L(s) = 1 | + 100·9-s + 456·17-s + 436·25-s − 1.22e3·49-s + 6.04e3·81-s + 7.27e3·113-s − 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4.56e4·153-s + 157-s + 163-s + 167-s + 4.39e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | + 3.70·9-s + 6.50·17-s + 3.48·25-s − 3.58·49-s + 8.28·81-s + 6.05·113-s − 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 24.0·153-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
5.80707×106 |
Root analytic conductor: |
7.00639 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
24.95051920 |
L(21) |
≈ |
24.95051920 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−p3T2)2 |
good | 3 | C22 | (1−50T2+p6T4)2 |
| 5 | C22 | (1−218T2+p6T4)2 |
| 7 | C22 | (1+614T2+p6T4)2 |
| 11 | C2 | (1+p3T2)4 |
| 17 | C2 | (1−114T+p3T2)4 |
| 19 | C2 | (1+p3T2)4 |
| 23 | C2 | (1+p3T2)4 |
| 29 | C2 | (1−p3T2)4 |
| 31 | C22 | (1+27830T2+p6T4)2 |
| 37 | C22 | (1+13894T2+p6T4)2 |
| 41 | C2 | (1−p3T2)4 |
| 43 | C22 | (1−111490T2+p6T4)2 |
| 47 | C22 | (1−128554T2+p6T4)2 |
| 53 | C2 | (1−p3T2)4 |
| 59 | C2 | (1+p3T2)4 |
| 61 | C2 | (1−p3T2)4 |
| 67 | C2 | (1+p3T2)4 |
| 71 | C22 | (1+317990T2+p6T4)2 |
| 73 | C2 | (1−p3T2)4 |
| 79 | C2 | (1+p3T2)4 |
| 83 | C2 | (1+p3T2)4 |
| 89 | C2 | (1−p3T2)4 |
| 97 | C2 | (1−p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.14646700667869170074277343000, −6.77035291564498937452429560165, −6.35664858476086211217166763430, −6.29632250044155556394084103502, −6.24335216661523665124391168182, −5.60739322719269310068746873419, −5.34495591419483886972721416974, −5.21904066203221727610461113217, −5.20263459411241994324494870842, −4.72614439732522367276454308747, −4.58447641022976690460712429427, −4.41179300902422430406136931806, −3.96045027542235399739548356545, −3.68115063138233718562954566666, −3.40514440466808035128478991125, −3.24968231482626736720406780360, −3.03470568824294042616519003515, −2.97981169358095153220363573530, −2.15539189522419466948131426337, −1.81199409212303256734610448942, −1.45257892079413220735776525317, −1.20179157497760076143325757524, −1.13411660648558669153442893813, −0.905278196903914937964373120889, −0.55864329336077472517644823545,
0.55864329336077472517644823545, 0.905278196903914937964373120889, 1.13411660648558669153442893813, 1.20179157497760076143325757524, 1.45257892079413220735776525317, 1.81199409212303256734610448942, 2.15539189522419466948131426337, 2.97981169358095153220363573530, 3.03470568824294042616519003515, 3.24968231482626736720406780360, 3.40514440466808035128478991125, 3.68115063138233718562954566666, 3.96045027542235399739548356545, 4.41179300902422430406136931806, 4.58447641022976690460712429427, 4.72614439732522367276454308747, 5.20263459411241994324494870842, 5.21904066203221727610461113217, 5.34495591419483886972721416974, 5.60739322719269310068746873419, 6.24335216661523665124391168182, 6.29632250044155556394084103502, 6.35664858476086211217166763430, 6.77035291564498937452429560165, 7.14646700667869170074277343000