Properties

Label 40-13e40-1.1-c9e20-0-0
Degree 4040
Conductor 3.612×10443.612\times 10^{44}
Sign 11
Analytic cond. 6.22992×10386.22992\times 10^{38}
Root an. cond. 9.329579.32957
Motivic weight 99
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 326·3-s − 2.56e3·4-s − 7.89e4·9-s − 8.34e5·12-s + 2.92e6·16-s − 9.93e4·17-s + 6.25e6·23-s − 1.87e7·25-s − 3.34e7·27-s + 5.42e6·29-s + 2.02e8·36-s + 5.32e7·43-s + 9.52e8·48-s − 3.96e8·49-s − 3.23e7·51-s − 3.64e7·53-s + 5.36e8·61-s − 2.04e9·64-s + 2.54e8·68-s + 2.03e9·69-s − 6.11e9·75-s + 1.55e9·79-s + 3.33e9·81-s + 1.76e9·87-s − 1.60e10·92-s + 4.80e10·100-s − 3.67e9·101-s + ⋯
L(s)  = 1  + 2.32·3-s − 5.00·4-s − 4.01·9-s − 11.6·12-s + 11.1·16-s − 0.288·17-s + 4.65·23-s − 9.60·25-s − 12.0·27-s + 1.42·29-s + 20.0·36-s + 2.37·43-s + 25.8·48-s − 9.82·49-s − 0.670·51-s − 0.634·53-s + 4.96·61-s − 15.2·64-s + 1.44·68-s + 10.8·69-s − 22.3·75-s + 4.49·79-s + 8.60·81-s + 3.30·87-s − 23.3·92-s + 48.0·100-s − 3.51·101-s + ⋯

Functional equation

Λ(s)=((1340)s/2ΓC(s)20L(s)=(Λ(10s)\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{40}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}
Λ(s)=((1340)s/2ΓC(s+9/2)20L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{40}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 4040
Conductor: 134013^{40}
Sign: 11
Analytic conductor: 6.22992×10386.22992\times 10^{38}
Root analytic conductor: 9.329579.32957
Motivic weight: 99
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (40, 1340, ( :[9/2]20), 1)(40,\ 13^{40} ,\ ( \ : [9/2]^{20} ),\ 1 )

Particular Values

L(5)L(5) \approx 0.049231417910.04923141791
L(12)L(\frac12) \approx 0.049231417910.04923141791
L(112)L(\frac{11}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 1+2561T2+909265p2T4+7566965p9T6+54406481057p6T8+10840550729209p8T10+488114341991933p12T12+10073627325839483p17T14+385231428691215799p21T16+27421398175067442169p24T18+ 1 + 2561 T^{2} + 909265 p^{2} T^{4} + 7566965 p^{9} T^{6} + 54406481057 p^{6} T^{8} + 10840550729209 p^{8} T^{10} + 488114341991933 p^{12} T^{12} + 10073627325839483 p^{17} T^{14} + 385231428691215799 p^{21} T^{16} + 27421398175067442169 p^{24} T^{18} + 90 ⁣ ⁣6190\!\cdots\!61p28T20+27421398175067442169p42T22+385231428691215799p57T24+10073627325839483p71T26+488114341991933p84T28+10840550729209p98T30+54406481057p114T32+7566965p135T34+909265p146T36+2561p162T38+p180T40 p^{28} T^{20} + 27421398175067442169 p^{42} T^{22} + 385231428691215799 p^{57} T^{24} + 10073627325839483 p^{71} T^{26} + 488114341991933 p^{84} T^{28} + 10840550729209 p^{98} T^{30} + 54406481057 p^{114} T^{32} + 7566965 p^{135} T^{34} + 909265 p^{146} T^{36} + 2561 p^{162} T^{38} + p^{180} T^{40}
