Properties

Label 1000.2.d.c.501.10
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.10
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23486 + 0.689292i) q^{2} +2.52102i q^{3} +(1.04975 - 1.70236i) q^{4} +(-1.73772 - 3.11311i) q^{6} +0.987050 q^{7} +(-0.122873 + 2.82576i) q^{8} -3.35556 q^{9} +2.58742i q^{11} +(4.29168 + 2.64645i) q^{12} +3.40597i q^{13} +(-1.21887 + 0.680366i) q^{14} +(-1.79604 - 3.57411i) q^{16} +6.42173 q^{17} +(4.14364 - 2.31296i) q^{18} -2.95990i q^{19} +2.48838i q^{21} +(-1.78349 - 3.19510i) q^{22} -3.90476 q^{23} +(-7.12380 - 0.309766i) q^{24} +(-2.34771 - 4.20590i) q^{26} -0.896380i q^{27} +(1.03616 - 1.68031i) q^{28} +5.52423i q^{29} -1.53121 q^{31} +(4.68146 + 3.17552i) q^{32} -6.52296 q^{33} +(-7.92993 + 4.42645i) q^{34} +(-3.52251 + 5.71237i) q^{36} +8.80977i q^{37} +(2.04024 + 3.65506i) q^{38} -8.58654 q^{39} +10.8421 q^{41} +(-1.71522 - 3.07279i) q^{42} -1.76479i q^{43} +(4.40472 + 2.71615i) q^{44} +(4.82183 - 2.69152i) q^{46} -13.3842 q^{47} +(9.01041 - 4.52787i) q^{48} -6.02573 q^{49} +16.1893i q^{51} +(5.79819 + 3.57543i) q^{52} +4.36357i q^{53} +(0.617868 + 1.10690i) q^{54} +(-0.121282 + 2.78916i) q^{56} +7.46198 q^{57} +(-3.80781 - 6.82164i) q^{58} +7.09201i q^{59} -6.56276i q^{61} +(1.89083 - 1.05545i) q^{62} -3.31211 q^{63} +(-7.96980 - 0.694419i) q^{64} +(8.05493 - 4.49622i) q^{66} -13.1309i q^{67} +(6.74123 - 10.9321i) q^{68} -9.84401i q^{69} +5.68370 q^{71} +(0.412308 - 9.48200i) q^{72} -12.9136 q^{73} +(-6.07251 - 10.8788i) q^{74} +(-5.03881 - 3.10716i) q^{76} +2.55392i q^{77} +(10.6032 - 5.91864i) q^{78} -0.0125371 q^{79} -7.80689 q^{81} +(-13.3884 + 7.47336i) q^{82} -1.90681i q^{83} +(4.23611 + 2.61218i) q^{84} +(1.21646 + 2.17927i) q^{86} -13.9267 q^{87} +(-7.31143 - 0.317925i) q^{88} +4.82356 q^{89} +3.36187i q^{91} +(-4.09903 + 6.64731i) q^{92} -3.86023i q^{93} +(16.5277 - 9.22566i) q^{94} +(-8.00556 + 11.8021i) q^{96} +7.44702 q^{97} +(7.44093 - 4.15349i) q^{98} -8.68226i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64}+ \cdots + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23486 + 0.689292i −0.873177 + 0.487403i
\(3\) 2.52102i 1.45551i 0.685835 + 0.727757i \(0.259437\pi\)
−0.685835 + 0.727757i \(0.740563\pi\)
\(4\) 1.04975 1.70236i 0.524876 0.851179i
\(5\) 0 0
\(6\) −1.73772 3.11311i −0.709422 1.27092i
\(7\) 0.987050 0.373070 0.186535 0.982448i \(-0.440274\pi\)
0.186535 + 0.982448i \(0.440274\pi\)
\(8\) −0.122873 + 2.82576i −0.0434422 + 0.999056i
\(9\) −3.35556 −1.11852
\(10\) 0 0
\(11\) 2.58742i 0.780138i 0.920786 + 0.390069i \(0.127549\pi\)
−0.920786 + 0.390069i \(0.872451\pi\)
\(12\) 4.29168 + 2.64645i 1.23890 + 0.763964i
\(13\) 3.40597i 0.944647i 0.881425 + 0.472324i \(0.156585\pi\)
−0.881425 + 0.472324i \(0.843415\pi\)
\(14\) −1.21887 + 0.680366i −0.325756 + 0.181835i
\(15\) 0 0
\(16\) −1.79604 3.57411i −0.449011 0.893526i
\(17\) 6.42173 1.55750 0.778750 0.627335i \(-0.215854\pi\)
0.778750 + 0.627335i \(0.215854\pi\)
\(18\) 4.14364 2.31296i 0.976666 0.545171i
\(19\) 2.95990i 0.679048i −0.940597 0.339524i \(-0.889734\pi\)
0.940597 0.339524i \(-0.110266\pi\)
\(20\) 0 0
\(21\) 2.48838i 0.543008i
\(22\) −1.78349 3.19510i −0.380242 0.681198i
\(23\) −3.90476 −0.814200 −0.407100 0.913384i \(-0.633460\pi\)
−0.407100 + 0.913384i \(0.633460\pi\)
\(24\) −7.12380 0.309766i −1.45414 0.0632307i
\(25\) 0 0
\(26\) −2.34771 4.20590i −0.460424 0.824844i
\(27\) 0.896380i 0.172508i
\(28\) 1.03616 1.68031i 0.195815 0.317549i
\(29\) 5.52423i 1.02582i 0.858441 + 0.512912i \(0.171433\pi\)
−0.858441 + 0.512912i \(0.828567\pi\)
\(30\) 0 0
\(31\) −1.53121 −0.275014 −0.137507 0.990501i \(-0.543909\pi\)
−0.137507 + 0.990501i \(0.543909\pi\)
\(32\) 4.68146 + 3.17552i 0.827573 + 0.561357i
\(33\) −6.52296 −1.13550
\(34\) −7.92993 + 4.42645i −1.35997 + 0.759130i
\(35\) 0 0
\(36\) −3.52251 + 5.71237i −0.587085 + 0.952061i
\(37\) 8.80977i 1.44832i 0.689634 + 0.724158i \(0.257772\pi\)
−0.689634 + 0.724158i \(0.742228\pi\)
\(38\) 2.04024 + 3.65506i 0.330970 + 0.592929i
\(39\) −8.58654 −1.37495
\(40\) 0 0
\(41\) 10.8421 1.69325 0.846624 0.532191i \(-0.178631\pi\)
