Properties

Label 8-4080e4-1.1-c1e4-0-1
Degree $8$
Conductor $2.771\times 10^{14}$
Sign $1$
Analytic cond. $1.12654\times 10^{6}$
Root an. cond. $5.70779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·9-s + 8·19-s + 8·25-s + 8·29-s + 16·31-s − 24·41-s − 8·45-s + 16·49-s − 16·59-s + 24·61-s − 16·79-s + 3·81-s − 32·89-s + 32·95-s − 24·101-s − 24·109-s + 4·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + 151-s + 64·155-s + ⋯
L(s)  = 1  + 1.78·5-s − 2/3·9-s + 1.83·19-s + 8/5·25-s + 1.48·29-s + 2.87·31-s − 3.74·41-s − 1.19·45-s + 16/7·49-s − 2.08·59-s + 3.07·61-s − 1.80·79-s + 1/3·81-s − 3.39·89-s + 3.28·95-s − 2.38·101-s − 2.29·109-s + 4/11·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 5.14·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(1.12654\times 10^{6}\)
Root analytic conductor: \(5.70779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 17^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1718361109\)
\(L(\frac12)\) \(\approx\) \(0.1718361109\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
19$D_{4}$ \( ( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 48 T^{2} + 1250 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 8 T + 72 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 128 T^{2} + 6738 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 12 T + 94 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6678 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 92 T^{2} + 4278 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 12 T + 104 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 136 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 44 T^{2} + 1542 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 8 T + 168 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 276 T^{2} + 32438 T^{4} - 276 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 16 T + 146 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 124 T^{2} + 8838 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.71615033917889365051271680355, −5.69981809756008738847383342237, −5.66168493836214635226380192685, −5.37436247625350306179736631687, −5.13937244784000361665436975107, −5.13561255662015351067837857613, −4.99450179456941052393743825975, −4.42298613922671301505983586913, −4.39163963409752062781800915277, −4.36172922595048116706620417208, −3.92617311660089698721507968146, −3.74444109631654097981509059312, −3.25779132716824230853886671808, −3.25429604018941805484311855901, −3.06531669101422666275542285758, −2.69200624115798459327207886097, −2.61269823971012573913601631014, −2.49643948346853361644558694936, −2.16291168133642042922214327702, −1.85245462365445737482962103645, −1.41248449617268462384734977436, −1.29585817545417155703813123686, −1.05082387167400933654185443094, −0.928726437205907433432490542839, −0.04578628185703732185850633570, 0.04578628185703732185850633570, 0.928726437205907433432490542839, 1.05082387167400933654185443094, 1.29585817545417155703813123686, 1.41248449617268462384734977436, 1.85245462365445737482962103645, 2.16291168133642042922214327702, 2.49643948346853361644558694936, 2.61269823971012573913601631014, 2.69200624115798459327207886097, 3.06531669101422666275542285758, 3.25429604018941805484311855901, 3.25779132716824230853886671808, 3.74444109631654097981509059312, 3.92617311660089698721507968146, 4.36172922595048116706620417208, 4.39163963409752062781800915277, 4.42298613922671301505983586913, 4.99450179456941052393743825975, 5.13561255662015351067837857613, 5.13937244784000361665436975107, 5.37436247625350306179736631687, 5.66168493836214635226380192685, 5.69981809756008738847383342237, 5.71615033917889365051271680355

Graph of the $Z$-function along the critical line