3 (1163T+79318T24474865pT3+383805682p2T46256779041p4T5+403662559972p5T617084366468795p6T7+2827169147415389p6T8112858897457614078p7T9+6024779946139796012p8T10112858897457614078p16T11+2827169147415389p24T1217084366468795p33T13+403662559972p41T146256779041p49T15+383805682p56T164474865p64T17+79318p72T18163p81T19+p90T20)2 ( 1 - 163 T + 79318 T^{2} - 4474865 p T^{3} + 383805682 p^{2} T^{4} - 6256779041 p^{4} T^{5} + 403662559972 p^{5} T^{6} - 17084366468795 p^{6} T^{7} + 2827169147415389 p^{6} T^{8} - 112858897457614078 p^{7} T^{9} + 6024779946139796012 p^{8} T^{10} - 112858897457614078 p^{16} T^{11} + 2827169147415389 p^{24} T^{12} - 17084366468795 p^{33} T^{13} + 403662559972 p^{41} T^{14} - 6256779041 p^{49} T^{15} + 383805682 p^{56} T^{16} - 4474865 p^{64} T^{17} + 79318 p^{72} T^{18} - 163 p^{81} T^{19} + p^{90} T^{20} )^{2}
5 1+18766613T2+182328407955298T4+ 1 + 18766613 T^{2} + 182328407955298 T^{4} + 12 ⁣ ⁣4312\!\cdots\!43T6+ T^{6} + 60 ⁣ ⁣3860\!\cdots\!38T8+ T^{8} + 24 ⁣ ⁣0724\!\cdots\!07T10+ T^{10} + 66 ⁣ ⁣9666\!\cdots\!96p3T12+ p^{3} T^{12} + 38 ⁣ ⁣7138\!\cdots\!71p4T14+ p^{4} T^{14} + 39 ⁣ ⁣2139\!\cdots\!21p6T16+ p^{6} T^{16} + 35 ⁣ ⁣1435\!\cdots\!14p8T18+ p^{8} T^{18} + 29 ⁣ ⁣1629\!\cdots\!16p10T20+ p^{10} T^{20} + 35 ⁣ ⁣1435\!\cdots\!14p26T22+ p^{26} T^{22} + 39 ⁣ ⁣2139\!\cdots\!21p42T24+ p^{42} T^{24} + 38 ⁣ ⁣7138\!\cdots\!71p58T26+ p^{58} T^{26} + 66 ⁣ ⁣9666\!\cdots\!96p75T28+ p^{75} T^{28} + 24 ⁣ ⁣0724\!\cdots\!07p90T30+ p^{90} T^{30} + 60 ⁣ ⁣3860\!\cdots\!38p108T32+ p^{108} T^{32} + 12 ⁣ ⁣4312\!\cdots\!43p126T34+182328407955298p144T36+18766613p162T38+p180T40 p^{126} T^{34} + 182328407955298 p^{144} T^{36} + 18766613 p^{162} T^{38} + p^{180} T^{40}
7 1+396508421T2+78250729165264630T4+ 1 + 396508421 T^{2} + 78250729165264630 T^{4} + 21 ⁣ ⁣4721\!\cdots\!47p2T6+ p^{2} T^{6} + 43 ⁣ ⁣7843\!\cdots\!78p4T8+ p^{4} T^{8} + 72 ⁣ ⁣6772\!\cdots\!67p6T10+ p^{6} T^{10} + 10 ⁣ ⁣4410\!\cdots\!44p8T12+ p^{8} T^{12} + 12 ⁣ ⁣1912\!\cdots\!19p10T14+ p^{10} T^{14} + 19 ⁣ ⁣2719\!\cdots\!27p13T16+ p^{13} T^{16} + 13 ⁣ ⁣7013\!\cdots\!70p14T18+ p^{14} T^{18} + 23 ⁣ ⁣1223\!\cdots\!12p18T20+ p^{18} T^{20} + 13 ⁣ ⁣7013\!\cdots\!70p32T22+ p^{32} T^{22} + 19 ⁣ ⁣2719\!\cdots\!27p49T24+ p^{49} T^{24} + 12 ⁣ ⁣1912\!\cdots\!19p64T26+ p^{64} T^{26} + 10 ⁣ ⁣4410\!\cdots\!44p80T28+ p^{80} T^{28} + 72 ⁣ ⁣6772\!\cdots\!67p96T30+ p^{96} T^{30} + 43 ⁣ ⁣7843\!\cdots\!78p112T32+ p^{112} T^{32} + 21 ⁣ ⁣4721\!\cdots\!47p128T34+78250729165264630p144T36+396508421p162T38+p180T40 p^{128} T^{34} + 78250729165264630 p^{144} T^{36} + 396508421 p^{162} T^{38} + p^{180} T^{40}
11 1+1116156895pT2+84568073197684469518T4+ 1 + 1116156895 p T^{2} + 84568073197684469518 T^{4} + 41 ⁣ ⁣4341\!\cdots\!43T6+ T^{6} + 16 ⁣ ⁣0216\!\cdots\!02T8+ T^{8} + 55 ⁣ ⁣0355\!\cdots\!03T10+ T^{10} + 16 ⁣ ⁣3616\!\cdots\!36T12+ T^{12} + 42 ⁣ ⁣9142\!\cdots\!91T14+ T^{14} + 10 ⁣ ⁣6510\!\cdots\!65T16+ T^{16} + 23 ⁣ ⁣9423\!\cdots\!94T18+ T^{18} + 54 ⁣ ⁣4854\!\cdots\!48T20+ T^{20} + 23 ⁣ ⁣9423\!\cdots\!94p18T22+ p^{18} T^{22} + 10 ⁣ ⁣6510\!\cdots\!65p36T24+ p^{36} T^{24} + 42 ⁣ ⁣9142\!\cdots\!91p54T26+ p^{54} T^{26} + 16 ⁣ ⁣3616\!\cdots\!36p72T28+ p^{72} T^{28} + 55 ⁣ ⁣0355\!\cdots\!03p90T30+ p^{90} T^{30} + 16 ⁣ ⁣0216\!\cdots\!02p108T32+ p^{108} T^{32} + 41 ⁣ ⁣4341\!\cdots\!43p126T34+84568073197684469518p144T36+1116156895p163T38+p180T40 p^{126} T^{34} + 84568073197684469518 p^{144} T^{36} + 1116156895 p^{163} T^{38} + p^{180} T^{40}