0.846624 + 0.532191i \(0.178631\pi\)
\(42\) −1.71522 3.07279i −0.264664 0.474142i
\(43\) 1.76479i 0.269128i −0.990905 0.134564i \(-0.957037\pi\)
0.990905 0.134564i \(-0.0429634\pi\)
\(44\) 4.40472 + 2.71615i 0.664036 + 0.409475i
\(45\) 0 0
\(46\) 4.82183 2.69152i 0.710940 0.396844i
\(47\) −13.3842 −1.95229 −0.976146 0.217113i \(-0.930336\pi\)
−0.976146 + 0.217113i \(0.930336\pi\)
\(48\) 9.01041 4.52787i 1.30054 0.653541i
\(49\) −6.02573 −0.860819
\(50\) 0 0
\(51\) 16.1893i 2.26696i
\(52\) 5.79819 + 3.57543i 0.804064 + 0.495823i
\(53\) 4.36357i 0.599383i 0.954036 + 0.299691i \(0.0968837\pi\)
−0.954036 + 0.299691i \(0.903116\pi\)
\(54\) 0.617868 + 1.10690i 0.0840812 + 0.150630i
\(55\) 0 0
\(56\) −0.121282 + 2.78916i −0.0162070 + 0.372718i
\(57\) 7.46198 0.988364
\(58\) −3.80781 6.82164i −0.499990 0.895725i
\(59\) 7.09201i 0.923301i 0.887062 + 0.461651i \(0.152743\pi\)
−0.887062 + 0.461651i \(0.847257\pi\)
\(60\) 0 0
\(61\) 6.56276i 0.840275i −0.907460 0.420138i \(-0.861982\pi\)
0.907460 0.420138i \(-0.138018\pi\)
\(62\) 1.89083 1.05545i 0.240136 0.134043i
\(63\) −3.31211 −0.417286
\(64\) −7.96980 0.694419i −0.996226 0.0868023i
\(65\) 0 0
\(66\) 8.05493 4.49622i 0.991493 0.553447i
\(67\) 13.1309i 1.60419i −0.597195 0.802096i \(-0.703718\pi\)
0.597195 0.802096i \(-0.296282\pi\)
\(68\) 6.74123 10.9321i 0.817494 1.32571i
\(69\) 9.84401i 1.18508i
\(70\) 0 0
\(71\) 5.68370 0.674531 0.337265 0.941410i \(-0.390498\pi\)
0.337265 + 0.941410i \(0.390498\pi\)
\(72\) 0.412308 9.48200i 0.0485910 1.11746i
\(73\) −12.9136 −1.51143 −0.755713 0.654903i \(-0.772710\pi\)
−0.755713 + 0.654903i \(0.772710\pi\)
\(74\) −6.07251 10.8788i −0.705914 1.26464i
\(75\) 0 0
\(76\) −5.03881 3.10716i −0.577991 0.356416i
\(77\) 2.55392i 0.291046i
\(78\) 10.6032 5.91864i 1.20057 0.670154i
\(79\) −0.0125371 −0.00141054 −0.000705269 1.00000i \(-0.500224\pi\)
−0.000705269 1.00000i \(0.500224\pi\)
\(80\) 0 0
\(81\) −7.80689 −0.867432
\(82\) −13.3884 + 7.47336i −1.47851 + 0.825295i
\(83\) 1.90681i 0.209300i −0.994509 0.104650i \(-0.966628\pi\)
0.994509 0.104650i \(-0.0333722\pi\)
\(84\) 4.23611 + 2.61218i 0.462197 + 0.285012i
\(85\) 0 0
\(86\) 1.21646 + 2.17927i 0.131174 + 0.234997i
\(87\) −13.9267 −1.49310
\(88\) −7.31143 0.317925i −0.779401 0.0338909i
\(89\) 4.82356 0.511296 0.255648 0.966770i \(-0.417711\pi\)
0.255648 + 0.966770i \(0.417711\pi\)
\(90\) 0 0
\(91\) 3.36187i 0.352419i
\(92\) −4.09903 + 6.64731i −0.427354 + 0.693029i
\(93\) 3.86023i 0.400287i
\(94\) 16.5277 9.22566i 1.70470 0.951554i
\(95\) 0 0
\(96\) −8.00556 + 11.8021i −0.817064 + 1.20454i
\(97\) 7.44702 0.756131 0.378065 0.925779i \(-0.376589\pi\)
0.378065 + 0.925779i \(0.376589\pi\)
\(98\) 7.44093 4.15349i 0.751647 0.419566i
\(99\) 8.68226i 0.872600i
\(100\) 0 0
\(101\) 16.8836i 1.67998i −0.542603 0.839989i \(-0.682561\pi\)
0.542603 0.839989i \(-0.317439\pi\)
\(102\) −11.1592 19.9916i −1.10492 1.97946i
\(103\) −14.7696 −1.45529 −0.727645 0.685954i \(-0.759385\pi\)
−0.727645 + 0.685954i \(0.759385\pi\)
\(104\) −9.62446 0.418502i −0.943756 0.0410375i
\(105\) 0 0
\(106\) −3.00778 5.38839i −0.292141 0.523367i
\(107\) 8.58598i 0.830038i 0.909813 + 0.415019i \(0.136225\pi\)
−0.909813 + 0.415019i \(0.863775\pi\)
\(108\) −1.52596 0.940977i −0.146836 0.0905455i
\(109\) 7.49133i 0.717539i −0.933426 0.358769i \(-0.883196\pi\)
0.933426 0.358769i \(-0.116804\pi\)
\(110\) 0 0
\(111\) −22.2096 −2.10805
\(112\) −1.77278 3.52782i −0.167512 0.333348i
\(113\) 14.3254 1.34762 0.673810 0.738905i \(-0.264657\pi\)
0.673810 + 0.738905i \(0.264657\pi\)
\(114\) −9.21450 + 5.14349i −0.863017 + 0.481732i
\(115\) 0 0
\(116\) 9.40421 + 5.79907i 0.873159 + 0.538430i
\(117\) 11.4290i 1.05661i
\(118\) −4.88847 8.75763i −0.450020 0.806205i
\(119\) 6.33857 0.581056
\(120\) 0 0
\(121\) 4.30524 0.391385
\(122\) 4.52366 + 8.10408i 0.409553 + 0.733709i
\(123\) 27.3331i 2.46455i
\(124\) −1.60740 + 2.60667i −0.144348 + 0.234086i
\(125\) 0 0
\(126\) 4.08998 2.28301i 0.364365 0.203387i
\(127\) 7.49354 0.664944 0.332472 0.943113i \(-0.392117\pi\)
