Properties

Label 40-160e20-1.1-c7e20-0-1
Degree 4040
Conductor 1.209×10441.209\times 10^{44}
Sign 11
Analytic cond. 9.46681×10339.46681\times 10^{33}
Root an. cond. 7.069767.06976
Motivic weight 77
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 58·3-s − 54·5-s + 2.46e3·7-s + 1.68e3·9-s − 1.17e3·13-s − 3.13e3·15-s − 2.51e4·17-s + 6.47e4·19-s + 1.43e5·21-s − 3.99e4·23-s + 6.04e4·25-s + 8.53e4·27-s − 1.33e5·35-s − 6.47e5·37-s − 6.79e4·39-s − 1.15e6·41-s − 1.58e6·43-s − 9.08e4·45-s − 1.41e6·47-s + 3.04e6·49-s − 1.45e6·51-s − 2.11e6·53-s + 3.75e6·57-s + 6.49e6·59-s + 1.93e6·61-s + 4.14e6·63-s + 6.32e4·65-s + ⋯
L(s)  = 1  + 1.24·3-s − 0.193·5-s + 2.71·7-s + 0.769·9-s − 0.147·13-s − 0.239·15-s − 1.24·17-s + 2.16·19-s + 3.37·21-s − 0.684·23-s + 0.774·25-s + 0.834·27-s − 0.524·35-s − 2.10·37-s − 0.183·39-s − 2.61·41-s − 3.04·43-s − 0.148·45-s − 1.99·47-s + 3.69·49-s − 1.53·51-s − 1.95·53-s + 2.68·57-s + 4.11·59-s + 1.09·61-s + 2.08·63-s + 0.0285·65-s + ⋯

Functional equation

Λ(s)=((2100520)s/2ΓC(s)20L(s)=(Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{100} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}
Λ(s)=((2100520)s/2ΓC(s+7/2)20L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{100} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 4040
Conductor: 21005202^{100} \cdot 5^{20}
Sign: 11
Analytic conductor: 9.46681×10339.46681\times 10^{33}
Root analytic conductor: 7.069767.06976
Motivic weight: 77
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (40, 2100520, ( :[7/2]20), 1)(40,\ 2^{100} \cdot 5^{20} ,\ ( \ : [7/2]^{20} ),\ 1 )

Particular Values

L(4)L(4) \approx 0.0072823729630.007282372963
L(12)L(\frac12) \approx 0.0072823729630.007282372963
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+54T11514pT2301874pT3+108910573p2T4611018496p4T5+12100344264p6T675665683088p8T7361541973718p11T83631666625524p13T9+4971217749108p16T103631666625524p20T11361541973718p25T1275665683088p29T13+12100344264p34T14611018496p39T15+108910573p44T16301874p50T1711514p57T18+54p63T19+p70T20 1 + 54 T - 11514 p T^{2} - 301874 p T^{3} + 108910573 p^{2} T^{4} - 611018496 p^{4} T^{5} + 12100344264 p^{6} T^{6} - 75665683088 p^{8} T^{7} - 361541973718 p^{11} T^{8} - 3631666625524 p^{13} T^{9} + 4971217749108 p^{16} T^{10} - 3631666625524 p^{20} T^{11} - 361541973718 p^{25} T^{12} - 75665683088 p^{29} T^{13} + 12100344264 p^{34} T^{14} - 611018496 p^{39} T^{15} + 108910573 p^{44} T^{16} - 301874 p^{50} T^{17} - 11514 p^{57} T^{18} + 54 p^{63} T^{19} + p^{70} T^{20}
good3 158T+1682T228466pT3+265214T4+233083414T510318518758T6+276673227278pT742509722544531T8+564447876115136T92218089709204768T10+875694561274624pT11+19700435408516952904p2T12 1 - 58 T + 1682 T^{2} - 28466 p T^{3} + 265214 T^{4} + 233083414 T^{5} - 10318518758 T^{6} + 276673227278 p T^{7} - 42509722544531 T^{8} + 564447876115136 T^{9} - 2218089709204768 T^{10} + 875694561274624 p T^{11} + 19700435408516952904 p^{2} T^{12} - 14 ⁣ ⁣0814\!\cdots\!08p4T13+ p^{4} T^{13} + 54 ⁣ ⁣5254\!\cdots\!52p4T14 p^{4} T^{14} - 10 ⁣ ⁣2410\!\cdots\!24p5T15+ p^{5} T^{15} + 10 ⁣ ⁣7410\!\cdots\!74p6T16+ p^{6} T^{16} + 27 ⁣ ⁣5627\!\cdots\!56p8T17 p^{8} T^{17} - 18 ⁣ ⁣4818\!\cdots\!48p8T18+ p^{8} T^{18} + 68 ⁣ ⁣2868\!\cdots\!28p9T19 p^{9} T^{19} - 19 ⁣ ⁣0819\!\cdots\!08p10T20+ p^{10} T^{20} + 68 ⁣ ⁣2868\!\cdots\!28p16T21 p^{16} T^{21} - 18 ⁣ ⁣4818\!\cdots\!48p22T22+ p^{22} T^{22} + 27 ⁣ ⁣5627\!\cdots\!56p29T23+ p^{29} T^{23} + 10 ⁣ ⁣7410\!\cdots\!74p34T24 p^{34} T^{24} - 10 ⁣ ⁣2410\!\cdots\!24p40T25+ p^{40} T^{25} + 54 ⁣ ⁣5254\!\cdots\!52p46T26 p^{46} T^{26} - 14 ⁣ ⁣0814\!\cdots\!08p53T27+19700435408516952904p58T28+875694561274624p64T292218089709204768p70T30+564447876115136p77T3142509722544531p84T32+276673227278p92T3310318518758p98T34+233083414p105T35+265214p112T3628466p120T37+1682p126T3858p133T39+p140T40 p^{53} T^{27} + 19700435408516952904 p^{58} T^{28} + 875694561274624 p^{64} T^{29} - 2218089709204768 p^{70} T^{30} + 564447876115136 p^{77} T^{31} - 42509722544531 p^{84} T^{32} + 276673227278 p^{92} T^{33} - 10318518758 p^{98} T^{34} + 233083414 p^{105} T^{35} + 265214 p^{112} T^{36} - 28466 p^{120} T^{37} + 1682 p^{126} T^{38} - 58 p^{133} T^{39} + p^{140} T^{40}
