201i \(0.430416\pi\)
\(632\) 0 0
\(633\) 945180. 0.0937573
\(634\) 0 0
\(635\) −1.14355e7 −1.12543
\(636\) 0 0
\(637\) 275586. 0.0269097
\(638\) 0 0
\(639\) −613332. −0.0594215
\(640\) 0 0
\(641\) 1.35603e7 1.30354 0.651769 0.758417i \(-0.274027\pi\)
0.651769 + 0.758417i \(0.274027\pi\)
\(642\) 0 0
\(643\) −6.02612e6 −0.574792 −0.287396 0.957812i \(-0.592789\pi\)
−0.287396 + 0.957812i \(0.592789\pi\)
\(644\) 0 0
\(645\) 5.05829e6 0.478745
\(646\) 0 0
\(647\) 8.69474e6 0.816574 0.408287 0.912854i \(-0.366126\pi\)
0.408287 + 0.912854i \(0.366126\pi\)
\(648\) 0 0
\(649\) −1.00742e7 −0.938859
\(650\) 0 0
\(651\) 2.21645e6 0.204977
\(652\) 0 0
\(653\) −1.09929e6 −0.100886 −0.0504428 0.998727i \(-0.516063\pi\)
−0.0504428 + 0.998727i \(0.516063\pi\)
\(654\) 0 0
\(655\) −238140. −0.0216885
\(656\) 0 0
\(657\) 189702. 0.0171458
\(658\) 0 0
\(659\) 3.94808e6 0.354138 0.177069 0.984198i \(-0.443338\pi\)
0.177069 + 0.984198i \(0.443338\pi\)
\(660\) 0 0
\(661\) −1.96958e7 −1.75335 −0.876676 0.481082i \(-0.840244\pi\)
−0.876676 + 0.481082i \(0.840244\pi\)
\(662\) 0 0
\(663\) −255852. −0.0226050
\(664\) 0 0
\(665\) −2.02738e6 −0.177779
\(666\) 0 0
\(667\) −1.05646e6 −0.0919468
\(668\) 0 0
\(669\) 8.89474e6 0.768365
\(670\) 0 0
\(671\) 3.67554e6 0.315148
\(672\) 0 0
\(673\) −2.06650e7 −1.75873 −0.879363 0.476151i \(-0.842031\pi\)
−0.879363 + 0.476151i \(0.842031\pi\)
\(674\) 0 0
\(675\) 152361. 0.0128711
\(676\) 0 0
\(677\) 1.64591e7 1.38018 0.690090 0.723724i \(-0.257571\pi\)
0.690090 + 0.723724i \(0.257571\pi\)
\(678\) 0 0
\(679\) −1.09938e7 −0.915114
\(680\) 0 0
\(681\) −4.64346e6 −0.383684
\(682\) 0 0
\(683\) 876672. 0.0719094 0.0359547 0.999353i \(-0.488553\pi\)
0.0359547 + 0.999353i \(0.488553\pi\)
\(684\) 0 0
\(685\) −1.11226e7 −0.905690
\(686\) 0 0
\(687\) 2.49619e6 0.201783
\(688\) 0 0
\(689\) 894792. 0.0718082
\(690\) 0 0
\(691\) −1.64070e7 −1.30717 −0.653586 0.756852i \(-0.726736\pi\)
−0.653586 + 0.756852i \(0.726736\pi\)
\(692\) 0 0
\(693\) −2.77992e6 −0.219887
\(694\) 0 0
\(695\) 1.70590e7 1.33965
\(696\) 0 0
\(697\) 1.16580e7 0.908951
\(698\) 0 0
\(699\) −1.38736e7 −1.07398
\(700\) 0 0
\(701\) 1.03676e6 0.0796861 0.0398430 0.999206i \(-0.487314\pi\)
0.0398430 + 0.999206i \(0.487314\pi\)
\(702\) 0 0
\(703\) 4.37893e6 0.334179
\(704\) 0 0
\(705\) 2.31822e6 0.175664