0.332472 + 0.943113i \(0.392117\pi\)
\(128\) 10.3202 4.63602i 0.912189 0.409770i
\(129\) 4.44908 0.391720
\(130\) 0 0
\(131\) 9.24629i 0.807852i −0.914792 0.403926i \(-0.867645\pi\)
0.914792 0.403926i \(-0.132355\pi\)
\(132\) −6.84749 + 11.1044i −0.595997 + 0.966514i
\(133\) 2.92157i 0.253332i
\(134\) 9.05101 + 16.2148i 0.781888 + 1.40074i
\(135\) 0 0
\(136\) −0.789058 + 18.1463i −0.0676611 + 1.55603i
\(137\) −11.4199 −0.975669 −0.487835 0.872936i \(-0.662213\pi\)
−0.487835 + 0.872936i \(0.662213\pi\)
\(138\) 6.78540 + 12.1560i 0.577611 + 1.03478i
\(139\) 20.7292i 1.75823i 0.476614 + 0.879113i \(0.341864\pi\)
−0.476614 + 0.879113i \(0.658136\pi\)
\(140\) 0 0
\(141\) 33.7420i 2.84159i
\(142\) −7.01856 + 3.91773i −0.588985 + 0.328769i
\(143\) −8.81270 −0.736955
\(144\) 6.02673 + 11.9931i 0.502228 + 0.999428i
\(145\) 0 0
\(146\) 15.9465 8.90127i 1.31974 0.736674i
\(147\) 15.1910i 1.25293i
\(148\) 14.9974 + 9.24807i 1.23278 + 0.760187i
\(149\) 16.0809i 1.31740i 0.752405 + 0.658701i \(0.228894\pi\)
−0.752405 + 0.658701i \(0.771106\pi\)
\(150\) 0 0
\(151\) −11.3444 −0.923193 −0.461597 0.887090i \(-0.652723\pi\)
−0.461597 + 0.887090i \(0.652723\pi\)
\(152\) 8.36396 + 0.363692i 0.678407 + 0.0294993i
\(153\) −21.5485 −1.74209
\(154\) −1.76039 3.15372i −0.141857 0.254134i
\(155\) 0 0
\(156\) −9.01374 + 14.6174i −0.721677 + 1.17033i
\(157\) 3.42796i 0.273581i 0.990600 + 0.136790i \(0.0436787\pi\)
−0.990600 + 0.136790i \(0.956321\pi\)
\(158\) 0.0154816 0.00864175i 0.00123165 0.000687501i
\(159\) −11.0007 −0.872410
\(160\) 0 0
\(161\) −3.85420 −0.303753
\(162\) 9.64041 5.38123i 0.757422 0.422789i
\(163\) 5.39025i 0.422197i −0.977465 0.211098i \(-0.932296\pi\)
0.977465 0.211098i \(-0.0677040\pi\)
\(164\) 11.3815 18.4571i 0.888745 1.44126i
\(165\) 0 0
\(166\) 1.31435 + 2.35465i 0.102014 + 0.182756i
\(167\) 10.1776 0.787565 0.393783 0.919204i \(-0.371166\pi\)
0.393783 + 0.919204i \(0.371166\pi\)
\(168\) −7.03155 0.305754i −0.542496 0.0235895i
\(169\) 1.39934 0.107641
\(170\) 0 0
\(171\) 9.93213i 0.759529i
\(172\) −3.00431 1.85259i −0.229076 0.141259i
\(173\) 16.4630i 1.25166i 0.779960 + 0.625829i \(0.215239\pi\)
−0.779960 + 0.625829i \(0.784761\pi\)
\(174\) 17.1975 9.59957i 1.30374 0.727742i
\(175\) 0 0
\(176\) 9.24773 4.64712i 0.697074 0.350290i
\(177\) −17.8791 −1.34388
\(178\) −5.95642 + 3.32484i −0.446452 + 0.249208i
\(179\) 5.76554i 0.430937i −0.976511 0.215468i \(-0.930872\pi\)
0.976511 0.215468i \(-0.0691278\pi\)
\(180\) 0 0
\(181\) 7.40362i 0.550307i −0.961400 0.275153i \(-0.911271\pi\)
0.961400 0.275153i \(-0.0887286\pi\)
\(182\) −2.31731 4.15143i −0.171770 0.307724i
\(183\) 16.5449 1.22303
\(184\) 0.479790 11.0339i 0.0353706 0.813431i
\(185\) 0 0
\(186\) 2.66083 + 4.76684i 0.195101 + 0.349521i
\(187\) 16.6157i 1.21506i
\(188\) −14.0501 + 22.7848i −1.02471 + 1.66175i
\(189\) 0.884772i 0.0643577i
\(190\) 0 0
\(191\) −9.94899 −0.719884 −0.359942 0.932975i \(-0.617203\pi\)
−0.359942 + 0.932975i \(0.617203\pi\)
\(192\) 1.75065 20.0921i 0.126342 1.45002i
\(193\) 1.49517 0.107625 0.0538124 0.998551i \(-0.482863\pi\)
0.0538124 + 0.998551i \(0.482863\pi\)
\(194\) −9.19602 + 5.13318i −0.660236 + 0.368541i
\(195\) 0 0
\(196\) −6.32552 + 10.2580i −0.451823 + 0.732711i
\(197\) 0.630014i 0.0448867i −0.999748 0.0224433i \(-0.992855\pi\)
0.999748 0.0224433i \(-0.00714454\pi\)
\(198\) 5.98462 + 10.7214i 0.425308 + 0.761934i
\(199\) 22.1737 1.57185 0.785927 0.618319i \(-0.212186\pi\)
0.785927 + 0.618319i \(0.212186\pi\)
\(200\) 0 0
\(201\) 33.1032 2.33492
\(202\) 11.6377 + 20.8488i 0.818827 + 1.46692i
\(203\) 5.45269i 0.382704i
\(204\) 27.5601 + 16.9948i 1.92959 + 1.18987i
\(205\) 0 0
\(206\) 18.2383 10.1806i 1.27073 0.709313i
\(207\) 13.1027 0.910699
\(208\) 12.1733 6.11727i 0.844067 0.424157i
\(209\) 7.65852 0.529751
\(210\) 0 0
\(211\) 4.10000i 0.282256i 0.989991 + 0.141128i \(0.0450728\pi\)
−0.989991 + 0.141128i \(0.954927\pi\)
\(212\) 7.42836 + 4.58067i 0.510182 + 0.314601i
\(213\) 14.3287i 0.981789i
\(214\) −5.91825 10.6025i −0.404563 0.724770i
\(215\) 0 0
\(216\) 2.53295 + 0.110141i 0.172346 + 0.00749414i