7 12466T+3040578T21811535046T3+80750367886T4+63825717304670T5+1237907600483716730T6 1 - 2466 T + 3040578 T^{2} - 1811535046 T^{3} + 80750367886 T^{4} + 63825717304670 T^{5} + 1237907600483716730 T^{6} - 18 ⁣ ⁣1418\!\cdots\!14T7+ T^{7} + 10 ⁣ ⁣6310\!\cdots\!63pT8+ p T^{8} + 82 ⁣ ⁣5682\!\cdots\!56T9 T^{9} - 10 ⁣ ⁣8010\!\cdots\!80T10+ T^{10} + 14 ⁣ ⁣7614\!\cdots\!76T11+ T^{11} + 21 ⁣ ⁣8821\!\cdots\!88T12+ T^{12} + 41 ⁣ ⁣2441\!\cdots\!24T13 T^{13} - 93 ⁣ ⁣7693\!\cdots\!76T14+ T^{14} + 54 ⁣ ⁣8054\!\cdots\!80T15+ T^{15} + 42 ⁣ ⁣9842\!\cdots\!98T16 T^{16} - 89 ⁣ ⁣6889\!\cdots\!68T17+ T^{17} + 64 ⁣ ⁣2464\!\cdots\!24T18 T^{18} - 13 ⁣ ⁣8413\!\cdots\!84T19 T^{19} - 91 ⁣ ⁣7291\!\cdots\!72T20 T^{20} - 13 ⁣ ⁣8413\!\cdots\!84p7T21+ p^{7} T^{21} + 64 ⁣ ⁣2464\!\cdots\!24p14T22 p^{14} T^{22} - 89 ⁣ ⁣6889\!\cdots\!68p21T23+ p^{21} T^{23} + 42 ⁣ ⁣9842\!\cdots\!98p28T24+ p^{28} T^{24} + 54 ⁣ ⁣8054\!\cdots\!80p35T25 p^{35} T^{25} - 93 ⁣ ⁣7693\!\cdots\!76p42T26+ p^{42} T^{26} + 41 ⁣ ⁣2441\!\cdots\!24p49T27+ p^{49} T^{27} + 21 ⁣ ⁣8821\!\cdots\!88p56T28+ p^{56} T^{28} + 14 ⁣ ⁣7614\!\cdots\!76p63T29 p^{63} T^{29} - 10 ⁣ ⁣8010\!\cdots\!80p70T30+ p^{70} T^{30} + 82 ⁣ ⁣5682\!\cdots\!56p77T31+ p^{77} T^{31} + 10 ⁣ ⁣6310\!\cdots\!63p85T32 p^{85} T^{32} - 18 ⁣ ⁣1418\!\cdots\!14p91T33+1237907600483716730p98T34+63825717304670p105T35+80750367886p112T361811535046p119T37+3040578p126T382466p133T39+p140T40 p^{91} T^{33} + 1237907600483716730 p^{98} T^{34} + 63825717304670 p^{105} T^{35} + 80750367886 p^{112} T^{36} - 1811535046 p^{119} T^{37} + 3040578 p^{126} T^{38} - 2466 p^{133} T^{39} + p^{140} T^{40}
11 1155375456T2+12138542646745750T4 1 - 155375456 T^{2} + 12138542646745750 T^{4} - 63 ⁣ ⁣5263\!\cdots\!52T6+ T^{6} + 25 ⁣ ⁣9725\!\cdots\!97T8 T^{8} - 74 ⁣ ⁣2074\!\cdots\!20pT10+ p T^{10} + 22 ⁣ ⁣0822\!\cdots\!08T12 T^{12} - 54 ⁣ ⁣0854\!\cdots\!08T14+ T^{14} + 10 ⁣ ⁣5010\!\cdots\!50pT16 p T^{16} - 24 ⁣ ⁣4424\!\cdots\!44T18+ T^{18} + 48 ⁣ ⁣2848\!\cdots\!28T20 T^{20} - 24 ⁣ ⁣4424\!\cdots\!44p14T22+ p^{14} T^{22} + 10 ⁣ ⁣5010\!\cdots\!50p29T24 p^{29} T^{24} - 54 ⁣ ⁣0854\!\cdots\!08p42T26+ p^{42} T^{26} + 22 ⁣ ⁣0822\!\cdots\!08p56T28 p^{56} T^{28} - 74 ⁣ ⁣2074\!\cdots\!20p71T30+ p^{71} T^{30} + 25 ⁣ ⁣9725\!\cdots\!97p84T32 p^{84} T^{32} - 63 ⁣ ⁣5263\!\cdots\!52p98T34+12138542646745750p112T36155375456p126T38+p140T40 p^{98} T^{34} + 12138542646745750 p^{112} T^{36} - 155375456 p^{126} T^{38} + p^{140} T^{40}
13 1+1172T+686792T2313989518964T33212129452443754T419811183424016885604T5+ 1 + 1172 T + 686792 T^{2} - 313989518964 T^{3} - 3212129452443754 T^{4} - 19811183424016885604 T^{5} + 21 ⁣ ⁣5621\!\cdots\!56pT6 p T^{6} - 14 ⁣ ⁣0814\!\cdots\!08T7 T^{7} - 24 ⁣ ⁣3524\!\cdots\!35T8 T^{8} - 10 ⁣ ⁣5610\!\cdots\!56T9+ T^{9} + 21 ⁣ ⁣2021\!\cdots\!20T10 T^{10} - 26 ⁣ ⁣0426\!\cdots\!04T11+ T^{11} + 74 ⁣ ⁣5674\!\cdots\!56T12+ T^{12} + 69 ⁣ ⁣6469\!\cdots\!64T13+ T^{13} + 43 ⁣ ⁣2843\!\cdots\!28T14+ T^{14} + 39 ⁣ ⁣2439\!\cdots\!24T15 T^{15} - 13 ⁣ ⁣3013\!\cdots\!30T16 T^{16} - 19 ⁣ ⁣7619\!\cdots\!76pT17 p T^{17} - 10 ⁣ ⁣2410\!\cdots\!24T18 T^{18} - 64 ⁣ ⁣2864\!\cdots\!28T19+ T^{19} + 12 ⁣ ⁣3212\!\cdots\!32T20 T^{20} - 64 ⁣ ⁣2864\!\cdots\!28p7T21 p^{7} T^{21} - 10 ⁣ ⁣2410\!\cdots\!24p14T22 p^{14} T^{22} - 19 ⁣ ⁣7619\!\cdots\!76p22T23 p^{22} T^{23} - 13 ⁣ ⁣3013\!\cdots\!30p28T24+ p^{28} T^{24} + 39 ⁣ ⁣2439\!\cdots\!24p35T25+ p^{35} T^{25} + 43 ⁣ ⁣2843\!\cdots\!28p42T26+ p^{42} T^{26} + 69 ⁣ ⁣6469\!\cdots\!64p49T27+ p^{49} T^{27} + 74 ⁣ ⁣5674\!\cdots\!56p56T28 p^{56} T^{28} - 26 ⁣ ⁣0426\!\cdots\!04p63T29+ p^{63} T^{29} + 21 ⁣ ⁣2021\!\cdots\!20p70T30 p^{70} T^{30} - 10 ⁣ ⁣5610\!\cdots\!56p77T31 p^{77} T^{31} - 24 ⁣ ⁣3524\!\cdots\!35p84T32 p^{84} T^{32} - 14 ⁣ ⁣0814\!\cdots\!08p91T33+ p^{91} T^{33} + 21 ⁣ ⁣5621\!\cdots\!56p99T3419811183424016885604p105T353212129452443754p112T36313989518964p119T37+686792p126T38+1172p133T39+p140T40 p^{99} T^{34} - 19811183424016885604 p^{105} T^{35} - 3212129452443754 p^{112} T^{36} - 313989518964 p^{119} T^{37} + 686792 p^{126} T^{38} + 1172 p^{133} T^{39} + p^{140} T^{40}