17 (1+49656T+534818052869T231315884659192520T3+ ( 1 + 49656 T + 534818052869 T^{2} - 31315884659192520 T^{3} + 14 ⁣ ⁣3914\!\cdots\!39T4 T^{4} - 17 ⁣ ⁣2417\!\cdots\!24T5+ T^{5} + 29 ⁣ ⁣3829\!\cdots\!38T6 T^{6} - 41 ⁣ ⁣9641\!\cdots\!96T7+ T^{7} + 45 ⁣ ⁣5745\!\cdots\!57T8 T^{8} - 69 ⁣ ⁣9269\!\cdots\!92T9+ T^{9} + 58 ⁣ ⁣7558\!\cdots\!75T10 T^{10} - 69 ⁣ ⁣9269\!\cdots\!92p9T11+ p^{9} T^{11} + 45 ⁣ ⁣5745\!\cdots\!57p18T12 p^{18} T^{12} - 41 ⁣ ⁣9641\!\cdots\!96p27T13+ p^{27} T^{13} + 29 ⁣ ⁣3829\!\cdots\!38p36T14 p^{36} T^{14} - 17 ⁣ ⁣2417\!\cdots\!24p45T15+ p^{45} T^{15} + 14 ⁣ ⁣3914\!\cdots\!39p54T1631315884659192520p63T17+534818052869p72T18+49656p81T19+p90T20)2 p^{54} T^{16} - 31315884659192520 p^{63} T^{17} + 534818052869 p^{72} T^{18} + 49656 p^{81} T^{19} + p^{90} T^{20} )^{2}
19 1+548575019p3T2+ 1 + 548575019 p^{3} T^{2} + 70 ⁣ ⁣1070\!\cdots\!10T4+ T^{4} + 87 ⁣ ⁣9187\!\cdots\!91T6+ T^{6} + 81 ⁣ ⁣3881\!\cdots\!38T8+ T^{8} + 59 ⁣ ⁣4359\!\cdots\!43T10+ T^{10} + 35 ⁣ ⁣2835\!\cdots\!28T12+ T^{12} + 18 ⁣ ⁣7518\!\cdots\!75T14+ T^{14} + 80 ⁣ ⁣0180\!\cdots\!01T16+ T^{16} + 30 ⁣ ⁣1830\!\cdots\!18T18+ T^{18} + 10 ⁣ ⁣2410\!\cdots\!24T20+ T^{20} + 30 ⁣ ⁣1830\!\cdots\!18p18T22+ p^{18} T^{22} + 80 ⁣ ⁣0180\!\cdots\!01p36T24+ p^{36} T^{24} + 18 ⁣ ⁣7518\!\cdots\!75p54T26+ p^{54} T^{26} + 35 ⁣ ⁣2835\!\cdots\!28p72T28+ p^{72} T^{28} + 59 ⁣ ⁣4359\!\cdots\!43p90T30+ p^{90} T^{30} + 81 ⁣ ⁣3881\!\cdots\!38p108T32+ p^{108} T^{32} + 87 ⁣ ⁣9187\!\cdots\!91p126T34+ p^{126} T^{34} + 70 ⁣ ⁣1070\!\cdots\!10p144T36+548575019p165T38+p180T40 p^{144} T^{36} + 548575019 p^{165} T^{38} + p^{180} T^{40}
23 (13126189T+11973013625246T228963662194694384585T3+ ( 1 - 3126189 T + 11973013625246 T^{2} - 28963662194694384585 T^{3} + 71 ⁣ ⁣6671\!\cdots\!66T4 T^{4} - 14 ⁣ ⁣8314\!\cdots\!83T5+ T^{5} + 28 ⁣ ⁣2428\!\cdots\!24T6 T^{6} - 48 ⁣ ⁣1348\!\cdots\!13T7+ T^{7} + 78 ⁣ ⁣5778\!\cdots\!57T8 T^{8} - 11 ⁣ ⁣2211\!\cdots\!22T9+ T^{9} + 16 ⁣ ⁣0016\!\cdots\!00T10 T^{10} - 11 ⁣ ⁣2211\!\cdots\!22p9T11+ p^{9} T^{11} + 78 ⁣ ⁣5778\!\cdots\!57p18T12 p^{18} T^{12} - 48 ⁣ ⁣1348\!\cdots\!13p27T13+ p^{27} T^{13} + 28 ⁣ ⁣2428\!\cdots\!24p36T14 p^{36} T^{14} - 14 ⁣ ⁣8314\!\cdots\!83p45T15+ p^{45} T^{15} + 71 ⁣ ⁣6671\!\cdots\!66p54T1628963662194694384585p63T17+11973013625246p72T183126189p81T19+p90T20)2 p^{54} T^{16} - 28963662194694384585 p^{63} T^{17} + 11973013625246 p^{72} T^{18} - 3126189 p^{81} T^{19} + p^{90} T^{20} )^{2}