\(217\) −1.51138 −0.102599
\(218\) 5.16371 + 9.25073i 0.349731 + 0.626538i
\(219\) 32.5556i 2.19990i
\(220\) 0 0
\(221\) 21.8723i 1.47129i
\(222\) 27.4258 15.3089i 1.84070 1.02747i
\(223\) −6.67042 −0.446684 −0.223342 0.974740i \(-0.571697\pi\)
−0.223342 + 0.974740i \(0.571697\pi\)
\(224\) 4.62084 + 3.13439i 0.308743 + 0.209425i
\(225\) 0 0
\(226\) −17.6898 + 9.87438i −1.17671 + 0.656834i
\(227\) 19.0966i 1.26749i 0.773544 + 0.633743i \(0.218482\pi\)
−0.773544 + 0.633743i \(0.781518\pi\)
\(228\) 7.83323 12.7030i 0.518768 0.841274i
\(229\) 0.468986i 0.0309914i 0.999880 + 0.0154957i \(0.00493264\pi\)
−0.999880 + 0.0154957i \(0.995067\pi\)
\(230\) 0 0
\(231\) −6.43848 −0.423621
\(232\) −15.6101 0.678778i −1.02485 0.0445640i
\(233\) 13.5809 0.889711 0.444856 0.895602i \(-0.353255\pi\)
0.444856 + 0.895602i \(0.353255\pi\)
\(234\) 7.87789 + 14.1131i 0.514994 + 0.922605i
\(235\) 0 0
\(236\) 12.0731 + 7.44485i 0.785894 + 0.484619i
\(237\) 0.0316064i 0.00205306i
\(238\) −7.82724 + 4.36913i −0.507365 + 0.283209i
\(239\) 26.5090 1.71473 0.857363 0.514712i \(-0.172101\pi\)
0.857363 + 0.514712i \(0.172101\pi\)
\(240\) 0 0
\(241\) −16.9199 −1.08991 −0.544953 0.838466i \(-0.683453\pi\)
−0.544953 + 0.838466i \(0.683453\pi\)
\(242\) −5.31636 + 2.96757i −0.341749 + 0.190763i
\(243\) 22.3705i 1.43507i
\(244\) −11.1722 6.88927i −0.715225 0.441040i
\(245\) 0 0
\(246\) −18.8405 33.7526i −1.20123 2.15199i
\(247\) 10.0814 0.641461
\(248\) 0.188145 4.32684i 0.0119472 0.274755i
\(249\) 4.80712 0.304639
\(250\) 0 0
\(251\) 29.8442i 1.88375i 0.335963 + 0.941875i \(0.390938\pi\)
−0.335963 + 0.941875i \(0.609062\pi\)
\(252\) −3.47689 + 5.63839i −0.219023 + 0.355185i
\(253\) 10.1033i 0.635188i
\(254\) −9.25346 + 5.16524i −0.580614 + 0.324096i
\(255\) 0 0
\(256\) −9.54847 + 12.8385i −0.596779 + 0.802406i
\(257\) −3.16940 −0.197702 −0.0988508 0.995102i \(-0.531517\pi\)
−0.0988508 + 0.995102i \(0.531517\pi\)
\(258\) −5.49399 + 3.06672i −0.342041 + 0.190926i
\(259\) 8.69568i 0.540323i
\(260\) 0 0
\(261\) 18.5369i 1.14740i
\(262\) 6.37340 + 11.4179i 0.393750 + 0.705398i
\(263\) 1.43272 0.0883452 0.0441726 0.999024i \(-0.485935\pi\)
0.0441726 + 0.999024i \(0.485935\pi\)
\(264\) 0.801495 18.4323i 0.0493286 1.13443i
\(265\) 0 0
\(266\) 2.01382 + 3.60773i 0.123475 + 0.221204i
\(267\) 12.1603i 0.744199i
\(268\) −22.3534 13.7842i −1.36545 0.842002i
\(269\) 13.8639i 0.845295i 0.906294 + 0.422648i \(0.138899\pi\)
−0.906294 + 0.422648i \(0.861101\pi\)
\(270\) 0 0
\(271\) 13.5926 0.825689 0.412845 0.910802i \(-0.364535\pi\)
0.412845 + 0.910802i \(0.364535\pi\)
\(272\) −11.5337 22.9520i −0.699334 1.39167i
\(273\) −8.47535 −0.512951
\(274\) 14.1020 7.87166i 0.851932 0.475544i
\(275\) 0 0
\(276\) −16.7580 10.3338i −1.00871 0.622019i
\(277\) 15.3660i 0.923252i −0.887075 0.461626i \(-0.847266\pi\)
0.887075 0.461626i \(-0.152734\pi\)
\(278\) −14.2885 25.5976i −0.856965 1.53524i
\(279\) 5.13809 0.307609
\(280\) 0 0
\(281\) 29.9045 1.78395 0.891976 0.452082i \(-0.149319\pi\)
0.891976 + 0.452082i \(0.149319\pi\)
\(282\) 23.2581 + 41.6666i 1.38500 + 2.48121i
\(283\) 8.39203i 0.498855i −0.968394 0.249427i \(-0.919758\pi\)
0.968394 0.249427i \(-0.0802424\pi\)
\(284\) 5.96647 9.67568i 0.354045 0.574146i
\(285\) 0 0
\(286\) 10.8824 6.07453i 0.643492 0.359194i
\(287\) 10.7017 0.631700
\(288\) −15.7089 10.6556i −0.925658 0.627890i
\(289\) 24.2387 1.42580
\(290\) 0 0
\(291\) 18.7741i 1.10056i
\(292\) −13.5561 + 21.9836i −0.793311 + 1.28649i
\(293\) 17.3090i 1.01120i −0.862767 0.505602i \(-0.831271\pi\)
0.862767 0.505602i \(-0.168729\pi\)
\(294\) 10.4711 + 18.7588i 0.610684 + 1.09403i
\(295\) 0 0
\(296\) −24.8943 1.08248i −1.44695 0.0629180i
\(297\) 2.31931 0.134580
\(298\) −11.0845 19.8577i −0.642106 1.15033i
\(299\) 13.2995i 0.769132i
\(300\) 0 0
\(301\) 1.74194i 0.100404i
\(302\) 14.0087 7.81960i 0.806111 0.449967i
\(303\) 42.5639 2.44523
\(304\) −10.5790 + 5.31611i −0.606747 + 0.304900i
\(305\) 0 0
\(306\) 26.6094 14.8532i 1.52116 0.849103i
\(307\) 6.86621i 0.391875i −0.980616 0.195938i \(-0.937225\pi\)
0.980616 0.195938i \(-0.0627750\pi\)