17 1+25136T+315909248T211900876851792T39718471582121546T4+ 1 + 25136 T + 315909248 T^{2} - 11900876851792 T^{3} - 9718471582121546 T^{4} + 66 ⁣ ⁣2066\!\cdots\!20T5+ T^{5} + 24 ⁣ ⁣6024\!\cdots\!60T6 T^{6} - 17 ⁣ ⁣2017\!\cdots\!20T7 T^{7} - 58 ⁣ ⁣9558\!\cdots\!95T8+ T^{8} + 57 ⁣ ⁣2057\!\cdots\!20T9+ T^{9} + 78 ⁣ ⁣8078\!\cdots\!80T10+ T^{10} + 78 ⁣ ⁣8078\!\cdots\!80T11 T^{11} - 10 ⁣ ⁣0810\!\cdots\!08T12 T^{12} - 30 ⁣ ⁣6830\!\cdots\!68T13+ T^{13} + 68 ⁣ ⁣5668\!\cdots\!56T14+ T^{14} + 26 ⁣ ⁣5626\!\cdots\!56T15+ T^{15} + 18 ⁣ ⁣1818\!\cdots\!18T16 T^{16} - 35 ⁣ ⁣6035\!\cdots\!60T17 T^{17} - 58 ⁣ ⁣8058\!\cdots\!80T18+ T^{18} + 27 ⁣ ⁣8027\!\cdots\!80T19+ T^{19} + 84 ⁣ ⁣4084\!\cdots\!40T20+ T^{20} + 27 ⁣ ⁣8027\!\cdots\!80p7T21 p^{7} T^{21} - 58 ⁣ ⁣8058\!\cdots\!80p14T22 p^{14} T^{22} - 35 ⁣ ⁣6035\!\cdots\!60p21T23+ p^{21} T^{23} + 18 ⁣ ⁣1818\!\cdots\!18p28T24+ p^{28} T^{24} + 26 ⁣ ⁣5626\!\cdots\!56p35T25+ p^{35} T^{25} + 68 ⁣ ⁣5668\!\cdots\!56p42T26 p^{42} T^{26} - 30 ⁣ ⁣6830\!\cdots\!68p49T27 p^{49} T^{27} - 10 ⁣ ⁣0810\!\cdots\!08p56T28+ p^{56} T^{28} + 78 ⁣ ⁣8078\!\cdots\!80p63T29+ p^{63} T^{29} + 78 ⁣ ⁣8078\!\cdots\!80p70T30+ p^{70} T^{30} + 57 ⁣ ⁣2057\!\cdots\!20p77T31 p^{77} T^{31} - 58 ⁣ ⁣9558\!\cdots\!95p84T32 p^{84} T^{32} - 17 ⁣ ⁣2017\!\cdots\!20p91T33+ p^{91} T^{33} + 24 ⁣ ⁣6024\!\cdots\!60p98T34+ p^{98} T^{34} + 66 ⁣ ⁣2066\!\cdots\!20p105T359718471582121546p112T3611900876851792p119T37+315909248p126T38+25136p133T39+p140T40 p^{105} T^{35} - 9718471582121546 p^{112} T^{36} - 11900876851792 p^{119} T^{37} + 315909248 p^{126} T^{38} + 25136 p^{133} T^{39} + p^{140} T^{40}
19 (132392T+6808159262T2218132006965784T3+21986522110533225701T4 ( 1 - 32392 T + 6808159262 T^{2} - 218132006965784 T^{3} + 21986522110533225701 T^{4} - 67 ⁣ ⁣0067\!\cdots\!00T5+ T^{5} + 44 ⁣ ⁣3644\!\cdots\!36T6 T^{6} - 12 ⁣ ⁣3612\!\cdots\!36T7+ T^{7} + 63 ⁣ ⁣2263\!\cdots\!22T8 T^{8} - 16 ⁣ ⁣2816\!\cdots\!28T9+ T^{9} + 65 ⁣ ⁣5265\!\cdots\!52T10 T^{10} - 16 ⁣ ⁣2816\!\cdots\!28p7T11+ p^{7} T^{11} + 63 ⁣ ⁣2263\!\cdots\!22p14T12 p^{14} T^{12} - 12 ⁣ ⁣3612\!\cdots\!36p21T13+ p^{21} T^{13} + 44 ⁣ ⁣3644\!\cdots\!36p28T14 p^{28} T^{14} - 67 ⁣ ⁣0067\!\cdots\!00p35T15+21986522110533225701p42T16218132006965784p49T17+6808159262p56T1832392p63T19+p70T20)2 p^{35} T^{15} + 21986522110533225701 p^{42} T^{16} - 218132006965784 p^{49} T^{17} + 6808159262 p^{56} T^{18} - 32392 p^{63} T^{19} + p^{70} T^{20} )^{2}
23 1+39922T+796883042T2282586659050298T324146722462484821266T4+ 1 + 39922 T + 796883042 T^{2} - 282586659050298 T^{3} - 24146722462484821266 T^{4} + 21 ⁣ ⁣7821\!\cdots\!78T5+ T^{5} + 67 ⁣ ⁣9067\!\cdots\!90T6+ T^{6} + 49 ⁣ ⁣4249\!\cdots\!42T7 T^{7} - 97 ⁣ ⁣4397\!\cdots\!43T8 T^{8} - 16 ⁣ ⁣4816\!\cdots\!48T9 T^{9} - 30 ⁣ ⁣8430\!\cdots\!84T10+ T^{10} + 55 ⁣ ⁣7655\!\cdots\!76T11+ T^{11} + 48 ⁣ ⁣6848\!\cdots\!68T12 T^{12} - 72 ⁣ ⁣3672\!\cdots\!36T13 T^{13} - 14 ⁣ ⁣3214\!\cdots\!32T14 T^{14} - 10 ⁣ ⁣4410\!\cdots\!44T15+ T^{15} + 74 ⁣ ⁣4674\!\cdots\!46T16+ T^{16} + 34 ⁣ ⁣6834\!\cdots\!68T17+ T^{17} + 10 ⁣ ⁣6810\!\cdots\!68T18 T^{18} - 17 ⁣ ⁣0817\!\cdots\!08T19 T^{19} - 64 ⁣ ⁣3264\!\cdots\!32T20 T^{20} - 17 ⁣ ⁣0817\!\cdots\!08p7T21+ p^{7} T^{21} + 10 ⁣ ⁣6810\!\cdots\!68p14T22+ p^{14} T^{22} + 34 ⁣ ⁣6834\!\cdots\!68p21T23+ p^{21} T^{23} + 74 ⁣ ⁣4674\!\cdots\!46p28T24 p^{28} T^{24} - 10 ⁣ ⁣4410\!\cdots\!44p35T25 p^{35} T^{25} - 14 ⁣ ⁣3214\!\cdots\!32p42T26 p^{42} T^{26} - 72 ⁣ ⁣3672\!\cdots\!36p49T27+ p^{49} T^{27} + 48 ⁣ ⁣6848\!\cdots\!68p56T28+ p^{56} T^{28} + 55 ⁣ ⁣7655\!\cdots\!76p63T29 p^{63} T^{29} - 30 ⁣ ⁣8430\!\cdots\!84p70T30 p^{70} T^{30} - 16 ⁣ ⁣4816\!\cdots\!48p77T31 p^{77} T^{31} - 97 ⁣ ⁣4397\!\cdots\!43p84T32+ p^{84} T^{32} + 49 ⁣ ⁣4249\!\cdots\!42p91T33+ p^{91} T^{33} + 67 ⁣ ⁣9067\!\cdots\!90p98T34+ p^{98} T^{34} + 21 ⁣ ⁣7821\!\cdots\!78p105T3524146722462484821266p112T36282586659050298p119T37+796883042p126T38+39922p133T39+p140T40 p^{105} T^{35} - 24146722462484821266 p^{112} T^{36} - 282586659050298 p^{119} T^{37} + 796883042 p^{126} T^{38} + 39922 p^{133} T^{39} + p^{140} T^{40}