\(706\) 0 0
\(707\) −1.29524e7 −0.974542
\(708\) 0 0
\(709\) −2.00637e6 −0.149898 −0.0749491 0.997187i \(-0.523879\pi\)
−0.0749491 + 0.997187i \(0.523879\pi\)
\(710\) 0 0
\(711\) −1.81634e6 −0.134749
\(712\) 0 0
\(713\) 951936. 0.0701268
\(714\) 0 0
\(715\) 819720. 0.0599654
\(716\) 0 0
\(717\) −2.82879e6 −0.205496
\(718\) 0 0
\(719\) 8.95036e6 0.645682 0.322841 0.946453i \(-0.395362\pi\)
0.322841 + 0.946453i \(0.395362\pi\)
\(720\) 0 0
\(721\) 674752. 0.0483399
\(722\) 0 0
\(723\) −221094. −0.0157301
\(724\) 0 0
\(725\) 549252. 0.0388085
\(726\) 0 0
\(727\) 614668. 0.0431325 0.0215662 0.999767i \(-0.493135\pi\)
0.0215662 + 0.999767i \(0.493135\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −6.43214e6 −0.445207
\(732\) 0 0
\(733\) −8.47041e6 −0.582297 −0.291149 0.956678i \(-0.594037\pi\)
−0.291149 + 0.956678i \(0.594037\pi\)
\(734\) 0 0
\(735\) −2.91163e6 −0.198800
\(736\) 0 0
\(737\) −1.63376e7 −1.10795
\(738\) 0 0
\(739\) 9.40491e6 0.633495 0.316748 0.948510i \(-0.397409\pi\)
0.316748 + 0.948510i \(0.397409\pi\)
\(740\) 0 0
\(741\) −149454. −0.00999913
\(742\) 0 0
\(743\) −2.73198e7 −1.81554 −0.907769 0.419471i \(-0.862216\pi\)
−0.907769 + 0.419471i \(0.862216\pi\)
\(744\) 0 0
\(745\) −1.14025e7 −0.752680
\(746\) 0 0
\(747\) 3.78545e6 0.248208
\(748\) 0 0
\(749\) 5.20416e6 0.338958
\(750\) 0 0
\(751\) 1.07808e7 0.697509 0.348755 0.937214i \(-0.386605\pi\)
0.348755 + 0.937214i \(0.386605\pi\)
\(752\) 0 0
\(753\) 5.95161e6 0.382514
\(754\) 0 0
\(755\) −6.37848e6 −0.407239
\(756\) 0 0
\(757\) −543058. −0.0344434 −0.0172217 0.999852i \(-0.505482\pi\)
−0.0172217 + 0.999852i \(0.505482\pi\)
\(758\) 0 0
\(759\) −1.19394e6 −0.0752277
\(760\) 0 0
\(761\) 9.07913e6 0.568307 0.284153 0.958779i \(-0.408288\pi\)
0.284153 + 0.958779i \(0.408288\pi\)
\(762\) 0 0
\(763\) −9.22542e6 −0.573687
\(764\) 0 0
\(765\) 2.70313e6 0.166999
\(766\) 0 0
\(767\) 1.40429e6 0.0861922
\(768\) 0 0
\(769\) 5.14583e6 0.313790 0.156895 0.987615i \(-0.449852\pi\)
0.156895 + 0.987615i \(0.449852\pi\)
\(770\) 0 0
\(771\) −9.45313e6 −0.572717
\(772\) 0 0
\(773\) 7.50322e6 0.451647 0.225823 0.974168i \(-0.427493\pi\)
0.225823 + 0.974168i \(0.427493\pi\)
\(774\) 0 0
\(775\) −494912. −0.0295988
\(776\) 0 0
\(777\) −1.13537e7 −0.674659
\(778\) 0 0
\(779\) 6.80990e6 0.402066
\(780\) 0 0