\(308\) 4.34768 + 2.68098i 0.247732 + 0.152763i
\(309\) 37.2345i 2.11819i
\(310\) 0 0
\(311\) 16.2362 0.920669 0.460335 0.887745i \(-0.347729\pi\)
0.460335 + 0.887745i \(0.347729\pi\)
\(312\) 1.05505 24.2635i 0.0597307 1.37365i
\(313\) 23.2770 1.31570 0.657848 0.753151i \(-0.271467\pi\)
0.657848 + 0.753151i \(0.271467\pi\)
\(314\) −2.36286 4.23304i −0.133344 0.238884i
\(315\) 0 0
\(316\) −0.0131609 + 0.0213427i −0.000740357 + 0.00120062i
\(317\) 10.9755i 0.616444i −0.951314 0.308222i \(-0.900266\pi\)
0.951314 0.308222i \(-0.0997340\pi\)
\(318\) 13.5843 7.58268i 0.761768 0.425215i
\(319\) −14.2935 −0.800283
\(320\) 0 0
\(321\) −21.6455 −1.20813
\(322\) 4.75939 2.65667i 0.265230 0.148050i
\(323\) 19.0077i 1.05762i
\(324\) −8.19530 + 13.2901i −0.455294 + 0.738340i
\(325\) 0 0
\(326\) 3.71546 + 6.65619i 0.205780 + 0.368652i
\(327\) 18.8858 1.04439
\(328\) −1.33220 + 30.6371i −0.0735584 + 1.69165i
\(329\) −13.2109 −0.728341
\(330\) 0 0
\(331\) 8.51210i 0.467867i 0.972253 + 0.233934i \(0.0751599\pi\)
−0.972253 + 0.233934i \(0.924840\pi\)
\(332\) −3.24608 2.00168i −0.178152 0.109857i
\(333\) 29.5617i 1.61997i
\(334\) −12.5679 + 7.01533i −0.687684 + 0.383862i
\(335\) 0 0
\(336\) 8.89372 4.46923i 0.485192 0.243816i
\(337\) 7.85182 0.427716 0.213858 0.976865i \(-0.431397\pi\)
0.213858 + 0.976865i \(0.431397\pi\)
\(338\) −1.72798 + 0.964552i −0.0939899 + 0.0524647i
\(339\) 36.1147i 1.96148i
\(340\) 0 0
\(341\) 3.96190i 0.214549i
\(342\) −6.84615 12.2648i −0.370197 0.663203i
\(343\) −12.8570 −0.694215
\(344\) 4.98687 + 0.216845i 0.268874 + 0.0116915i
\(345\) 0 0
\(346\) −11.3478 20.3295i −0.610063 1.09292i
\(347\) 8.69959i 0.467019i −0.972355 0.233509i \(-0.924979\pi\)
0.972355 0.233509i \(-0.0750209\pi\)
\(348\) −14.6196 + 23.7082i −0.783692 + 1.27089i
\(349\) 28.3837i 1.51934i 0.650307 + 0.759671i \(0.274640\pi\)
−0.650307 + 0.759671i \(0.725360\pi\)
\(350\) 0 0
\(351\) 3.05305 0.162960
\(352\) −8.21641 + 12.1129i −0.437936 + 0.645621i
\(353\) −0.481597 −0.0256328 −0.0128164 0.999918i \(-0.504080\pi\)
−0.0128164 + 0.999918i \(0.504080\pi\)
\(354\) 22.0782 12.3239i 1.17344 0.655010i
\(355\) 0 0
\(356\) 5.06354 8.21143i 0.268367 0.435205i
\(357\) 15.9797i 0.845735i
\(358\) 3.97414 + 7.11963i 0.210040 + 0.376284i
\(359\) −25.7634 −1.35974 −0.679871 0.733332i \(-0.737964\pi\)
−0.679871 + 0.733332i \(0.737964\pi\)
\(360\) 0 0
\(361\) 10.2390 0.538894
\(362\) 5.10326 + 9.14242i 0.268221 + 0.480515i
\(363\) 10.8536i 0.569667i
\(364\) 5.72310 + 3.52913i 0.299972 + 0.184976i
\(365\) 0 0
\(366\) −20.4306 + 11.4043i −1.06792 + 0.596110i
\(367\) 33.5522 1.75141 0.875705 0.482846i \(-0.160397\pi\)
0.875705 + 0.482846i \(0.160397\pi\)
\(368\) 7.01312 + 13.9560i 0.365584 + 0.727509i
\(369\) −36.3813 −1.89393
\(370\) 0 0
\(371\) 4.30706i 0.223611i
\(372\) −6.57149 4.05228i −0.340716 0.210101i
\(373\) 1.98369i 0.102712i −0.998680 0.0513558i \(-0.983646\pi\)
0.998680 0.0513558i \(-0.0163542\pi\)
\(374\) −11.4531 20.5181i −0.592226 1.06097i
\(375\) 0 0
\(376\) 1.64456 37.8206i 0.0848118 1.95045i
\(377\) −18.8154 −0.969041
\(378\) 0.609866 + 1.09257i 0.0313681 + 0.0561956i
\(379\) 7.87441i 0.404481i 0.979336 + 0.202241i \(0.0648223\pi\)
−0.979336 + 0.202241i \(0.935178\pi\)
\(380\) 0 0
\(381\) 18.8914i 0.967836i
\(382\) 12.2856 6.85776i 0.628586 0.350874i
\(383\) −18.3989 −0.940140 −0.470070 0.882629i \(-0.655771\pi\)
−0.470070 + 0.882629i \(0.655771\pi\)
\(384\) 11.6875 + 26.0176i 0.596426 + 1.32770i
\(385\) 0 0
\(386\) −1.84633 + 1.03061i −0.0939756 + 0.0524567i
\(387\) 5.92187i 0.301025i
\(388\) 7.81753 12.6775i 0.396875 0.643602i
\(389\) 6.68208i 0.338795i 0.985548 + 0.169397i \(0.0541821\pi\)
−0.985548 + 0.169397i \(0.945818\pi\)
\(390\) 0 0
\(391\) −25.0754 −1.26812
\(392\) 0.740400 17.0273i 0.0373958 0.860006i
\(393\) 23.3101 1.17584
\(394\) 0.434264 + 0.777979i 0.0218779 + 0.0391940i
\(395\) 0 0
\(396\) −14.7803 9.11422i −0.742739 0.458007i
\(397\) 16.4470i 0.825454i −0.910855 0.412727i \(-0.864576\pi\)
0.910855 0.412727i \(-0.135424\pi\)
\(398\) −27.3814 + 15.2842i −1.37251 + 0.766127i