29 1214056087860T2+ 1 - 214056087860 T^{2} + 21 ⁣ ⁣4221\!\cdots\!42T4 T^{4} - 14 ⁣ ⁣4814\!\cdots\!48T6+ T^{6} + 68 ⁣ ⁣1368\!\cdots\!13T8 T^{8} - 25 ⁣ ⁣2025\!\cdots\!20T10+ T^{10} + 78 ⁣ ⁣5278\!\cdots\!52T12 T^{12} - 20 ⁣ ⁣5220\!\cdots\!52T14+ T^{14} + 47 ⁣ ⁣7847\!\cdots\!78T16 T^{16} - 95 ⁣ ⁣4095\!\cdots\!40T18+ T^{18} + 17 ⁣ ⁣8817\!\cdots\!88T20 T^{20} - 95 ⁣ ⁣4095\!\cdots\!40p14T22+ p^{14} T^{22} + 47 ⁣ ⁣7847\!\cdots\!78p28T24 p^{28} T^{24} - 20 ⁣ ⁣5220\!\cdots\!52p42T26+ p^{42} T^{26} + 78 ⁣ ⁣5278\!\cdots\!52p56T28 p^{56} T^{28} - 25 ⁣ ⁣2025\!\cdots\!20p70T30+ p^{70} T^{30} + 68 ⁣ ⁣1368\!\cdots\!13p84T32 p^{84} T^{32} - 14 ⁣ ⁣4814\!\cdots\!48p98T34+ p^{98} T^{34} + 21 ⁣ ⁣4221\!\cdots\!42p112T36214056087860p126T38+p140T40 p^{112} T^{36} - 214056087860 p^{126} T^{38} + p^{140} T^{40}
31 1354387960480T2+ 1 - 354387960480 T^{2} + 62 ⁣ ⁣4262\!\cdots\!42T4 T^{4} - 72 ⁣ ⁣3272\!\cdots\!32T6+ T^{6} + 62 ⁣ ⁣5362\!\cdots\!53T8 T^{8} - 42 ⁣ ⁣6042\!\cdots\!60T10+ T^{10} + 23 ⁣ ⁣7223\!\cdots\!72T12 T^{12} - 11 ⁣ ⁣4811\!\cdots\!48T14+ T^{14} + 43 ⁣ ⁣7843\!\cdots\!78T16 T^{16} - 14 ⁣ ⁣0014\!\cdots\!00T18+ T^{18} + 44 ⁣ ⁣4844\!\cdots\!48T20 T^{20} - 14 ⁣ ⁣0014\!\cdots\!00p14T22+ p^{14} T^{22} + 43 ⁣ ⁣7843\!\cdots\!78p28T24 p^{28} T^{24} - 11 ⁣ ⁣4811\!\cdots\!48p42T26+ p^{42} T^{26} + 23 ⁣ ⁣7223\!\cdots\!72p56T28 p^{56} T^{28} - 42 ⁣ ⁣6042\!\cdots\!60p70T30+ p^{70} T^{30} + 62 ⁣ ⁣5362\!\cdots\!53p84T32 p^{84} T^{32} - 72 ⁣ ⁣3272\!\cdots\!32p98T34+ p^{98} T^{34} + 62 ⁣ ⁣4262\!\cdots\!42p112T36354387960480p126T38+p140T40 p^{112} T^{36} - 354387960480 p^{126} T^{38} + p^{140} T^{40}
37 1+647408T+209568559232T2+89242611105741808T3+ 1 + 647408 T + 209568559232 T^{2} + 89242611105741808 T^{3} + 44 ⁣ ⁣9044\!\cdots\!90T4+ T^{4} + 38 ⁣ ⁣7238\!\cdots\!72pT5+ p T^{5} + 39 ⁣ ⁣6439\!\cdots\!64T6+ T^{6} + 15 ⁣ ⁣2015\!\cdots\!20T7+ T^{7} + 52 ⁣ ⁣5752\!\cdots\!57T8+ T^{8} + 10 ⁣ ⁣3210\!\cdots\!32T9+ T^{9} + 25 ⁣ ⁣8025\!\cdots\!80T10+ T^{10} + 94 ⁣ ⁣8894\!\cdots\!88T11+ T^{11} + 18 ⁣ ⁣2418\!\cdots\!24T12 T^{12} - 63 ⁣ ⁣1263\!\cdots\!12T13 T^{13} - 15 ⁣ ⁣8015\!\cdots\!80pT14 p T^{14} - 29 ⁣ ⁣8029\!\cdots\!80T15 T^{15} - 25 ⁣ ⁣5425\!\cdots\!54T16 T^{16} - 10 ⁣ ⁣6410\!\cdots\!64T17 T^{17} - 28 ⁣ ⁣1628\!\cdots\!16T18 T^{18} - 10 ⁣ ⁣1210\!\cdots\!12T19 T^{19} - 38 ⁣ ⁣3638\!\cdots\!36T20 T^{20} - 10 ⁣ ⁣1210\!\cdots\!12p7T21 p^{7} T^{21} - 28 ⁣ ⁣1628\!\cdots\!16p14T22 p^{14} T^{22} - 10 ⁣ ⁣6410\!\cdots\!64p21T23 p^{21} T^{23} - 25 ⁣ ⁣5425\!\cdots\!54p28T24 p^{28} T^{24} - 29 ⁣ ⁣8029\!\cdots\!80p35T25 p^{35} T^{25} - 15 ⁣ ⁣8015\!\cdots\!80p43T26 p^{43} T^{26} - 63 ⁣ ⁣1263\!\cdots\!12p49T27+ p^{49} T^{27} + 18 ⁣ ⁣2418\!\cdots\!24p56T28+ p^{56} T^{28} + 94 ⁣ ⁣8894\!\cdots\!88p63T29+ p^{63} T^{29} + 25 ⁣ ⁣8025\!\cdots\!80p70T30+ p^{70} T^{30} + 10 ⁣ ⁣3210\!\cdots\!32p77T31+ p^{77} T^{31} + 52 ⁣ ⁣5752\!\cdots\!57p84T32+ p^{84} T^{32} + 15 ⁣ ⁣2015\!\cdots\!20p91T33+ p^{91} T^{33} + 39 ⁣ ⁣6439\!\cdots\!64p98T34+ p^{98} T^{34} + 38 ⁣ ⁣7238\!\cdots\!72p106T35+ p^{106} T^{35} + 44 ⁣ ⁣9044\!\cdots\!90p112T36+89242611105741808p119T37+209568559232p126T38+647408p133T39+p140T40 p^{112} T^{36} + 89242611105741808 p^{119} T^{37} + 209568559232 p^{126} T^{38} + 647408 p^{133} T^{39} + p^{140} T^{40}
41 (1+575942T+977657095278T2+357461430642746942T3+ ( 1 + 575942 T + 977657095278 T^{2} + 357461430642746942 T^{3} + 41 ⁣ ⁣0941\!\cdots\!09T4+ T^{4} + 11 ⁣ ⁣8011\!\cdots\!80T5+ T^{5} + 12 ⁣ ⁣6412\!\cdots\!64T6+ T^{6} + 27 ⁣ ⁣9227\!\cdots\!92T7+ T^{7} + 29 ⁣ ⁣3829\!\cdots\!38T8+ T^{8} + 55 ⁣ ⁣7255\!\cdots\!72T9+ T^{9} + 59 ⁣ ⁣1259\!\cdots\!12T10+ T^{10} + 55 ⁣ ⁣7255\!\cdots\!72p7T11+ p^{7} T^{11} + 29 ⁣ ⁣3829\!\cdots\!38p14T12+ p^{14} T^{12} + 27 ⁣ ⁣9227\!\cdots\!92p21T13+ p^{21} T^{13} + 12 ⁣ ⁣6412\!\cdots\!64p28T14+ p^{28} T^{14} + 11 ⁣ ⁣8011\!\cdots\!80p35T15+ p^{35} T^{15} + 41 ⁣ ⁣0941\!\cdots\!09p42T16+357461430642746942p49T17+977657095278p56T18+575942p63T19+p70T20)2 p^{42} T^{16} + 357461430642746942 p^{49} T^{17} + 977657095278 p^{56} T^{18} + 575942 p^{63} T^{19} + p^{70} T^{20} )^{2}