29 (12712414T+101714019641951T2 ( 1 - 2712414 T + 101714019641951 T^{2} - 22 ⁣ ⁣4622\!\cdots\!46T3+ T^{3} + 49 ⁣ ⁣7149\!\cdots\!71T4 T^{4} - 93 ⁣ ⁣5293\!\cdots\!52T5+ T^{5} + 15 ⁣ ⁣3415\!\cdots\!34T6 T^{6} - 25 ⁣ ⁣1625\!\cdots\!16T7+ T^{7} + 34 ⁣ ⁣2534\!\cdots\!25T8 T^{8} - 49 ⁣ ⁣8649\!\cdots\!86T9+ T^{9} + 58 ⁣ ⁣2958\!\cdots\!29T10 T^{10} - 49 ⁣ ⁣8649\!\cdots\!86p9T11+ p^{9} T^{11} + 34 ⁣ ⁣2534\!\cdots\!25p18T12 p^{18} T^{12} - 25 ⁣ ⁣1625\!\cdots\!16p27T13+ p^{27} T^{13} + 15 ⁣ ⁣3415\!\cdots\!34p36T14 p^{36} T^{14} - 93 ⁣ ⁣5293\!\cdots\!52p45T15+ p^{45} T^{15} + 49 ⁣ ⁣7149\!\cdots\!71p54T16 p^{54} T^{16} - 22 ⁣ ⁣4622\!\cdots\!46p63T17+101714019641951p72T182712414p81T19+p90T20)2 p^{63} T^{17} + 101714019641951 p^{72} T^{18} - 2712414 p^{81} T^{19} + p^{90} T^{20} )^{2}
31 1+324518493957860T2+ 1 + 324518493957860 T^{2} + 52 ⁣ ⁣3852\!\cdots\!38T4+ T^{4} + 18 ⁣ ⁣4418\!\cdots\!44pT6+ p T^{6} + 44 ⁣ ⁣1744\!\cdots\!17T8+ T^{8} + 28 ⁣ ⁣7228\!\cdots\!72T10+ T^{10} + 14 ⁣ ⁣9214\!\cdots\!92T12+ T^{12} + 63 ⁣ ⁣9263\!\cdots\!92T14+ T^{14} + 23 ⁣ ⁣5823\!\cdots\!58T16+ T^{16} + 76 ⁣ ⁣2476\!\cdots\!24T18+ T^{18} + 21 ⁣ ⁣3221\!\cdots\!32T20+ T^{20} + 76 ⁣ ⁣2476\!\cdots\!24p18T22+ p^{18} T^{22} + 23 ⁣ ⁣5823\!\cdots\!58p36T24+ p^{36} T^{24} + 63 ⁣ ⁣9263\!\cdots\!92p54T26+ p^{54} T^{26} + 14 ⁣ ⁣9214\!\cdots\!92p72T28+ p^{72} T^{28} + 28 ⁣ ⁣7228\!\cdots\!72p90T30+ p^{90} T^{30} + 44 ⁣ ⁣1744\!\cdots\!17p108T32+ p^{108} T^{32} + 18 ⁣ ⁣4418\!\cdots\!44p127T34+ p^{127} T^{34} + 52 ⁣ ⁣3852\!\cdots\!38p144T36+324518493957860p162T38+p180T40 p^{144} T^{36} + 324518493957860 p^{162} T^{38} + p^{180} T^{40}
37 1+1419832968167534T2+ 1 + 1419832968167534 T^{2} + 10 ⁣ ⁣3910\!\cdots\!39T4+ T^{4} + 47 ⁣ ⁣3447\!\cdots\!34T6+ T^{6} + 16 ⁣ ⁣8316\!\cdots\!83T8+ T^{8} + 46 ⁣ ⁣0046\!\cdots\!00T10+ T^{10} + 10 ⁣ ⁣0210\!\cdots\!02T12+ T^{12} + 20 ⁣ ⁣5620\!\cdots\!56T14+ T^{14} + 35 ⁣ ⁣2535\!\cdots\!25T16+ T^{16} + 54 ⁣ ⁣4654\!\cdots\!46T18+ T^{18} + 74 ⁣ ⁣2174\!\cdots\!21T20+ T^{20} + 54 ⁣ ⁣4654\!\cdots\!46p18T22+ p^{18} T^{22} + 35 ⁣ ⁣2535\!\cdots\!25p36T24+ p^{36} T^{24} + 20 ⁣ ⁣5620\!\cdots\!56p54T26+ p^{54} T^{26} + 10 ⁣ ⁣0210\!\cdots\!02p72T28+ p^{72} T^{28} + 46 ⁣ ⁣0046\!\cdots\!00p90T30+ p^{90} T^{30} + 16 ⁣ ⁣8316\!\cdots\!83p108T32+ p^{108} T^{32} + 47 ⁣ ⁣3447\!\cdots\!34p126T34+ p^{126} T^{34} + 10 ⁣ ⁣3910\!\cdots\!39p144T36+1419832968167534p162T38+p180T40 p^{144} T^{36} + 1419832968167534 p^{162} T^{38} + p^{180} T^{40}
41 1+1965380062206758T2+ 1 + 1965380062206758 T^{2} + 17 ⁣ ⁣5517\!\cdots\!55T4+ T^{4} + 98 ⁣ ⁣9498\!\cdots\!94T6+ T^{6} + 49 ⁣ ⁣2349\!\cdots\!23T8+ T^{8} + 23 ⁣ ⁣4423\!\cdots\!44T10+ T^{10} + 98 ⁣ ⁣6298\!\cdots\!62T12+ T^{12} + 38 ⁣ ⁣0438\!\cdots\!04T14+ T^{14} + 14 ⁣ ⁣0114\!\cdots\!01T16+ T^{16} + 50 ⁣ ⁣3850\!\cdots\!38T18+ T^{18} + 16 ⁣ ⁣8116\!\cdots\!81T20+ T^{20} + 50 ⁣ ⁣3850\!\cdots\!38p18T22+ p^{18} T^{22} + 14 ⁣ ⁣0114\!\cdots\!01p36T24+ p^{36} T^{24} + 38 ⁣ ⁣0438\!\cdots\!04p54T26+ p^{54} T^{26} + 98 ⁣ ⁣6298\!\cdots\!62p72T28+ p^{72} T^{28} + 23 ⁣ ⁣4423\!\cdots\!44p90T30+ p^{90} T^{30} + 49 ⁣ ⁣2349\!\cdots\!23p108T32+ p^{108} T^{32} + 98 ⁣ ⁣9498\!\cdots\!94p126T34+ p^{126} T^{34} + 17 ⁣ ⁣5517\!\cdots\!55p144T36+1965380062206758p162T38+p180T40 p^{144} T^{36} + 1965380062206758 p^{162} T^{38} + p^{180} T^{40}