\(399\) 7.36535 0.368729
\(400\) 0 0
\(401\) −4.50865 −0.225151 −0.112576 0.993643i \(-0.535910\pi\)
−0.112576 + 0.993643i \(0.535910\pi\)
\(402\) −40.8778 + 22.8178i −2.03880 + 1.13805i
\(403\) 5.21528i 0.259792i
\(404\) −28.7419 17.7236i −1.42996 0.881780i
\(405\) 0 0
\(406\) −3.75850 6.73330i −0.186531 0.334168i
\(407\) −22.7946 −1.12989
\(408\) −45.7472 1.98923i −2.26482 0.0984817i
\(409\) 10.3945 0.513974 0.256987 0.966415i \(-0.417270\pi\)
0.256987 + 0.966415i \(0.417270\pi\)
\(410\) 0 0
\(411\) 28.7899i 1.42010i
\(412\) −15.5044 + 25.1431i −0.763847 + 1.23871i
\(413\) 7.00017i 0.344456i
\(414\) −16.1800 + 9.03158i −0.795202 + 0.443878i
\(415\) 0 0
\(416\) −10.8157 + 15.9449i −0.530285 + 0.781765i
\(417\) −52.2587 −2.55912
\(418\) −9.45719 + 5.27896i −0.462566 + 0.258202i
\(419\) 2.14309i 0.104697i −0.998629 0.0523484i \(-0.983329\pi\)
0.998629 0.0523484i \(-0.0166706\pi\)
\(420\) 0 0
\(421\) 16.1241i 0.785840i 0.919573 + 0.392920i \(0.128535\pi\)
−0.919573 + 0.392920i \(0.871465\pi\)
\(422\) −2.82610 5.06292i −0.137572 0.246459i
\(423\) 44.9117 2.18368
\(424\) −12.3304 0.536165i −0.598817 0.0260385i
\(425\) 0 0
\(426\) −9.87669 17.6940i −0.478527 0.857275i
\(427\) 6.47777i 0.313481i
\(428\) 14.6164 + 9.01314i 0.706510 + 0.435667i
\(429\) 22.2170i 1.07265i
\(430\) 0 0
\(431\) 30.9580 1.49119 0.745597 0.666397i \(-0.232164\pi\)
0.745597 + 0.666397i \(0.232164\pi\)
\(432\) −3.20376 + 1.60994i −0.154141 + 0.0774581i
\(433\) 13.6048 0.653807 0.326903 0.945058i \(-0.393995\pi\)
0.326903 + 0.945058i \(0.393995\pi\)
\(434\) 1.86635 1.04179i 0.0895875 0.0500073i
\(435\) 0 0
\(436\) −12.7529 7.86403i −0.610754 0.376619i
\(437\) 11.5577i 0.552881i
\(438\) 22.4403 + 40.2015i 1.07224 + 1.92090i
\(439\) −10.5245 −0.502308 −0.251154 0.967947i \(-0.580810\pi\)
−0.251154 + 0.967947i \(0.580810\pi\)
\(440\) 0 0
\(441\) 20.2197 0.962844
\(442\) −15.0764 27.0092i −0.717110 1.28469i
\(443\) 3.73431i 0.177422i −0.996057 0.0887112i \(-0.971725\pi\)
0.996057 0.0887112i \(-0.0282748\pi\)
\(444\) −23.3146 + 37.8087i −1.10646 + 1.79432i
\(445\) 0 0
\(446\) 8.23703 4.59787i 0.390035 0.217715i
\(447\) −40.5405 −1.91750
\(448\) −7.86659 0.685426i −0.371662 0.0323833i
\(449\) 0.546483 0.0257901 0.0128951 0.999917i \(-0.495895\pi\)
0.0128951 + 0.999917i \(0.495895\pi\)
\(450\) 0 0
\(451\) 28.0531i 1.32097i
\(452\) 15.0381 24.3869i 0.707333 1.14707i
\(453\) 28.5995i 1.34372i
\(454\) −13.1631 23.5816i −0.617777 1.10674i
\(455\) 0 0
\(456\) −0.916876 + 21.0858i −0.0429367 + 0.987431i
\(457\) 10.5326 0.492694 0.246347 0.969182i \(-0.420770\pi\)
0.246347 + 0.969182i \(0.420770\pi\)
\(458\) −0.323268 0.579131i −0.0151053 0.0270610i
\(459\) 5.75631i 0.268682i
\(460\) 0 0
\(461\) 22.9918i 1.07083i −0.844588 0.535417i \(-0.820154\pi\)
0.844588 0.535417i \(-0.179846\pi\)
\(462\) 7.95062 4.43800i 0.369896 0.206474i
\(463\) −11.8921 −0.552674 −0.276337 0.961061i \(-0.589121\pi\)
−0.276337 + 0.961061i \(0.589121\pi\)
\(464\) 19.7442 9.92174i 0.916600 0.460605i
\(465\) 0 0
\(466\) −16.7704 + 9.36118i −0.776875 + 0.433648i
\(467\) 22.8888i 1.05917i 0.848258 + 0.529583i \(0.177652\pi\)
−0.848258 + 0.529583i \(0.822348\pi\)
\(468\) −19.4562 11.9976i −0.899362 0.554588i
\(469\) 12.9608i 0.598475i
\(470\) 0 0
\(471\) −8.64196 −0.398200
\(472\) −20.0403 0.871417i −0.922429 0.0401102i
\(473\) 4.56626 0.209957
\(474\) 0.0217861 + 0.0390294i 0.00100067 + 0.00179268i
\(475\) 0 0
\(476\) 6.65393 10.7905i 0.304982 0.494582i
\(477\) 14.6422i 0.670422i
\(478\) −32.7349 + 18.2725i −1.49726 + 0.835763i
\(479\) −13.7929 −0.630212 −0.315106 0.949056i \(-0.602040\pi\)
−0.315106 + 0.949056i \(0.602040\pi\)
\(480\) 0 0
\(481\) −30.0058 −1.36815
\(482\) 20.8937 11.6628i 0.951681 0.531224i
\(483\) 9.71652i 0.442117i
\(484\) 4.51943 7.32906i 0.205429 0.333139i
\(485\) 0 0
\(486\) 15.4198 + 27.6244i 0.699457 + 1.25307i
\(487\) 3.39709 0.153937 0.0769685 0.997034i \(-0.475476\pi\)
0.0769685 + 0.997034i \(0.475476\pi\)
\(488\) 18.5448 + 0.806386i 0.839482 + 0.0365034i
\(489\) 13.5889 0.614513
\(490\) 0 0
\(491\) 0.924686i 0.0417305i −0.999782 0.0208652i \(-0.993358\pi\)