43 1+1589406T+1263105716418T2+990112346346798690T3+ 1 + 1589406 T + 1263105716418 T^{2} + 990112346346798690 T^{3} + 85 ⁣ ⁣3085\!\cdots\!30T4+ T^{4} + 59 ⁣ ⁣7459\!\cdots\!74T5+ T^{5} + 35 ⁣ ⁣5435\!\cdots\!54T6+ T^{6} + 23 ⁣ ⁣5023\!\cdots\!50T7+ T^{7} + 14 ⁣ ⁣7314\!\cdots\!73T8+ T^{8} + 68 ⁣ ⁣7668\!\cdots\!76T9+ T^{9} + 32 ⁣ ⁣6032\!\cdots\!60T10+ T^{10} + 16 ⁣ ⁣4016\!\cdots\!40T11+ T^{11} + 59 ⁣ ⁣4859\!\cdots\!48T12+ T^{12} + 78 ⁣ ⁣1678\!\cdots\!16T13 T^{13} - 19 ⁣ ⁣3619\!\cdots\!36T14 T^{14} - 48 ⁣ ⁣4448\!\cdots\!44T15 T^{15} - 66 ⁣ ⁣7466\!\cdots\!74T16 T^{16} - 47 ⁣ ⁣6447\!\cdots\!64T17 T^{17} - 25 ⁣ ⁣3225\!\cdots\!32T18 T^{18} - 15 ⁣ ⁣8015\!\cdots\!80T19 T^{19} - 92 ⁣ ⁣5692\!\cdots\!56T20 T^{20} - 15 ⁣ ⁣8015\!\cdots\!80p7T21 p^{7} T^{21} - 25 ⁣ ⁣3225\!\cdots\!32p14T22 p^{14} T^{22} - 47 ⁣ ⁣6447\!\cdots\!64p21T23 p^{21} T^{23} - 66 ⁣ ⁣7466\!\cdots\!74p28T24 p^{28} T^{24} - 48 ⁣ ⁣4448\!\cdots\!44p35T25 p^{35} T^{25} - 19 ⁣ ⁣3619\!\cdots\!36p42T26+ p^{42} T^{26} + 78 ⁣ ⁣1678\!\cdots\!16p49T27+ p^{49} T^{27} + 59 ⁣ ⁣4859\!\cdots\!48p56T28+ p^{56} T^{28} + 16 ⁣ ⁣4016\!\cdots\!40p63T29+ p^{63} T^{29} + 32 ⁣ ⁣6032\!\cdots\!60p70T30+ p^{70} T^{30} + 68 ⁣ ⁣7668\!\cdots\!76p77T31+ p^{77} T^{31} + 14 ⁣ ⁣7314\!\cdots\!73p84T32+ p^{84} T^{32} + 23 ⁣ ⁣5023\!\cdots\!50p91T33+ p^{91} T^{33} + 35 ⁣ ⁣5435\!\cdots\!54p98T34+ p^{98} T^{34} + 59 ⁣ ⁣7459\!\cdots\!74p105T35+ p^{105} T^{35} + 85 ⁣ ⁣3085\!\cdots\!30p112T36+990112346346798690p119T37+1263105716418p126T38+1589406p133T39+p140T40 p^{112} T^{36} + 990112346346798690 p^{119} T^{37} + 1263105716418 p^{126} T^{38} + 1589406 p^{133} T^{39} + p^{140} T^{40}
47 1+1417862T+1005166325522T2+1240239832229276466T3+ 1 + 1417862 T + 1005166325522 T^{2} + 1240239832229276466 T^{3} + 77 ⁣ ⁣5077\!\cdots\!50T4 T^{4} - 27 ⁣ ⁣1027\!\cdots\!10T5 T^{5} - 17 ⁣ ⁣4217\!\cdots\!42T6 T^{6} - 14 ⁣ ⁣5814\!\cdots\!58T7 T^{7} - 16 ⁣ ⁣2716\!\cdots\!27T8+ T^{8} + 79 ⁣ ⁣7279\!\cdots\!72T9+ T^{9} + 11 ⁣ ⁣8011\!\cdots\!80T10+ T^{10} + 14 ⁣ ⁣7614\!\cdots\!76T11+ T^{11} + 14 ⁣ ⁣7214\!\cdots\!72T12+ T^{12} + 44 ⁣ ⁣0444\!\cdots\!04T13+ T^{13} + 18 ⁣ ⁣0818\!\cdots\!08T14 T^{14} - 22 ⁣ ⁣2022\!\cdots\!20T15 T^{15} - 20 ⁣ ⁣3020\!\cdots\!30T16+ T^{16} + 42 ⁣ ⁣3242\!\cdots\!32T17+ T^{17} + 68 ⁣ ⁣5268\!\cdots\!52T18+ T^{18} + 84 ⁣ ⁣9684\!\cdots\!96T19+ T^{19} + 10 ⁣ ⁣8810\!\cdots\!88T20+ T^{20} + 84 ⁣ ⁣9684\!\cdots\!96p7T21+ p^{7} T^{21} + 68 ⁣ ⁣5268\!\cdots\!52p14T22+ p^{14} T^{22} + 42 ⁣ ⁣3242\!\cdots\!32p21T23 p^{21} T^{23} - 20 ⁣ ⁣3020\!\cdots\!30p28T24 p^{28} T^{24} - 22 ⁣ ⁣2022\!\cdots\!20p35T25+ p^{35} T^{25} + 18 ⁣ ⁣0818\!\cdots\!08p42T26+ p^{42} T^{26} + 44 ⁣ ⁣0444\!\cdots\!04p49T27+ p^{49} T^{27} + 14 ⁣ ⁣7214\!\cdots\!72p56T28+ p^{56} T^{28} + 14 ⁣ ⁣7614\!\cdots\!76p63T29+ p^{63} T^{29} + 11 ⁣ ⁣8011\!\cdots\!80p70T30+ p^{70} T^{30} + 79 ⁣ ⁣7279\!\cdots\!72p77T31 p^{77} T^{31} - 16 ⁣ ⁣2716\!\cdots\!27p84T32 p^{84} T^{32} - 14 ⁣ ⁣5814\!\cdots\!58p91T33 p^{91} T^{33} - 17 ⁣ ⁣4217\!\cdots\!42p98T34 p^{98} T^{34} - 27 ⁣ ⁣1027\!\cdots\!10p105T35+ p^{105} T^{35} + 77 ⁣ ⁣5077\!\cdots\!50p112T36+1240239832229276466p119T37+1005166325522p126T38+1417862p133T39+p140T40 p^{112} T^{36} + 1240239832229276466 p^{119} T^{37} + 1005166325522 p^{126} T^{38} + 1417862 p^{133} T^{39} + p^{140} T^{40}
53 1+39912pT+796483872p2T2+6206825688530927800T3+ 1 + 39912 p T + 796483872 p^{2} T^{2} + 6206825688530927800 T^{3} + 83 ⁣ ⁣7083\!\cdots\!70T4+ T^{4} + 44 ⁣ ⁣8444\!\cdots\!84T5+ T^{5} + 99 ⁣ ⁣6499\!\cdots\!64T6+ T^{6} + 92 ⁣ ⁣2092\!\cdots\!20T7 T^{7} - 53 ⁣ ⁣8753\!\cdots\!87T8+ T^{8} + 31 ⁣ ⁣1631\!\cdots\!16T9+ T^{9} + 32 ⁣ ⁣0032\!\cdots\!00T10 T^{10} - 19 ⁣ ⁣8019\!\cdots\!80T11+ T^{11} + 20 ⁣ ⁣8820\!\cdots\!88T12+ T^{12} + 95 ⁣ ⁣9695\!\cdots\!96T13 T^{13} - 20 ⁣ ⁣5620\!\cdots\!56T14+ T^{14} + 12 ⁣ ⁣1612\!\cdots\!16T15+ T^{15} + 19 ⁣ ⁣8619\!\cdots\!86T16 T^{16} - 26 ⁣ ⁣4426\!\cdots\!44T17+ T^{17} + 12 ⁣ ⁣6812\!\cdots\!68T18+ T^{18} + 12 ⁣ ⁣6012\!\cdots\!60T19 T^{19} - 43 ⁣ ⁣7643\!\cdots\!76T20+ T^{20} + 12 ⁣ ⁣6012\!\cdots\!60p7T21+ p^{7} T^{21} + 12 ⁣ ⁣6812\!\cdots\!68p14T22 p^{14} T^{22} - 26 ⁣ ⁣4426\!\cdots\!44p21T23+ p^{21} T^{23} + 19 ⁣ ⁣8619\!\cdots\!86p28T24+ p^{28} T^{24} + 12 ⁣ ⁣1612\!\cdots\!16p35T25 p^{35} T^{25} - 20 ⁣ ⁣5620\!\cdots\!56p42T26+ p^{42} T^{26} + 95 ⁣ ⁣9695\!\cdots\!96p49T27+ p^{49} T^{27} + 20 ⁣ ⁣8820\!\cdots\!88p56T28 p^{56} T^{28} - 19 ⁣ ⁣8019\!\cdots\!80p63T29+ p^{63} T^{29} + 32 ⁣ ⁣0032\!\cdots\!00p70T30+ p^{70} T^{30} + 31 ⁣ ⁣1631\!\cdots\!16p77T31 p^{77} T^{31} - 53 ⁣ ⁣8753\!\cdots\!87p84T32+ p^{84} T^{32} + 92 ⁣ ⁣2092\!\cdots\!20p91T33+ p^{91} T^{33} + 99 ⁣ ⁣6499\!\cdots\!64p98T34+ p^{98} T^{34} + 44 ⁣ ⁣8444\!\cdots\!84p105T35+ p^{105} T^{35} + 83 ⁣ ⁣7083\!\cdots\!70p112T36+6206825688530927800p119T37+796483872p128T38+39912p134T39+p140T40 p^{112} T^{36} + 6206825688530927800 p^{119} T^{37} + 796483872 p^{128} T^{38} + 39912 p^{134} T^{39} + p^{140} T^{40}