\(781\) −2.49876e6 −0.146588
\(782\) 0 0
\(783\) 1.91581e6 0.111673
\(784\) 0 0
\(785\) 8.85546e6 0.512905
\(786\) 0 0
\(787\) −1.48747e7 −0.856076 −0.428038 0.903761i \(-0.640795\pi\)
−0.428038 + 0.903761i \(0.640795\pi\)
\(788\) 0 0
\(789\) −4.18959e6 −0.239596
\(790\) 0 0
\(791\) 1.63064e7 0.926651
\(792\) 0 0
\(793\) −512348. −0.0289322
\(794\) 0 0
\(795\) −9.45367e6 −0.530497
\(796\) 0 0
\(797\) 2.77279e7 1.54622 0.773109 0.634273i \(-0.218701\pi\)
0.773109 + 0.634273i \(0.218701\pi\)
\(798\) 0 0
\(799\) −2.94786e6 −0.163358
\(800\) 0 0
\(801\) −5.67842e6 −0.312713
\(802\) 0 0
\(803\) 772860. 0.0422972
\(804\) 0 0
\(805\) 2.25763e6 0.122790
\(806\) 0 0
\(807\) 2.85401e6 0.154266
\(808\) 0 0
\(809\) −3.46147e7 −1.85947 −0.929735 0.368229i \(-0.879964\pi\)
−0.929735 + 0.368229i \(0.879964\pi\)
\(810\) 0 0
\(811\) −1.42801e7 −0.762392 −0.381196 0.924494i \(-0.624488\pi\)
−0.381196 + 0.924494i \(0.624488\pi\)
\(812\) 0 0
\(813\) −1.34011e7 −0.711073
\(814\) 0 0
\(815\) 1.45519e6 0.0767408
\(816\) 0 0
\(817\) −3.75729e6 −0.196933
\(818\) 0 0
\(819\) 387504. 0.0201868
\(820\) 0 0
\(821\) 3.69632e6 0.191387 0.0956933 0.995411i \(-0.469493\pi\)
0.0956933 + 0.995411i \(0.469493\pi\)
\(822\) 0 0
\(823\) −2.05703e7 −1.05862 −0.529310 0.848428i \(-0.677549\pi\)
−0.529310 + 0.848428i \(0.677549\pi\)
\(824\) 0 0
\(825\) 620730. 0.0317518
\(826\) 0 0
\(827\) 2.42257e7 1.23172 0.615860 0.787856i \(-0.288809\pi\)
0.615860 + 0.787856i \(0.288809\pi\)
\(828\) 0 0
\(829\) −1.93936e7 −0.980102 −0.490051 0.871694i \(-0.663022\pi\)
−0.490051 + 0.871694i \(0.663022\pi\)
\(830\) 0 0
\(831\) 1.38625e7 0.696370
\(832\) 0 0
\(833\) 3.70244e6 0.184874
\(834\) 0 0
\(835\) 313632. 0.0155670
\(836\) 0 0
\(837\) −1.72627e6 −0.0851718
\(838\) 0 0
\(839\) 3.44560e7 1.68990 0.844949 0.534847i \(-0.179631\pi\)
0.844949 + 0.534847i \(0.179631\pi\)
\(840\) 0 0
\(841\) −1.36048e7 −0.663286
\(842\) 0 0
\(843\) −1.79635e7 −0.870608
\(844\) 0 0
\(845\) 1.99356e7 0.960476
\(846\) 0 0
\(847\) 5.42370e6 0.259769
\(848\) 0 0
\(849\) −8.52242e6 −0.405783
\(850\) 0 0
\(851\) −4.87626e6 −0.230814
\(852\) 0 0
\(853\) 1.43023e7 0.673029 0.336514 0.941678i \(-0.390752\pi\)
0.336514 + 0.941678i \(0.390752\pi\)
\(854\) 0 0
\(855\) 1.57901e6 0.0738704
\(856\) 0 0
\(857\) 1.96706e7 0.914882 0.457441 0.889240i \(-0.348766\pi\)