0.999782 0.0208652i \(-0.00664209\pi\)
\(492\) 46.5308 + 28.6930i 2.09777 + 1.29358i
\(493\) 35.4751i 1.59772i
\(494\) −12.4490 + 6.94900i −0.560109 + 0.312650i
\(495\) 0 0
\(496\) 2.75013 + 5.47272i 0.123484 + 0.245733i
\(497\) 5.61009 0.251647
\(498\) −5.93612 + 3.31351i −0.266004 + 0.148482i
\(499\) 6.18797i 0.277012i 0.990362 + 0.138506i \(0.0442300\pi\)
−0.990362 + 0.138506i \(0.955770\pi\)
\(500\) 0 0
\(501\) 25.6579i 1.14631i
\(502\) −20.5714 36.8534i −0.918146 1.64485i
\(503\) 32.4360 1.44625 0.723126 0.690716i \(-0.242705\pi\)
0.723126 + 0.690716i \(0.242705\pi\)
\(504\) 0.406969 9.35921i 0.0181278 0.416892i
\(505\) 0 0
\(506\) 6.96411 + 12.4761i 0.309593 + 0.554631i
\(507\) 3.52776i 0.156673i
\(508\) 7.86636 12.7567i 0.349013 0.565986i
\(509\) 17.6619i 0.782848i −0.920210 0.391424i \(-0.871983\pi\)
0.920210 0.391424i \(-0.128017\pi\)
\(510\) 0 0
\(511\) −12.7464 −0.563867
\(512\) 2.94153 22.4354i 0.129999 0.991514i
\(513\) −2.65320 −0.117142
\(514\) 3.91376 2.18464i 0.172629 0.0963605i
\(515\) 0 0
\(516\) 4.67043 7.57393i 0.205604 0.333424i
\(517\) 34.6307i 1.52306i
\(518\) −5.99386 10.7379i −0.263355 0.471798i
\(519\) −41.5036 −1.82181
\(520\) 0 0
\(521\) 32.0921 1.40598 0.702989 0.711200i \(-0.251848\pi\)
0.702989 + 0.711200i \(0.251848\pi\)
\(522\) 12.7773 + 22.8904i 0.559249 + 1.00189i
\(523\) 15.8864i 0.694666i 0.937742 + 0.347333i \(0.112913\pi\)
−0.937742 + 0.347333i \(0.887087\pi\)
\(524\) −15.7405 9.70631i −0.687627 0.424022i
\(525\) 0 0
\(526\) −1.76920 + 0.987561i −0.0771410 + 0.0430597i
\(527\) −9.83305 −0.428334
\(528\) 11.7155 + 23.3137i 0.509852 + 1.01460i
\(529\) −7.75281 −0.337079
\(530\) 0 0
\(531\) 23.7977i 1.03273i
\(532\) −4.97356 3.06692i −0.215631 0.132968i
\(533\) 36.9279i 1.59952i
\(534\) −8.38201 15.0163i −0.362725 0.649817i
\(535\) 0 0
\(536\) 37.1047 + 1.61343i 1.60268 + 0.0696896i
\(537\) 14.5351 0.627234
\(538\) −9.55626 17.1199i −0.412000 0.738092i
\(539\) 15.5911i 0.671557i
\(540\) 0 0
\(541\) 12.3537i 0.531128i 0.964093 + 0.265564i \(0.0855582\pi\)
−0.964093 + 0.265564i \(0.914442\pi\)
\(542\) −16.7849 + 9.36925i −0.720973 + 0.402444i
\(543\) 18.6647 0.800979
\(544\) 30.0631 + 20.3923i 1.28894 + 0.874314i
\(545\) 0 0
\(546\) 10.4659 5.84199i 0.447897 0.250014i
\(547\) 24.2942i 1.03875i −0.854548 0.519373i \(-0.826166\pi\)
0.854548 0.519373i \(-0.173834\pi\)
\(548\) −11.9881 + 19.4408i −0.512105 + 0.830469i
\(549\) 22.0218i 0.939865i
\(550\) 0 0
\(551\) 16.3512 0.696583
\(552\) 27.8168 + 1.20956i 1.18396 + 0.0514824i
\(553\) −0.0123748 −0.000526229
\(554\) 10.5917 + 18.9748i 0.449996 + 0.806163i
\(555\) 0 0
\(556\) 35.2885 + 21.7605i 1.49656 + 0.922850i
\(557\) 36.4662i 1.54512i 0.634941 + 0.772561i \(0.281024\pi\)
−0.634941 + 0.772561i \(0.718976\pi\)
\(558\) −6.34481 + 3.54164i −0.268597 + 0.149930i
\(559\) 6.01084 0.254231
\(560\) 0 0
\(561\) −41.8887 −1.76854
\(562\) −36.9278 + 20.6129i −1.55771 + 0.869504i
\(563\) 15.3735i 0.647916i −0.946072 0.323958i \(-0.894986\pi\)
0.946072 0.323958i \(-0.105014\pi\)
\(564\) −57.4410 35.4207i −2.41870 1.49148i
\(565\) 0 0
\(566\) 5.78457 + 10.3630i 0.243143 + 0.435588i
\(567\) −7.70579 −0.323613
\(568\) −0.698373 + 16.0607i −0.0293031 + 0.673894i
\(569\) −38.5969 −1.61807 −0.809034 0.587762i \(-0.800009\pi\)
−0.809034 + 0.587762i \(0.800009\pi\)
\(570\) 0 0
\(571\) 47.4014i 1.98369i −0.127468 0.991843i \(-0.540685\pi\)
0.127468 0.991843i \(-0.459315\pi\)
\(572\) −9.25115 + 15.0024i −0.386810 + 0.627280i
\(573\) 25.0816i 1.04780i
\(574\) −13.2151 + 7.37658i −0.551586 + 0.307893i
\(575\) 0 0
\(576\) 26.7432 + 2.33016i 1.11430 + 0.0970902i
\(577\) 26.2255 1.09178 0.545890 0.837857i \(-0.316192\pi\)
0.545890 + 0.837857i \(0.316192\pi\)
\(578\) −29.9313 + 16.7075i −1.24498 + 0.694941i
\(579\) 3.76937i 0.156650i
\(580\) 0 0
\(581\) 1.88212i 0.0780835i
\(582\) −12.9409 23.1834i −0.536416 0.960983i
\(583\) −11.2904 −0.467601
\(584\) 1.58674 36.4908i 0.0656596 1.51000i
\(585\) 0 0
\(586\) 11.9310 + 21.3742i 0.492864 + 0.882959i
\(587\) 43.4873i 1.79491i −0.441104 0.897456i \(-0.645413\pi\)