43 (126621029T+3731482435669156T2 ( 1 - 26621029 T + 3731482435669156 T^{2} - 77 ⁣ ⁣1377\!\cdots\!13T3+ T^{3} + 64 ⁣ ⁣9464\!\cdots\!94T4 T^{4} - 11 ⁣ ⁣0311\!\cdots\!03T5+ T^{5} + 71 ⁣ ⁣4271\!\cdots\!42T6 T^{6} - 10 ⁣ ⁣4510\!\cdots\!45T7+ T^{7} + 55 ⁣ ⁣9755\!\cdots\!97T8 T^{8} - 70 ⁣ ⁣3870\!\cdots\!38T9+ T^{9} + 32 ⁣ ⁣1632\!\cdots\!16T10 T^{10} - 70 ⁣ ⁣3870\!\cdots\!38p9T11+ p^{9} T^{11} + 55 ⁣ ⁣9755\!\cdots\!97p18T12 p^{18} T^{12} - 10 ⁣ ⁣4510\!\cdots\!45p27T13+ p^{27} T^{13} + 71 ⁣ ⁣4271\!\cdots\!42p36T14 p^{36} T^{14} - 11 ⁣ ⁣0311\!\cdots\!03p45T15+ p^{45} T^{15} + 64 ⁣ ⁣9464\!\cdots\!94p54T16 p^{54} T^{16} - 77 ⁣ ⁣1377\!\cdots\!13p63T17+3731482435669156p72T1826621029p81T19+p90T20)2 p^{63} T^{17} + 3731482435669156 p^{72} T^{18} - 26621029 p^{81} T^{19} + p^{90} T^{20} )^{2}
47 1+14897963086138820T2+ 1 + 14897963086138820 T^{2} + 10 ⁣ ⁣9810\!\cdots\!98T4+ T^{4} + 50 ⁣ ⁣1250\!\cdots\!12T6+ T^{6} + 17 ⁣ ⁣9717\!\cdots\!97T8+ T^{8} + 44 ⁣ ⁣1244\!\cdots\!12T10+ T^{10} + 94 ⁣ ⁣6894\!\cdots\!68T12+ T^{12} + 16 ⁣ ⁣3216\!\cdots\!32T14+ T^{14} + 25 ⁣ ⁣7025\!\cdots\!70T16+ T^{16} + 33 ⁣ ⁣2033\!\cdots\!20T18+ T^{18} + 40 ⁣ ⁣5240\!\cdots\!52T20+ T^{20} + 33 ⁣ ⁣2033\!\cdots\!20p18T22+ p^{18} T^{22} + 25 ⁣ ⁣7025\!\cdots\!70p36T24+ p^{36} T^{24} + 16 ⁣ ⁣3216\!\cdots\!32p54T26+ p^{54} T^{26} + 94 ⁣ ⁣6894\!\cdots\!68p72T28+ p^{72} T^{28} + 44 ⁣ ⁣1244\!\cdots\!12p90T30+ p^{90} T^{30} + 17 ⁣ ⁣9717\!\cdots\!97p108T32+ p^{108} T^{32} + 50 ⁣ ⁣1250\!\cdots\!12p126T34+ p^{126} T^{34} + 10 ⁣ ⁣9810\!\cdots\!98p144T36+14897963086138820p162T38+p180T40 p^{144} T^{36} + 14897963086138820 p^{162} T^{38} + p^{180} T^{40}
53 (1+18214893T+22487841037440566T2+ ( 1 + 18214893 T + 22487841037440566 T^{2} + 15 ⁣ ⁣3915\!\cdots\!39T3+ T^{3} + 24 ⁣ ⁣4624\!\cdots\!46T4 T^{4} - 15 ⁣ ⁣7715\!\cdots\!77T5+ T^{5} + 16 ⁣ ⁣5216\!\cdots\!52T6 T^{6} - 83 ⁣ ⁣0183\!\cdots\!01T7+ T^{7} + 84 ⁣ ⁣5384\!\cdots\!53T8 T^{8} - 55 ⁣ ⁣5055\!\cdots\!50T9+ T^{9} + 31 ⁣ ⁣5631\!\cdots\!56T10 T^{10} - 55 ⁣ ⁣5055\!\cdots\!50p9T11+ p^{9} T^{11} + 84 ⁣ ⁣5384\!\cdots\!53p18T12 p^{18} T^{12} - 83 ⁣ ⁣0183\!\cdots\!01p27T13+ p^{27} T^{13} + 16 ⁣ ⁣5216\!\cdots\!52p36T14 p^{36} T^{14} - 15 ⁣ ⁣7715\!\cdots\!77p45T15+ p^{45} T^{15} + 24 ⁣ ⁣4624\!\cdots\!46p54T16+ p^{54} T^{16} + 15 ⁣ ⁣3915\!\cdots\!39p63T17+22487841037440566p72T18+18214893p81T19+p90T20)2 p^{63} T^{17} + 22487841037440566 p^{72} T^{18} + 18214893 p^{81} T^{19} + p^{90} T^{20} )^{2}
59 1+92619383932328741T2+ 1 + 92619383932328741 T^{2} + 41 ⁣ ⁣5441\!\cdots\!54T4+ T^{4} + 11 ⁣ ⁣3111\!\cdots\!31T6+ T^{6} + 25 ⁣ ⁣2625\!\cdots\!26T8+ T^{8} + 42 ⁣ ⁣3942\!\cdots\!39T10+ T^{10} + 59 ⁣ ⁣8059\!\cdots\!80T12+ T^{12} + 73 ⁣ ⁣7173\!\cdots\!71T14+ T^{14} + 82 ⁣ ⁣0582\!\cdots\!05T16+ T^{16} + 82 ⁣ ⁣2682\!\cdots\!26T18+ T^{18} + 75 ⁣ ⁣7675\!\cdots\!76T20+ T^{20} + 82 ⁣ ⁣2682\!\cdots\!26p18T22+ p^{18} T^{22} + 82 ⁣ ⁣0582\!\cdots\!05p36T24+ p^{36} T^{24} + 73 ⁣ ⁣7173\!\cdots\!71p54T26+ p^{54} T^{26} + 59 ⁣ ⁣8059\!\cdots\!80p72T28+ p^{72} T^{28} + 42 ⁣ ⁣3942\!\cdots\!39p90T30+ p^{90} T^{30} + 25 ⁣ ⁣2625\!\cdots\!26p108T32+ p^{108} T^{32} + 11 ⁣ ⁣3111\!\cdots\!31p126T34+ p^{126} T^{34} + 41 ⁣ ⁣5441\!\cdots\!54p144T36+92619383932328741p162T38+p180T40 p^{144} T^{36} + 92619383932328741 p^{162} T^{38} + p^{180} T^{40}