0.457441 + 0.889240i \(0.348766\pi\)
\(858\) 0 0
\(859\) −9.60088e6 −0.443944 −0.221972 0.975053i \(-0.571249\pi\)
−0.221972 + 0.975053i \(0.571249\pi\)
\(860\) 0 0
\(861\) −1.76567e7 −0.811712
\(862\) 0 0
\(863\) −1.46481e7 −0.669508 −0.334754 0.942306i \(-0.608653\pi\)
−0.334754 + 0.942306i \(0.608653\pi\)
\(864\) 0 0
\(865\) −2.00362e6 −0.0910488
\(866\) 0 0
\(867\) 9.34140e6 0.422050
\(868\) 0 0
\(869\) −7.39992e6 −0.332413
\(870\) 0 0
\(871\) 2.27737e6 0.101716
\(872\) 0 0
\(873\) 8.56251e6 0.380247
\(874\) 0 0
\(875\) −1.87237e7 −0.826747
\(876\) 0 0
\(877\) −1.17035e7 −0.513825 −0.256913 0.966435i \(-0.582705\pi\)
−0.256913 + 0.966435i \(0.582705\pi\)
\(878\) 0 0
\(879\) −1.96353e7 −0.857165
\(880\) 0 0
\(881\) −4.52787e7 −1.96541 −0.982706 0.185171i \(-0.940716\pi\)
−0.982706 + 0.185171i \(0.940716\pi\)
\(882\) 0 0
\(883\) −2.59473e7 −1.11993 −0.559965 0.828517i \(-0.689185\pi\)
−0.559965 + 0.828517i \(0.689185\pi\)
\(884\) 0 0
\(885\) −1.48366e7 −0.636761
\(886\) 0 0
\(887\) 2.07015e7 0.883473 0.441737 0.897145i \(-0.354363\pi\)
0.441737 + 0.897145i \(0.354363\pi\)
\(888\) 0 0
\(889\) −2.20239e7 −0.934629
\(890\) 0 0
\(891\) 2.16513e6 0.0913671
\(892\) 0 0
\(893\) −1.72197e6 −0.0722598
\(894\) 0 0
\(895\) 1.07114e7 0.446982
\(896\) 0 0
\(897\) 166428. 0.00690630
\(898\) 0 0
\(899\) −6.22310e6 −0.256808
\(900\) 0 0
\(901\) 1.20213e7 0.493334
\(902\) 0 0
\(903\) 9.74189e6 0.397579
\(904\) 0 0
\(905\) 1.49493e7 0.606734
\(906\) 0 0
\(907\) −4.76595e7 −1.92367 −0.961836 0.273628i \(-0.911776\pi\)
−0.961836 + 0.273628i \(0.911776\pi\)
\(908\) 0 0
\(909\) 1.00879e7 0.404940
\(910\) 0 0
\(911\) 387816. 0.0154821 0.00774105 0.999970i \(-0.497536\pi\)
0.00774105 + 0.999970i \(0.497536\pi\)
\(912\) 0 0
\(913\) 1.54222e7 0.612308
\(914\) 0 0
\(915\) 5.41307e6 0.213742
\(916\) 0 0
\(917\) −458640. −0.0180114
\(918\) 0 0
\(919\) −3.45269e7 −1.34855 −0.674277 0.738479i \(-0.735545\pi\)
−0.674277 + 0.738479i \(0.735545\pi\)
\(920\) 0 0
\(921\) −2.25373e7 −0.875492
\(922\) 0 0
\(923\) 348312. 0.0134575
\(924\) 0 0
\(925\) 2.53517e6 0.0974210
\(926\) 0 0
\(927\) −525528. −0.0200861
\(928\) 0 0
\(929\) 3.96164e7 1.50604 0.753018 0.657999i \(-0.228597\pi\)
0.753018 + 0.657999i \(0.228597\pi\)
\(930\) 0 0
\(931\) 2.16275e6 0.0817772
\(932\) 0 0
