L(s) = 1 | + 24·3-s + 12·4-s + 360·9-s + 288·12-s + 48·16-s − 180·17-s + 38·23-s + 872·25-s + 4.37e3·27-s + 202·29-s + 4.32e3·36-s − 2.41e3·43-s + 1.15e3·48-s − 1.21e3·49-s − 4.32e3·51-s − 4.38e3·53-s + 2.21e3·61-s − 128·64-s − 2.16e3·68-s + 912·69-s + 2.09e4·75-s − 7.84e3·79-s + 4.49e4·81-s + 4.84e3·87-s + 456·92-s + 1.04e4·100-s + 2.55e3·101-s + ⋯ |
L(s) = 1 | + 4.61·3-s + 3/2·4-s + 40/3·9-s + 6.92·12-s + 3/4·16-s − 2.56·17-s + 0.344·23-s + 6.97·25-s + 31.1·27-s + 1.29·29-s + 20·36-s − 8.54·43-s + 3.46·48-s − 3.53·49-s − 11.8·51-s − 11.3·53-s + 4.65·61-s − 1/4·64-s − 3.85·68-s + 1.59·69-s + 32.2·75-s − 11.1·79-s + 61.6·81-s + 5.97·87-s + 0.516·92-s + 10.4·100-s + 2.51·101-s + ⋯ |
Λ(s)=(=((212⋅1324)s/2ΓC(s)12L(s)Λ(4−s)
Λ(s)=(=((212⋅1324)s/2ΓC(s+3/2)12L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
8.519938782 |
L(21) |
≈ |
8.519938782 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−p2T2+p4T4)3 |
| 13 | 1 |
good | 3 | (1−4pT+4p2T2−26T3+376pT4−272p3T5+22687T6−272p6T7+376p7T8−26p9T9+4p14T10−4p16T11+p18T12)2 |
| 5 | (1−436T2+103056T4−15453889T6+103056p6T8−436p12T10+p18T12)2 |
| 7 | 1+1213T2+846032T4+44311205pT6+45548573507T8−21505406726124T10−12859398267661623T12−21505406726124p6T14+45548573507p12T16+44311205p19T18+846032p24T20+1213p30T22+p36T24 |
| 11 | 1+2940T2+5572564T4+4606009814T6−2510834452120T8−15971978573781272T10−27825171402513079525T12−15971978573781272p6T14−2510834452120p12T16+4606009814p18T18+5572564p24T20+2940p30T22+p36T24 |
| 17 | (1+90T−5468T2−393226T3+44785470T4+1125379354T5−211247539689T6+1125379354p3T7+44785470p6T8−393226p9T9−5468p12T10+90p15T11+p18T12)2 |
| 19 | 1+15916T2+202761708T4+1133695405670T6+2795908662819632T8−48803075506997114688T10−44⋯57T12−48803075506997114688p6T14+2795908662819632p12T16+1133695405670p18T18+202761708p24T20+15916p30T22+p36T24 |
| 23 | (1−19T−17379T2+1795946T3+78601463T4−13530427071T5+857245646806T6−13530427071p3T7+78601463p6T8+1795946p9T9−17379p12T10−19p15T11+p18T12)2 |
| 29 | (1−101T+9670T2+2392827T3−136214727T4−58110677102T5+24435911693829T6−58110677102p3T7−136214727p6T8+2392827p9T9+9670p12T10−101p15T11+p18T12)2 |
| 31 | (1−67693T2+2813159873T4−88764051088713T6+2813159873p6T8−67693p12T10+p18T12)2 |
| 37 | 1+289120T2+48092940392T4+5518178251433198T6+48⋯72T8+33⋯88T10+18⋯43T12+33⋯88p6T14+48⋯72p12T16+5518178251433198p18T18+48092940392p24T20+289120p30T22+p36T24 |
| 41 | 1+72459T2−2942996285T4−784013353069900T6−21701918099899481623T8+16⋯73T10+25⋯94T12+16⋯73p6T14−21701918099899481623p12T16−784013353069900p18T18−2942996285p24T20+72459p30T22+p36T24 |
| 43 | (1+1205T+731136T2+357194599T3+154200549383T4+53845297050762T5+15910224576330043T6+53845297050762p3T7+154200549383p6T8+357194599p9T9+731136p12T10+1205p15T11+p18T12)2 |
| 47 | (1−184924T2+13473005240T4−366518815821141T6+13473005240p6T8−184924p12T10+p18T12)2 |
| 53 | (1+1095T+839313T2+371911379T3+839313p3T4+1095p6T5+p9T6)4 |
| 59 | 1+412807T2+70300999051T4+4687605950834692T6−17⋯43T8−91⋯79T10−24⋯82T12−91⋯79p6T14−17⋯43p12T16+4687605950834692p18T18+70300999051p24T20+412807p30T22+p36T24 |