61 (1268212896T+103138971494572405T2 ( 1 - 268212896 T + 103138971494572405 T^{2} - 19 ⁣ ⁣2019\!\cdots\!20T3+ T^{3} + 45 ⁣ ⁣7545\!\cdots\!75T4 T^{4} - 68 ⁣ ⁣9668\!\cdots\!96T5+ T^{5} + 12 ⁣ ⁣2612\!\cdots\!26T6 T^{6} - 15 ⁣ ⁣7215\!\cdots\!72T7+ T^{7} + 22 ⁣ ⁣1722\!\cdots\!17T8 T^{8} - 24 ⁣ ⁣2024\!\cdots\!20T9+ T^{9} + 30 ⁣ ⁣5930\!\cdots\!59T10 T^{10} - 24 ⁣ ⁣2024\!\cdots\!20p9T11+ p^{9} T^{11} + 22 ⁣ ⁣1722\!\cdots\!17p18T12 p^{18} T^{12} - 15 ⁣ ⁣7215\!\cdots\!72p27T13+ p^{27} T^{13} + 12 ⁣ ⁣2612\!\cdots\!26p36T14 p^{36} T^{14} - 68 ⁣ ⁣9668\!\cdots\!96p45T15+ p^{45} T^{15} + 45 ⁣ ⁣7545\!\cdots\!75p54T16 p^{54} T^{16} - 19 ⁣ ⁣2019\!\cdots\!20p63T17+103138971494572405p72T18268212896p81T19+p90T20)2 p^{63} T^{17} + 103138971494572405 p^{72} T^{18} - 268212896 p^{81} T^{19} + p^{90} T^{20} )^{2}
67 1+246887561783242241T2+ 1 + 246887561783242241 T^{2} + 30 ⁣ ⁣1830\!\cdots\!18T4+ T^{4} + 25 ⁣ ⁣4725\!\cdots\!47T6+ T^{6} + 16 ⁣ ⁣4216\!\cdots\!42T8+ T^{8} + 85 ⁣ ⁣7585\!\cdots\!75T10+ T^{10} + 37 ⁣ ⁣6437\!\cdots\!64T12+ T^{12} + 14 ⁣ ⁣9914\!\cdots\!99T14+ T^{14} + 50 ⁣ ⁣0550\!\cdots\!05T16+ T^{16} + 16 ⁣ ⁣1816\!\cdots\!18T18+ T^{18} + 45 ⁣ ⁣2445\!\cdots\!24T20+ T^{20} + 16 ⁣ ⁣1816\!\cdots\!18p18T22+ p^{18} T^{22} + 50 ⁣ ⁣0550\!\cdots\!05p36T24+ p^{36} T^{24} + 14 ⁣ ⁣9914\!\cdots\!99p54T26+ p^{54} T^{26} + 37 ⁣ ⁣6437\!\cdots\!64p72T28+ p^{72} T^{28} + 85 ⁣ ⁣7585\!\cdots\!75p90T30+ p^{90} T^{30} + 16 ⁣ ⁣4216\!\cdots\!42p108T32+ p^{108} T^{32} + 25 ⁣ ⁣4725\!\cdots\!47p126T34+ p^{126} T^{34} + 30 ⁣ ⁣1830\!\cdots\!18p144T36+246887561783242241p162T38+p180T40 p^{144} T^{36} + 246887561783242241 p^{162} T^{38} + p^{180} T^{40}
71 1+538838541563825777T2+ 1 + 538838541563825777 T^{2} + 14 ⁣ ⁣5814\!\cdots\!58T4+ T^{4} + 24 ⁣ ⁣2724\!\cdots\!27T6+ T^{6} + 32 ⁣ ⁣6632\!\cdots\!66T8+ T^{8} + 33 ⁣ ⁣0333\!\cdots\!03T10+ T^{10} + 28 ⁣ ⁣2428\!\cdots\!24T12+ T^{12} + 20 ⁣ ⁣7920\!\cdots\!79T14+ T^{14} + 13 ⁣ ⁣4513\!\cdots\!45T16+ T^{16} + 73 ⁣ ⁣3873\!\cdots\!38T18+ T^{18} + 35 ⁣ ⁣2035\!\cdots\!20T20+ T^{20} + 73 ⁣ ⁣3873\!\cdots\!38p18T22+ p^{18} T^{22} + 13 ⁣ ⁣4513\!\cdots\!45p36T24+ p^{36} T^{24} + 20 ⁣ ⁣7920\!\cdots\!79p54T26+ p^{54} T^{26} + 28 ⁣ ⁣2428\!\cdots\!24p72T28+ p^{72} T^{28} + 33 ⁣ ⁣0333\!\cdots\!03p90T30+ p^{90} T^{30} + 32 ⁣ ⁣6632\!\cdots\!66p108T32+ p^{108} T^{32} + 24 ⁣ ⁣2724\!\cdots\!27p126T34+ p^{126} T^{34} + 14 ⁣ ⁣5814\!\cdots\!58p144T36+538838541563825777p162T38+p180T40 p^{144} T^{36} + 538838541563825777 p^{162} T^{38} + p^{180} T^{40}