\(933\) −7.07092e6 −0.265933
\(934\) 0 0
\(935\) 1.10128e7 0.411971
\(936\) 0 0
\(937\) −1.42780e7 −0.531272 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(938\) 0 0
\(939\) −3.27901e6 −0.121361
\(940\) 0 0
\(941\) −2.33088e6 −0.0858116 −0.0429058 0.999079i \(-0.513662\pi\)
−0.0429058 + 0.999079i \(0.513662\pi\)
\(942\) 0 0
\(943\) −7.58333e6 −0.277703
\(944\) 0 0
\(945\) −4.09406e6 −0.149133
\(946\) 0 0
\(947\) 2.93987e7 1.06526 0.532628 0.846350i \(-0.321205\pi\)
0.532628 + 0.846350i \(0.321205\pi\)
\(948\) 0 0
\(949\) −107732. −0.00388311
\(950\) 0 0
\(951\) 1.32244e7 0.474159
\(952\) 0 0
\(953\) −2.26835e7 −0.809055 −0.404528 0.914526i \(-0.632564\pi\)
−0.404528 + 0.914526i \(0.632564\pi\)
\(954\) 0 0
\(955\) −2.86860e7 −1.01780
\(956\) 0 0
\(957\) 7.80516e6 0.275488
\(958\) 0 0
\(959\) −2.14213e7 −0.752141
\(960\) 0 0
\(961\) −2.30217e7 −0.804136
\(962\) 0 0
\(963\) −4.05324e6 −0.140843
\(964\) 0 0
\(965\) 1.32333e7 0.457458
\(966\) 0 0
\(967\) 2.50637e7 0.861944 0.430972 0.902365i \(-0.358171\pi\)
0.430972 + 0.902365i \(0.358171\pi\)
\(968\) 0 0
\(969\) −2.00788e6 −0.0686956
\(970\) 0 0
\(971\) −2.93328e7 −0.998402 −0.499201 0.866486i \(-0.666373\pi\)
−0.499201 + 0.866486i \(0.666373\pi\)
\(972\) 0 0
\(973\) 3.28544e7 1.11253
\(974\) 0 0
\(975\) −86526.0 −0.00291498
\(976\) 0 0
\(977\) 4.53306e7 1.51934 0.759670 0.650309i \(-0.225361\pi\)
0.759670 + 0.650309i \(0.225361\pi\)
\(978\) 0 0
\(979\) −2.31343e7 −0.771436
\(980\) 0 0
\(981\) 7.18519e6 0.238378
\(982\) 0 0
\(983\) 2.13167e7 0.703615 0.351808 0.936072i \(-0.385567\pi\)
0.351808 + 0.936072i \(0.385567\pi\)
\(984\) 0 0
\(985\) −1.18749e7 −0.389978
\(986\) 0 0
\(987\) 4.46472e6 0.145882
\(988\) 0 0
\(989\) 4.18402e6 0.136020
\(990\) 0 0
\(991\) 3.14104e7 1.01599 0.507996 0.861360i \(-0.330387\pi\)
0.507996 + 0.861360i \(0.330387\pi\)
\(992\) 0 0
\(993\) 1.50673e7 0.484910
\(994\) 0 0
\(995\) −5.49830e7 −1.76064
\(996\) 0 0
\(997\) 9.54091e6 0.303985 0.151992 0.988382i \(-0.451431\pi\)
0.151992 + 0.988382i \(0.451431\pi\)
\(998\) 0 0
\(999\) 8.84277e6 0.280333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.6.a.c.1.1 1
4.3 odd 2 114.6.a.a.1.1 1
12.11 even 2 342.6.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.6.a.a.1.1 1 4.3 odd 2
342.6.a.f.1.1 1 12.11 even 2
912.6.a.c.1.1 1 1.1 even 1 trivial