59 (13249288T+10146405408526T223600639727955731160T3+ ( 1 - 3249288 T + 10146405408526 T^{2} - 23600639727955731160 T^{3} + 55 ⁣ ⁣2155\!\cdots\!21T4 T^{4} - 10 ⁣ ⁣1610\!\cdots\!16T5+ T^{5} + 19 ⁣ ⁣9219\!\cdots\!92T6 T^{6} - 52 ⁣ ⁣4452\!\cdots\!44pT7+ p T^{7} + 52 ⁣ ⁣9452\!\cdots\!94T8 T^{8} - 77 ⁣ ⁣0477\!\cdots\!04T9+ T^{9} + 12 ⁣ ⁣2812\!\cdots\!28T10 T^{10} - 77 ⁣ ⁣0477\!\cdots\!04p7T11+ p^{7} T^{11} + 52 ⁣ ⁣9452\!\cdots\!94p14T12 p^{14} T^{12} - 52 ⁣ ⁣4452\!\cdots\!44p22T13+ p^{22} T^{13} + 19 ⁣ ⁣9219\!\cdots\!92p28T14 p^{28} T^{14} - 10 ⁣ ⁣1610\!\cdots\!16p35T15+ p^{35} T^{15} + 55 ⁣ ⁣2155\!\cdots\!21p42T1623600639727955731160p49T17+10146405408526p56T183249288p63T19+p70T20)2 p^{42} T^{16} - 23600639727955731160 p^{49} T^{17} + 10146405408526 p^{56} T^{18} - 3249288 p^{63} T^{19} + p^{70} T^{20} )^{2}
61 (1968282T+5482392324014T27025858435107045338T3+ ( 1 - 968282 T + 5482392324014 T^{2} - 7025858435107045338 T^{3} + 76 ⁣ ⁣5376\!\cdots\!53pT4 p T^{4} - 46 ⁣ ⁣0846\!\cdots\!08T5+ T^{5} + 15 ⁣ ⁣3215\!\cdots\!32T6 T^{6} - 19 ⁣ ⁣3619\!\cdots\!36T7+ T^{7} + 78 ⁣ ⁣3078\!\cdots\!30T8 T^{8} - 74 ⁣ ⁣0874\!\cdots\!08T9+ T^{9} + 19 ⁣ ⁣6419\!\cdots\!64T10 T^{10} - 74 ⁣ ⁣0874\!\cdots\!08p7T11+ p^{7} T^{11} + 78 ⁣ ⁣3078\!\cdots\!30p14T12 p^{14} T^{12} - 19 ⁣ ⁣3619\!\cdots\!36p21T13+ p^{21} T^{13} + 15 ⁣ ⁣3215\!\cdots\!32p28T14 p^{28} T^{14} - 46 ⁣ ⁣0846\!\cdots\!08p35T15+ p^{35} T^{15} + 76 ⁣ ⁣5376\!\cdots\!53p43T167025858435107045338p49T17+5482392324014p56T18968282p63T19+p70T20)2 p^{43} T^{16} - 7025858435107045338 p^{49} T^{17} + 5482392324014 p^{56} T^{18} - 968282 p^{63} T^{19} + p^{70} T^{20} )^{2}
67 11634150T+1335223111250T2+50049565458787288022T3 1 - 1634150 T + 1335223111250 T^{2} + 50049565458787288022 T^{3} - 10 ⁣ ⁣1410\!\cdots\!14T4 T^{4} - 61 ⁣ ⁣1861\!\cdots\!18T5+ T^{5} + 14 ⁣ ⁣4214\!\cdots\!42T6 T^{6} - 32 ⁣ ⁣3832\!\cdots\!38T7 T^{7} - 55 ⁣ ⁣7555\!\cdots\!75T8+ T^{8} + 38 ⁣ ⁣3238\!\cdots\!32T9 T^{9} - 53 ⁣ ⁣3653\!\cdots\!36T10 T^{10} - 20 ⁣ ⁣8420\!\cdots\!84T11+ T^{11} + 83 ⁣ ⁣1683\!\cdots\!16T12 T^{12} - 36 ⁣ ⁣8436\!\cdots\!84T13 T^{13} - 51 ⁣ ⁣5651\!\cdots\!56T14+ T^{14} + 14 ⁣ ⁣7214\!\cdots\!72T15+ T^{15} + 65 ⁣ ⁣9065\!\cdots\!90T16 T^{16} - 10 ⁣ ⁣7210\!\cdots\!72T17+ T^{17} + 18 ⁣ ⁣4418\!\cdots\!44T18+ T^{18} + 29 ⁣ ⁣1229\!\cdots\!12T19 T^{19} - 17 ⁣ ⁣7617\!\cdots\!76T20+ T^{20} + 29 ⁣ ⁣1229\!\cdots\!12p7T21+ p^{7} T^{21} + 18 ⁣ ⁣4418\!\cdots\!44p14T22 p^{14} T^{22} - 10 ⁣ ⁣7210\!\cdots\!72p21T23+ p^{21} T^{23} + 65 ⁣ ⁣9065\!\cdots\!90p28T24+ p^{28} T^{24} + 14 ⁣ ⁣7214\!\cdots\!72p35T25 p^{35} T^{25} - 51 ⁣ ⁣5651\!\cdots\!56p42T26 p^{42} T^{26} - 36 ⁣ ⁣8436\!\cdots\!84p49T27+ p^{49} T^{27} + 83 ⁣ ⁣1683\!\cdots\!16p56T28 p^{56} T^{28} - 20 ⁣ ⁣8420\!\cdots\!84p63T29 p^{63} T^{29} - 53 ⁣ ⁣3653\!\cdots\!36p70T30+ p^{70} T^{30} + 38 ⁣ ⁣3238\!\cdots\!32p77T31 p^{77} T^{31} - 55 ⁣ ⁣7555\!\cdots\!75p84T32 p^{84} T^{32} - 32 ⁣ ⁣3832\!\cdots\!38p91T33+ p^{91} T^{33} + 14 ⁣ ⁣4214\!\cdots\!42p98T34 p^{98} T^{34} - 61 ⁣ ⁣1861\!\cdots\!18p105T35 p^{105} T^{35} - 10 ⁣ ⁣1410\!\cdots\!14p112T36+50049565458787288022p119T37+1335223111250p126T381634150p133T39+p140T40 p^{112} T^{36} + 50049565458787288022 p^{119} T^{37} + 1335223111250 p^{126} T^{38} - 1634150 p^{133} T^{39} + p^{140} T^{40}
71 1113490809626464T2+ 1 - 113490809626464 T^{2} + 63 ⁣ ⁣3063\!\cdots\!30T4 T^{4} - 23 ⁣ ⁣9223\!\cdots\!92T6+ T^{6} + 62 ⁣ ⁣7362\!\cdots\!73T8 T^{8} - 13 ⁣ ⁣8813\!\cdots\!88T10+ T^{10} + 23 ⁣ ⁣6023\!\cdots\!60T12 T^{12} - 35 ⁣ ⁣5235\!\cdots\!52T14+ T^{14} + 46 ⁣ ⁣4646\!\cdots\!46T16 T^{16} - 51 ⁣ ⁣4851\!\cdots\!48T18+ T^{18} + 50 ⁣ ⁣7250\!\cdots\!72T20 T^{20} - 51 ⁣ ⁣4851\!\cdots\!48p14T22+ p^{14} T^{22} + 46 ⁣ ⁣4646\!\cdots\!46p28T24 p^{28} T^{24} - 35 ⁣ ⁣5235\!\cdots\!52p42T26+ p^{42} T^{26} + 23 ⁣ ⁣6023\!\cdots\!60p56T28 p^{56} T^{28} - 13 ⁣ ⁣8813\!\cdots\!88p70T30+ p^{70} T^{30} + 62 ⁣ ⁣7362\!\cdots\!73p84T32 p^{84} T^{32} - 23 ⁣ ⁣9223\!\cdots\!92p98T34+ p^{98} T^{34} + 63 ⁣ ⁣3063\!\cdots\!30p112T36113490809626464p126T38+p140T40 p^{112} T^{36} - 113490809626464 p^{126} T^{38} + p^{140} T^{40}