73 1+948791083991149685T2+ 1 + 948791083991149685 T^{2} + 43 ⁣ ⁣4243\!\cdots\!42T4+ T^{4} + 13 ⁣ ⁣8313\!\cdots\!83T6+ T^{6} + 28 ⁣ ⁣6228\!\cdots\!62T8+ T^{8} + 46 ⁣ ⁣9146\!\cdots\!91T10+ T^{10} + 62 ⁣ ⁣6462\!\cdots\!64T12+ T^{12} + 67 ⁣ ⁣5167\!\cdots\!51T14+ T^{14} + 61 ⁣ ⁣8561\!\cdots\!85T16+ T^{16} + 46 ⁣ ⁣8646\!\cdots\!86T18+ T^{18} + 29 ⁣ ⁣7229\!\cdots\!72T20+ T^{20} + 46 ⁣ ⁣8646\!\cdots\!86p18T22+ p^{18} T^{22} + 61 ⁣ ⁣8561\!\cdots\!85p36T24+ p^{36} T^{24} + 67 ⁣ ⁣5167\!\cdots\!51p54T26+ p^{54} T^{26} + 62 ⁣ ⁣6462\!\cdots\!64p72T28+ p^{72} T^{28} + 46 ⁣ ⁣9146\!\cdots\!91p90T30+ p^{90} T^{30} + 28 ⁣ ⁣6228\!\cdots\!62p108T32+ p^{108} T^{32} + 13 ⁣ ⁣8313\!\cdots\!83p126T34+ p^{126} T^{34} + 43 ⁣ ⁣4243\!\cdots\!42p144T36+948791083991149685p162T38+p180T40 p^{144} T^{36} + 948791083991149685 p^{162} T^{38} + p^{180} T^{40}
79 (1778351808T+1162270557708283606T2 ( 1 - 778351808 T + 1162270557708283606 T^{2} - 70 ⁣ ⁣6470\!\cdots\!64T3+ T^{3} + 59 ⁣ ⁣0559\!\cdots\!05T4 T^{4} - 29 ⁣ ⁣4829\!\cdots\!48T5+ T^{5} + 18 ⁣ ⁣6018\!\cdots\!60T6 T^{6} - 76 ⁣ ⁣9676\!\cdots\!96T7+ T^{7} + 37 ⁣ ⁣8637\!\cdots\!86T8 T^{8} - 13 ⁣ ⁣9213\!\cdots\!92T9+ T^{9} + 53 ⁣ ⁣8453\!\cdots\!84T10 T^{10} - 13 ⁣ ⁣9213\!\cdots\!92p9T11+ p^{9} T^{11} + 37 ⁣ ⁣8637\!\cdots\!86p18T12 p^{18} T^{12} - 76 ⁣ ⁣9676\!\cdots\!96p27T13+ p^{27} T^{13} + 18 ⁣ ⁣6018\!\cdots\!60p36T14 p^{36} T^{14} - 29 ⁣ ⁣4829\!\cdots\!48p45T15+ p^{45} T^{15} + 59 ⁣ ⁣0559\!\cdots\!05p54T16 p^{54} T^{16} - 70 ⁣ ⁣6470\!\cdots\!64p63T17+1162270557708283606p72T18778351808p81T19+p90T20)2 p^{63} T^{17} + 1162270557708283606 p^{72} T^{18} - 778351808 p^{81} T^{19} + p^{90} T^{20} )^{2}
83 1+1541985118648764608T2+ 1 + 1541985118648764608 T^{2} + 12 ⁣ ⁣4212\!\cdots\!42T4+ T^{4} + 72 ⁣ ⁣8872\!\cdots\!88T6+ T^{6} + 32 ⁣ ⁣7332\!\cdots\!73T8+ T^{8} + 11 ⁣ ⁣5611\!\cdots\!56T10+ T^{10} + 36 ⁣ ⁣4836\!\cdots\!48T12+ T^{12} + 99 ⁣ ⁣6099\!\cdots\!60T14+ T^{14} + 24 ⁣ ⁣3824\!\cdots\!38T16+ T^{16} + 52 ⁣ ⁣1252\!\cdots\!12T18+ T^{18} + 10 ⁣ ⁣1610\!\cdots\!16T20+ T^{20} + 52 ⁣ ⁣1252\!\cdots\!12p18T22+ p^{18} T^{22} + 24 ⁣ ⁣3824\!\cdots\!38p36T24+ p^{36} T^{24} + 99 ⁣ ⁣6099\!\cdots\!60p54T26+ p^{54} T^{26} + 36 ⁣ ⁣4836\!\cdots\!48p72T28+ p^{72} T^{28} + 11 ⁣ ⁣5611\!\cdots\!56p90T30+ p^{90} T^{30} + 32 ⁣ ⁣7332\!\cdots\!73p108T32+ p^{108} T^{32} + 72 ⁣ ⁣8872\!\cdots\!88p126T34+ p^{126} T^{34} + 12 ⁣ ⁣4212\!\cdots\!42p144T36+1541985118648764608p162T38+p180T40 p^{144} T^{36} + 1541985118648764608 p^{162} T^{38} + p^{180} T^{40}
89 1+3681988986653886869T2+ 1 + 3681988986653886869 T^{2} + 66 ⁣ ⁣9466\!\cdots\!94T4+ T^{4} + 78 ⁣ ⁣4778\!\cdots\!47T6+ T^{6} + 66 ⁣ ⁣5066\!\cdots\!50T8+ T^{8} + 42 ⁣ ⁣0342\!\cdots\!03T10+ T^{10} + 21 ⁣ ⁣9221\!\cdots\!92T12+ T^{12} + 88 ⁣ ⁣7588\!\cdots\!75T14+ T^{14} + 29 ⁣ ⁣7729\!\cdots\!77T16+ T^{16} + 88 ⁣ ⁣5888\!\cdots\!58T18+ T^{18} + 28 ⁣ ⁣0428\!\cdots\!04T20+ T^{20} + 88 ⁣ ⁣5888\!\cdots\!58p18T22+ p^{18} T^{22} + 29 ⁣ ⁣7729\!\cdots\!77p36T24+ p^{36} T^{24} + 88 ⁣ ⁣7588\!\cdots\!75p54T26+ p^{54} T^{26} + 21 ⁣ ⁣9221\!\cdots\!92p72T28+ p^{72} T^{28} + 42 ⁣ ⁣0342\!\cdots\!03p90T30+ p^{90} T^{30} + 66 ⁣ ⁣5066\!\cdots\!50p108T32+ p^{108} T^{32} + 78 ⁣ ⁣4778\!\cdots\!47p126T34+ p^{126} T^{34} + 66 ⁣ ⁣9466\!\cdots\!94p144T36+3681988986653886869p162T38+p180T40 p^{144} T^{36} + 3681988986653886869 p^{162} T^{38} + p^{180} T^{40}
