L(s) = 1 | + 4·5-s − 2·9-s + 8·19-s + 8·25-s + 8·29-s + 16·31-s − 24·41-s − 8·45-s + 16·49-s − 16·59-s + 24·61-s − 16·79-s + 3·81-s − 32·89-s + 32·95-s − 24·101-s − 24·109-s + 4·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s + 32·145-s + 149-s + 151-s + 64·155-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 2/3·9-s + 1.83·19-s + 8/5·25-s + 1.48·29-s + 2.87·31-s − 3.74·41-s − 1.19·45-s + 16/7·49-s − 2.08·59-s + 3.07·61-s − 1.80·79-s + 1/3·81-s − 3.39·89-s + 3.28·95-s − 2.38·101-s − 2.29·109-s + 4/11·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.65·145-s + 0.0819·149-s + 0.0813·151-s + 5.14·155-s + ⋯ |
Λ(s)=(=((216⋅34⋅54⋅174)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((216⋅34⋅54⋅174)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅34⋅54⋅174
|
Sign: |
1
|
Analytic conductor: |
1.12654×106 |
Root analytic conductor: |
5.70779 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅34⋅54⋅174, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1718361109 |
L(21) |
≈ |
0.1718361109 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+T2)2 |
| 5 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 17 | C2 | (1+T2)2 |
good | 7 | C22 | (1−8T2+p2T4)2 |
| 11 | C22 | (1−2T2+p2T4)2 |
| 13 | C2 | (1−4T+pT2)2(1+4T+pT2)2 |
| 19 | D4 | (1−4T+18T2−4pT3+p2T4)2 |
| 23 | D4×C2 | 1−48T2+1250T4−48p2T6+p4T8 |
| 29 | C22 | (1−4T+8T2−4pT3+p2T4)2 |
| 31 | D4 | (1−8T+72T2−8pT3+p2T4)2 |
| 37 | D4×C2 | 1−128T2+6738T4−128p2T6+p4T8 |
| 41 | D4 | (1+12T+94T2+12pT3+p2T4)2 |
| 43 | D4×C2 | 1−116T2+6678T4−116p2T6+p4T8 |
| 47 | C22 | (1−70T2+p2T4)2 |
| 53 | D4×C2 | 1−92T2+4278T4−92p2T6+p4T8 |
| 59 | D4 | (1+8T+38T2+8pT3+p2T4)2 |
| 61 | D4 | (1−12T+104T2−12pT3+p2T4)2 |
| 67 | C22 | (1−118T2+p2T4)2 |
| 71 | C22 | (1+136T2+p2T4)2 |
| 73 | D4×C2 | 1−44T2+1542T4−44p2T6+p4T8 |
| 79 | D4 | (1+8T+168T2+8pT3+p2T4)2 |
| 83 | D4×C2 | 1−276T2+32438T4−276p2T6+p4T8 |
| 89 | D4 | (1+16T+146T2+16pT3+p2T4)2 |
| 97 | D4×C2 | 1−124T2+8838T4−124p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.71615033917889365051271680355, −5.69981809756008738847383342237, −5.66168493836214635226380192685, −5.37436247625350306179736631687, −5.13937244784000361665436975107, −5.13561255662015351067837857613, −4.99450179456941052393743825975, −4.42298613922671301505983586913, −4.39163963409752062781800915277, −4.36172922595048116706620417208, −3.92617311660089698721507968146, −3.74444109631654097981509059312, −3.25779132716824230853886671808, −3.25429604018941805484311855901, −3.06531669101422666275542285758, −2.69200624115798459327207886097, −2.61269823971012573913601631014, −2.49643948346853361644558694936, −2.16291168133642042922214327702, −1.85245462365445737482962103645, −1.41248449617268462384734977436, −1.29585817545417155703813123686, −1.05082387167400933654185443094, −0.928726437205907433432490542839, −0.04578628185703732185850633570,
0.04578628185703732185850633570, 0.928726437205907433432490542839, 1.05082387167400933654185443094, 1.29585817545417155703813123686, 1.41248449617268462384734977436, 1.85245462365445737482962103645, 2.16291168133642042922214327702, 2.49643948346853361644558694936, 2.61269823971012573913601631014, 2.69200624115798459327207886097, 3.06531669101422666275542285758, 3.25429604018941805484311855901, 3.25779132716824230853886671808, 3.74444109631654097981509059312, 3.92617311660089698721507968146, 4.36172922595048116706620417208, 4.39163963409752062781800915277, 4.42298613922671301505983586913, 4.99450179456941052393743825975, 5.13561255662015351067837857613, 5.13937244784000361665436975107, 5.37436247625350306179736631687, 5.66168493836214635226380192685, 5.69981809756008738847383342237, 5.71615033917889365051271680355