73 1+2406004T+2894427624008T2+70630819591091484700T3+ 1 + 2406004 T + 2894427624008 T^{2} + 70630819591091484700 T^{3} + 13 ⁣ ⁣3013\!\cdots\!30T4 T^{4} - 51 ⁣ ⁣9651\!\cdots\!96T5+ T^{5} + 85 ⁣ ⁣7685\!\cdots\!76T6 T^{6} - 30 ⁣ ⁣1630\!\cdots\!16T7 T^{7} - 39 ⁣ ⁣8739\!\cdots\!87T8+ T^{8} + 26 ⁣ ⁣2426\!\cdots\!24T9 T^{9} - 26 ⁣ ⁣8026\!\cdots\!80T10 T^{10} - 85 ⁣ ⁣4085\!\cdots\!40T11+ T^{11} + 76 ⁣ ⁣2476\!\cdots\!24T12+ T^{12} + 16 ⁣ ⁣6816\!\cdots\!68T13 T^{13} - 13 ⁣ ⁣8413\!\cdots\!84T14+ T^{14} + 28 ⁣ ⁣9628\!\cdots\!96T15+ T^{15} + 68 ⁣ ⁣3468\!\cdots\!34T16 T^{16} - 20 ⁣ ⁣3220\!\cdots\!32T17+ T^{17} + 36 ⁣ ⁣8436\!\cdots\!84p2T18+ p^{2} T^{18} + 12 ⁣ ⁣6012\!\cdots\!60pT19 p T^{19} - 11 ⁣ ⁣9611\!\cdots\!96T20+ T^{20} + 12 ⁣ ⁣6012\!\cdots\!60p8T21+ p^{8} T^{21} + 36 ⁣ ⁣8436\!\cdots\!84p16T22 p^{16} T^{22} - 20 ⁣ ⁣3220\!\cdots\!32p21T23+ p^{21} T^{23} + 68 ⁣ ⁣3468\!\cdots\!34p28T24+ p^{28} T^{24} + 28 ⁣ ⁣9628\!\cdots\!96p35T25 p^{35} T^{25} - 13 ⁣ ⁣8413\!\cdots\!84p42T26+ p^{42} T^{26} + 16 ⁣ ⁣6816\!\cdots\!68p49T27+ p^{49} T^{27} + 76 ⁣ ⁣2476\!\cdots\!24p56T28 p^{56} T^{28} - 85 ⁣ ⁣4085\!\cdots\!40p63T29 p^{63} T^{29} - 26 ⁣ ⁣8026\!\cdots\!80p70T30+ p^{70} T^{30} + 26 ⁣ ⁣2426\!\cdots\!24p77T31 p^{77} T^{31} - 39 ⁣ ⁣8739\!\cdots\!87p84T32 p^{84} T^{32} - 30 ⁣ ⁣1630\!\cdots\!16p91T33+ p^{91} T^{33} + 85 ⁣ ⁣7685\!\cdots\!76p98T34 p^{98} T^{34} - 51 ⁣ ⁣9651\!\cdots\!96p105T35+ p^{105} T^{35} + 13 ⁣ ⁣3013\!\cdots\!30p112T36+70630819591091484700p119T37+2894427624008p126T38+2406004p133T39+p140T40 p^{112} T^{36} + 70630819591091484700 p^{119} T^{37} + 2894427624008 p^{126} T^{38} + 2406004 p^{133} T^{39} + p^{140} T^{40}
79 (1+5874552T+125098797360534T2+ ( 1 + 5874552 T + 125098797360534 T^{2} + 51 ⁣ ⁣7251\!\cdots\!72T3+ T^{3} + 71 ⁣ ⁣0971\!\cdots\!09T4+ T^{4} + 23 ⁣ ⁣8823\!\cdots\!88T5+ T^{5} + 27 ⁣ ⁣0027\!\cdots\!00T6+ T^{6} + 79 ⁣ ⁣8079\!\cdots\!80T7+ T^{7} + 77 ⁣ ⁣1077\!\cdots\!10T8+ T^{8} + 19 ⁣ ⁣8019\!\cdots\!80T9+ T^{9} + 16 ⁣ ⁣8016\!\cdots\!80T10+ T^{10} + 19 ⁣ ⁣8019\!\cdots\!80p7T11+ p^{7} T^{11} + 77 ⁣ ⁣1077\!\cdots\!10p14T12+ p^{14} T^{12} + 79 ⁣ ⁣8079\!\cdots\!80p21T13+ p^{21} T^{13} + 27 ⁣ ⁣0027\!\cdots\!00p28T14+ p^{28} T^{14} + 23 ⁣ ⁣8823\!\cdots\!88p35T15+ p^{35} T^{15} + 71 ⁣ ⁣0971\!\cdots\!09p42T16+ p^{42} T^{16} + 51 ⁣ ⁣7251\!\cdots\!72p49T17+125098797360534p56T18+5874552p63T19+p70T20)2 p^{49} T^{17} + 125098797360534 p^{56} T^{18} + 5874552 p^{63} T^{19} + p^{70} T^{20} )^{2}
83 1+13229814T+87513989237298T2+ 1 + 13229814 T + 87513989237298 T^{2} + 44 ⁣ ⁣4644\!\cdots\!46T3+ T^{3} + 28 ⁣ ⁣5428\!\cdots\!54T4+ T^{4} + 12 ⁣ ⁣5412\!\cdots\!54T5+ T^{5} + 12 ⁣ ⁣2212\!\cdots\!22T6 T^{6} - 17 ⁣ ⁣1817\!\cdots\!18T7 T^{7} - 18 ⁣ ⁣8718\!\cdots\!87T8 T^{8} - 19 ⁣ ⁣7219\!\cdots\!72T9 T^{9} - 13 ⁣ ⁣4013\!\cdots\!40T10 T^{10} - 63 ⁣ ⁣8463\!\cdots\!84T11 T^{11} - 34 ⁣ ⁣6834\!\cdots\!68T12 T^{12} - 19 ⁣ ⁣4419\!\cdots\!44T13 T^{13} - 64 ⁣ ⁣6864\!\cdots\!68T14 T^{14} - 49 ⁣ ⁣5249\!\cdots\!52T15+ T^{15} + 30 ⁣ ⁣8630\!\cdots\!86T16+ T^{16} + 77 ⁣ ⁣6877\!\cdots\!68T17+ T^{17} + 88 ⁣ ⁣4888\!\cdots\!48T18+ T^{18} + 55 ⁣ ⁣4855\!\cdots\!48T19+ T^{19} + 26 ⁣ ⁣2826\!\cdots\!28T20+ T^{20} + 55 ⁣ ⁣4855\!\cdots\!48p7T21+ p^{7} T^{21} + 88 ⁣ ⁣4888\!\cdots\!48p14T22+ p^{14} T^{22} + 77 ⁣ ⁣6877\!\cdots\!68p21T23+ p^{21} T^{23} + 30 ⁣ ⁣8630\!\cdots\!86p28T24 p^{28} T^{24} - 49 ⁣ ⁣5249\!\cdots\!52p35T25 p^{35} T^{25} - 64 ⁣ ⁣6864\!\cdots\!68p42T26 p^{42} T^{26} - 19 ⁣ ⁣4419\!\cdots\!44p49T27 p^{49} T^{27} - 34 ⁣ ⁣6834\!\cdots\!68p56T28 p^{56} T^{28} - 63 ⁣ ⁣8463\!\cdots\!84p63T29 p^{63} T^{29} - 13 ⁣ ⁣4013\!\cdots\!40p70T30 p^{70} T^{30} - 19 ⁣ ⁣7219\!\cdots\!72p77T31 p^{77} T^{31} - 18 ⁣ ⁣8718\!\cdots\!87p84T32 p^{84} T^{32} - 17 ⁣ ⁣1817\!\cdots\!18p91T33+ p^{91} T^{33} + 12 ⁣ ⁣2212\!\cdots\!22p98T34+ p^{98} T^{34} + 12 ⁣ ⁣5412\!\cdots\!54p105T35+ p^{105} T^{35} + 28 ⁣ ⁣5428\!\cdots\!54p112T36+ p^{112} T^{36} + 44 ⁣ ⁣4644\!\cdots\!46p119T37+87513989237298p126T38+13229814p133T39+p140T40 p^{119} T^{37} + 87513989237298 p^{126} T^{38} + 13229814 p^{133} T^{39} + p^{140} T^{40}