| 61 | (1−1108T+195280T2−81146578T3+242730039476T4−86381104403572T5+569801340677051T6−86381104403572p3T7+242730039476p6T8−81146578p9T9+195280p12T10−1108p15T11+p18T12)2 |
| 67 | 1+754705T2+248140267820T4+44550675395447459T6−48⋯85T8−58⋯80T10−27⋯43T12−58⋯80p6T14−48⋯85p12T16+44550675395447459p18T18+248140267820p24T20+754705p30T22+p36T24 |
| 71 | 1+1203945T2+861630964656T4+299768879179299207T6+24⋯07T8−41⋯84T10−22⋯83T12−41⋯84p6T14+24⋯07p12T16+299768879179299207p18T18+861630964656p24T20+1203945p30T22+p36T24 |
| 73 | (1−578397T2+340509020657T4−175733770047454529T6+340509020657p6T8−578397p12T10+p18T12)2 |
| 79 | (1+1961T+2641773T2+2147763857T3+2641773p3T4+1961p6T5+p9T6)4 |
| 83 | (1−3126181T2+4236994280213T4−3174148229464390881T6+4236994280213p6T8−3126181p12T10+p18T12)2 |
| 89 | 1+3632513T2+7360263332404T4+10561614224132377739T6+11⋯71T8+10⋯28T10+83⋯97T12+10⋯28p6T14+11⋯71p12T16+10561614224132377739p18T18+7360263332404p24T20+3632513p30T22+p36T24 |
| 97 | 1+3266797T2+5378593419936T4+5916317576309886611T6+50⋯67T8+35⋯84T10+27⋯93T12+35⋯84p6T14+50⋯67p12T16+5916317576309886611p18T18+5378593419936p24T20+3266797p30T22+p36T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.26497898307573854396602347696, −3.25961829442592949411396701286, −3.03000248180092872780894719604, −2.98532768305944774114661758752, −2.98105278733210415336166583976, −2.96739015943463796250869315628, −2.71646049329439524874690439539, −2.59856449349083383252209087232, −2.57754250324296734544808974412, −2.51670539696914686524641413787, −2.30101256485813820157234829878, −2.12550085636595206337915687446, −1.85387196551216425189324708488, −1.69789291561701999109720965013, −1.68115457801384361916567776499, −1.57672033931221252196939285676, −1.52852970341677321894936732830, −1.33230835016512939445078442583, −1.32575760091362613998215881256, −1.30188328656520887090271364335, −1.23486323533708843593078024304, −0.72501828456551874048616655719, −0.52383535353422078080396923563, −0.15867713882680696411996591993, −0.07303609752524847649026298262,
0.07303609752524847649026298262, 0.15867713882680696411996591993, 0.52383535353422078080396923563, 0.72501828456551874048616655719, 1.23486323533708843593078024304, 1.30188328656520887090271364335, 1.32575760091362613998215881256, 1.33230835016512939445078442583, 1.52852970341677321894936732830, 1.57672033931221252196939285676, 1.68115457801384361916567776499, 1.69789291561701999109720965013, 1.85387196551216425189324708488, 2.12550085636595206337915687446, 2.30101256485813820157234829878, 2.51670539696914686524641413787, 2.57754250324296734544808974412, 2.59856449349083383252209087232, 2.71646049329439524874690439539, 2.96739015943463796250869315628, 2.98105278733210415336166583976, 2.98532768305944774114661758752, 3.03000248180092872780894719604, 3.25961829442592949411396701286, 3.26497898307573854396602347696
Plot not available for L-functions of degree greater than 10.