97 1+7554282362075248997T2+ 1 + 7554282362075248997 T^{2} + 27 ⁣ ⁣9827\!\cdots\!98T4+ T^{4} + 68 ⁣ ⁣5568\!\cdots\!55T6+ T^{6} + 13 ⁣ ⁣0213\!\cdots\!02pT8+ p T^{8} + 19 ⁣ ⁣3119\!\cdots\!31T10+ T^{10} + 24 ⁣ ⁣6824\!\cdots\!68T12+ T^{12} + 28 ⁣ ⁣0728\!\cdots\!07T14+ T^{14} + 28 ⁣ ⁣8928\!\cdots\!89T16+ T^{16} + 24 ⁣ ⁣8624\!\cdots\!86T18+ T^{18} + 19 ⁣ ⁣0819\!\cdots\!08T20+ T^{20} + 24 ⁣ ⁣8624\!\cdots\!86p18T22+ p^{18} T^{22} + 28 ⁣ ⁣8928\!\cdots\!89p36T24+ p^{36} T^{24} + 28 ⁣ ⁣0728\!\cdots\!07p54T26+ p^{54} T^{26} + 24 ⁣ ⁣6824\!\cdots\!68p72T28+ p^{72} T^{28} + 19 ⁣ ⁣3119\!\cdots\!31p90T30+ p^{90} T^{30} + 13 ⁣ ⁣0213\!\cdots\!02p109T32+ p^{109} T^{32} + 68 ⁣ ⁣5568\!\cdots\!55p126T34+ p^{126} T^{34} + 27 ⁣ ⁣9827\!\cdots\!98p144T36+7554282362075248997p162T38+p180T40 p^{144} T^{36} + 7554282362075248997 p^{162} T^{38} + p^{180} T^{40}
show more
show less
   L(s)=p j=140(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−1.74451733796302865746292711444, −1.73564013312765298345913558245, −1.70848428039180612854078971095, −1.60780227677873792212305543978, −1.51207203583332517303263685083, −1.48413834546891760170289977474, −1.38113466754478444774452007422, −1.10908296915474580129948565733, −1.01603238640048720536987308497, −0.932941644921500772518140071669, −0.791093685801411966944518458910, −0.78640675477444238228283901288, −0.72517276833201205949597909060, −0.70871005264827107480786044906, −0.67703404490834649031348740942, −0.62411101472687854066428048216, −0.54847556976169284744047146749, −0.49087772301207862546912254038, −0.38516062550432490548226981807, −0.34683510779733686527024076195, −0.34147922415108211296722420949, −0.32864148517694965286591539972, −0.17489838438410025236386069558, −0.04180032332132954381315805149, −0.03196910568340086720941339439, 0.03196910568340086720941339439, 0.04180032332132954381315805149, 0.17489838438410025236386069558, 0.32864148517694965286591539972, 0.34147922415108211296722420949, 0.34683510779733686527024076195, 0.38516062550432490548226981807, 0.49087772301207862546912254038, 0.54847556976169284744047146749, 0.62411101472687854066428048216, 0.67703404490834649031348740942, 0.70871005264827107480786044906, 0.72517276833201205949597909060, 0.78640675477444238228283901288, 0.791093685801411966944518458910, 0.932941644921500772518140071669, 1.01603238640048720536987308497, 1.10908296915474580129948565733, 1.38113466754478444774452007422, 1.48413834546891760170289977474, 1.51207203583332517303263685083, 1.60780227677873792212305543978, 1.70848428039180612854078971095, 1.73564013312765298345913558245, 1.74451733796302865746292711444

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.