89 1529620656263476T2+ 1 - 529620656263476 T^{2} + 14 ⁣ ⁣7814\!\cdots\!78T4 T^{4} - 25 ⁣ ⁣8825\!\cdots\!88T6+ T^{6} + 34 ⁣ ⁣0134\!\cdots\!01T8 T^{8} - 36 ⁣ ⁣4036\!\cdots\!40T10+ T^{10} + 32 ⁣ ⁣0432\!\cdots\!04T12 T^{12} - 24 ⁣ ⁣5224\!\cdots\!52T14+ T^{14} + 15 ⁣ ⁣8215\!\cdots\!82T16 T^{16} - 84 ⁣ ⁣4484\!\cdots\!44T18+ T^{18} + 40 ⁣ ⁣6840\!\cdots\!68T20 T^{20} - 84 ⁣ ⁣4484\!\cdots\!44p14T22+ p^{14} T^{22} + 15 ⁣ ⁣8215\!\cdots\!82p28T24 p^{28} T^{24} - 24 ⁣ ⁣5224\!\cdots\!52p42T26+ p^{42} T^{26} + 32 ⁣ ⁣0432\!\cdots\!04p56T28 p^{56} T^{28} - 36 ⁣ ⁣4036\!\cdots\!40p70T30+ p^{70} T^{30} + 34 ⁣ ⁣0134\!\cdots\!01p84T32 p^{84} T^{32} - 25 ⁣ ⁣8825\!\cdots\!88p98T34+ p^{98} T^{34} + 14 ⁣ ⁣7814\!\cdots\!78p112T36529620656263476p126T38+p140T40 p^{112} T^{36} - 529620656263476 p^{126} T^{38} + p^{140} T^{40}
97 124630564T+303332341479048T2 1 - 24630564 T + 303332341479048 T^{2} - 40 ⁣ ⁣8040\!\cdots\!80T3+ T^{3} + 59 ⁣ ⁣5859\!\cdots\!58T4 T^{4} - 58 ⁣ ⁣8858\!\cdots\!88T5+ T^{5} + 46 ⁣ ⁣4846\!\cdots\!48T6 T^{6} - 38 ⁣ ⁣6838\!\cdots\!68T7+ T^{7} + 98 ⁣ ⁣4198\!\cdots\!41T8+ T^{8} + 25 ⁣ ⁣4825\!\cdots\!48T9 T^{9} - 41 ⁣ ⁣1241\!\cdots\!12T10+ T^{10} + 61 ⁣ ⁣0461\!\cdots\!04T11 T^{11} - 82 ⁣ ⁣7682\!\cdots\!76T12+ T^{12} + 69 ⁣ ⁣4469\!\cdots\!44T13 T^{13} - 48 ⁣ ⁣7248\!\cdots\!72T14+ T^{14} + 35 ⁣ ⁣9635\!\cdots\!96T15 T^{15} - 44 ⁣ ⁣5844\!\cdots\!58T16 T^{16} - 25 ⁣ ⁣2025\!\cdots\!20T17+ T^{17} + 34 ⁣ ⁣0834\!\cdots\!08T18 T^{18} - 44 ⁣ ⁣9244\!\cdots\!92T19+ T^{19} + 50 ⁣ ⁣6850\!\cdots\!68T20 T^{20} - 44 ⁣ ⁣9244\!\cdots\!92p7T21+ p^{7} T^{21} + 34 ⁣ ⁣0834\!\cdots\!08p14T22 p^{14} T^{22} - 25 ⁣ ⁣2025\!\cdots\!20p21T23 p^{21} T^{23} - 44 ⁣ ⁣5844\!\cdots\!58p28T24+ p^{28} T^{24} + 35 ⁣ ⁣9635\!\cdots\!96p35T25 p^{35} T^{25} - 48 ⁣ ⁣7248\!\cdots\!72p42T26+ p^{42} T^{26} + 69 ⁣ ⁣4469\!\cdots\!44p49T27 p^{49} T^{27} - 82 ⁣ ⁣7682\!\cdots\!76p56T28+ p^{56} T^{28} + 61 ⁣ ⁣0461\!\cdots\!04p63T29 p^{63} T^{29} - 41 ⁣ ⁣1241\!\cdots\!12p70T30+ p^{70} T^{30} + 25 ⁣ ⁣4825\!\cdots\!48p77T31+ p^{77} T^{31} + 98 ⁣ ⁣4198\!\cdots\!41p84T32 p^{84} T^{32} - 38 ⁣ ⁣6838\!\cdots\!68p91T33+ p^{91} T^{33} + 46 ⁣ ⁣4846\!\cdots\!48p98T34 p^{98} T^{34} - 58 ⁣ ⁣8858\!\cdots\!88p105T35+ p^{105} T^{35} + 59 ⁣ ⁣5859\!\cdots\!58p112T36 p^{112} T^{36} - 40 ⁣ ⁣8040\!\cdots\!80p119T37+303332341479048p126T3824630564p133T39+p140T40 p^{119} T^{37} + 303332341479048 p^{126} T^{38} - 24630564 p^{133} T^{39} + p^{140} T^{40}
show more
show less
   L(s)=p j=140(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−1.98050229094656361239537187559, −1.90009751478653929533970491088, −1.82577363410621954871927974580, −1.81475051969689521059017458975, −1.71097726028357265924740786756, −1.54357111526638499626581584578, −1.41000430781501888315337398163, −1.32947257237228857215747913886, −1.31159222425906887588252531204, −1.19485764843328985773141166642, −1.15730069744251346430774529468, −1.15421896524718615633269003907, −1.12016374153563000582784467781, −1.08802085157323419224723096387, −0.815068851050532690154293469567, −0.807880988943844627036114482591, −0.70135948509436961878313098569, −0.69410928606380518396534239310, −0.62933449640372121385645318697, −0.43750299864976500499081982890, −0.30749627515957512998707419222, −0.18576943322749667945267519893, −0.13456541019486738442194250746, −0.04074223081672386081822997403, −0.009841785149539491369753285798, 0.009841785149539491369753285798, 0.04074223081672386081822997403, 0.13456541019486738442194250746, 0.18576943322749667945267519893, 0.30749627515957512998707419222, 0.43750299864976500499081982890, 0.62933449640372121385645318697, 0.69410928606380518396534239310, 0.70135948509436961878313098569, 0.807880988943844627036114482591, 0.815068851050532690154293469567, 1.08802085157323419224723096387, 1.12016374153563000582784467781, 1.15421896524718615633269003907, 1.15730069744251346430774529468, 1.19485764843328985773141166642, 1.31159222425906887588252531204, 1.32947257237228857215747913886, 1.41000430781501888315337398163, 1.54357111526638499626581584578, 1.71097726028357265924740786756, 1.81475051969689521059017458975, 1.82577363410621954871927974580, 1.90009751478653929533970491088, 1.98050229094656361239537187559

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.