L(s) = 1 | + 4-s − 2·7-s + 2·13-s − 2·19-s − 25-s − 2·28-s + 49-s + 2·52-s + 2·61-s − 2·76-s + 2·79-s − 4·91-s − 15·97-s − 100-s + 103-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + ⋯ |
L(s) = 1 | + 4-s − 2·7-s + 2·13-s − 2·19-s − 25-s − 2·28-s + 49-s + 2·52-s + 2·61-s − 2·76-s + 2·79-s − 4·91-s − 15·97-s − 100-s + 103-s − 121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{32} \cdot 103^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{32} \cdot 103^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3505002962\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3505002962\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 103 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} \) |
good | 2 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 5 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )^{2} \) |
| 11 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2} \) |
| 17 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 19 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} )^{2} \) |
| 23 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 29 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 31 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 41 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 43 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 47 | \( ( 1 - T )^{16}( 1 + T )^{16} \) |
| 53 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 59 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2} \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )^{2} \) |
| 83 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} - T^{22} + T^{24} - T^{26} + T^{28} - T^{30} + T^{32} \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} + T^{13} + T^{14} + T^{15} + T^{16} ) \) |
| 97 | \( ( 1 + T )^{16}( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} - T^{13} + T^{14} - T^{15} + T^{16} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.93357805405892855154879204913, −2.89018719461219868752991161707, −2.82331257116847354831222449366, −2.71232868546548135029042947807, −2.60137446843220795654745994309, −2.47198849379318853711675659031, −2.46830257465253837004255807325, −2.40955946440900425819670650871, −2.34998374434137112277526819748, −2.33782942037391667626744387024, −2.03167008809096728319065461568, −2.01060155150798282923743455533, −1.95943751010902439467531085996, −1.89509596668334793348985322019, −1.73650375368086800303389775957, −1.58081593725565881571705110467, −1.53259855540372491047208685002, −1.51769311471812165477079952874, −1.47957576364833604445925150765, −1.41054860711271730454305805993, −1.28092566477451443098327616928, −0.980549395490329834323933257357, −0.836604648564770967463425890609, −0.69477744725725714660389238710, −0.59317343365352584630477050730,
0.59317343365352584630477050730, 0.69477744725725714660389238710, 0.836604648564770967463425890609, 0.980549395490329834323933257357, 1.28092566477451443098327616928, 1.41054860711271730454305805993, 1.47957576364833604445925150765, 1.51769311471812165477079952874, 1.53259855540372491047208685002, 1.58081593725565881571705110467, 1.73650375368086800303389775957, 1.89509596668334793348985322019, 1.95943751010902439467531085996, 2.01060155150798282923743455533, 2.03167008809096728319065461568, 2.33782942037391667626744387024, 2.34998374434137112277526819748, 2.40955946440900425819670650871, 2.46830257465253837004255807325, 2.47198849379318853711675659031, 2.60137446843220795654745994309, 2.71232868546548135029042947807, 2.82331257116847354831222449366, 2.89018719461219868752991161707, 2.93357805405892855154879204913
Plot not available for L-functions of degree greater than 10.