0.441104 0.897456i \(-0.354587\pi\)
\(588\) −25.8605 15.9468i −1.06647 0.657635i
\(589\) 4.53225i 0.186748i
\(590\) 0 0
\(591\) 1.58828 0.0653332
\(592\) 31.4870 15.8227i 1.29411 0.650309i
\(593\) 17.1599 0.704673 0.352336 0.935873i \(-0.385387\pi\)
0.352336 + 0.935873i \(0.385387\pi\)
\(594\) −2.86403 + 1.59869i −0.117512 + 0.0655949i
\(595\) 0 0
\(596\) 27.3755 + 16.8810i 1.12135 + 0.691473i
\(597\) 55.9005i 2.28786i
\(598\) 9.16726 + 16.4230i 0.374877 + 0.671588i
\(599\) 30.0179 1.22650 0.613248 0.789890i \(-0.289863\pi\)
0.613248 + 0.789890i \(0.289863\pi\)
\(600\) 0 0
\(601\) 13.2518 0.540553 0.270277 0.962783i \(-0.412885\pi\)
0.270277 + 0.962783i \(0.412885\pi\)
\(602\) 1.20070 + 2.15105i 0.0489370 + 0.0876701i
\(603\) 44.0615i 1.79432i
\(604\) −11.9088 + 19.3122i −0.484562 + 0.785802i
\(605\) 0 0
\(606\) −52.5604 + 29.3390i −2.13512 + 1.19181i
\(607\) −37.4734 −1.52100 −0.760499 0.649339i \(-0.775046\pi\)
−0.760499 + 0.649339i \(0.775046\pi\)
\(608\) 9.39922 13.8567i 0.381189 0.561962i
\(609\) −13.7464 −0.557030
\(610\) 0 0
\(611\) 45.5864i 1.84423i
\(612\) −22.6206 + 36.6833i −0.914384 + 1.48283i
\(613\) 12.7689i 0.515731i −0.966181 0.257866i \(-0.916981\pi\)
0.966181 0.257866i \(-0.0830192\pi\)
\(614\) 4.73283 + 8.47880i 0.191001 + 0.342177i
\(615\) 0 0
\(616\) −7.21674 0.313807i −0.290771 0.0126437i
\(617\) −0.516811 −0.0208060 −0.0104030 0.999946i \(-0.503311\pi\)
−0.0104030 + 0.999946i \(0.503311\pi\)
\(618\) 25.6654 + 45.9793i 1.03242 + 1.84956i
\(619\) 0.00333486i 0.000134040i −1.00000 6.70198e-5i \(-0.999979\pi\)
1.00000 6.70198e-5i \(-2.13330e-5\pi\)
\(620\) 0 0
\(621\) 3.50015i 0.140456i
\(622\) −20.0494 + 11.1915i −0.803907 + 0.448737i
\(623\) 4.76109 0.190749
\(624\) 15.4218 + 30.6892i 0.617366 + 1.22855i
\(625\) 0 0
\(626\) −28.7438 + 16.0447i −1.14883 + 0.641274i
\(627\) 19.3073i 0.771060i
\(628\) 5.83561 + 3.59850i 0.232866 + 0.143596i
\(629\) 56.5740i 2.25575i
\(630\) 0 0
\(631\) −25.5020 −1.01522 −0.507608 0.861588i \(-0.669470\pi\)
−0.507608 + 0.861588i \(0.669470\pi\)
\(632\) 0.00154048 0.0354269i 6.12768e−5 0.00140921i
\(633\) −10.3362 −0.410827
\(634\) 7.56531 + 13.5532i 0.300457 + 0.538265i
\(635\) 0 0
\(636\) −11.5480 + 18.7271i −0.457907 + 0.742576i
\(637\) 20.5235i 0.813170i
\(638\) 17.6505 9.85241i 0.698789 0.390061i
\(639\) −19.0720 −0.754476
\(640\) 0 0
\(641\) −26.0346 −1.02831 −0.514153 0.857698i \(-0.671894\pi\)
−0.514153 + 0.857698i \(0.671894\pi\)
\(642\) 26.7291 14.9200i 1.05491 0.588847i
\(643\) 43.3445i 1.70934i −0.519172 0.854670i \(-0.673760\pi\)
0.519172 0.854670i \(-0.326240\pi\)
\(644\) −4.04595 + 6.56122i −0.159433 + 0.258548i
\(645\) 0 0
\(646\) 13.1019 + 23.4718i 0.515486 + 0.923487i
\(647\) −8.45686 −0.332474 −0.166237 0.986086i \(-0.553162\pi\)
−0.166237 + 0.986086i \(0.553162\pi\)
\(648\) 0.959256 22.0604i 0.0376831 0.866613i
\(649\) −18.3500 −0.720302
\(650\) 0 0
\(651\) 3.81024i 0.149335i
\(652\) −9.17613 5.65842i −0.359365 0.221601i
\(653\) 33.3643i 1.30565i −0.757511 0.652823i \(-0.773585\pi\)
0.757511 0.652823i \(-0.226415\pi\)
\(654\) −23.3213 + 13.0178i −0.911935 + 0.509038i
\(655\) 0 0
\(656\) −19.4728 38.7507i −0.760286 1.51296i
\(657\) 43.3325 1.69056
\(658\) 16.3136 9.10618i 0.635971 0.354996i
\(659\) 32.6141i 1.27046i −0.772321 0.635232i \(-0.780904\pi\)
0.772321 0.635232i \(-0.219096\pi\)
\(660\) 0 0
\(661\) 18.8002i 0.731242i −0.930764 0.365621i \(-0.880857\pi\)
0.930764 0.365621i \(-0.119143\pi\)
\(662\) −5.86733 10.5112i −0.228040 0.408531i
\(663\) −55.1405 −2.14148
\(664\) 5.38819 + 0.234296i 0.209102 + 0.00909245i
\(665\) 0 0
\(666\) 20.3767 + 36.5045i 0.789580 + 1.41452i
\(667\) 21.5708i 0.835225i
\(668\) 10.6839 17.3259i 0.413374 0.670359i
\(669\) 16.8163i 0.650155i
\(670\) 0 0
\(671\) 16.9806 0.655530
\(672\) −7.90188 + 11.6492i −0.304822 + 0.449379i
\(673\) 33.1539 1.27799 0.638995 0.769211i \(-0.279350\pi\)
0.638995 + 0.769211i \(0.279350\pi\)
\(674\) −9.69589 + 5.41220i −0.373472 + 0.208470i
\(675\) 0 0
\(676\) 1.46896 2.38217i 0.0564983 0.0916220i
\(677\) 2.35046i 0.0903354i −0.998979 0.0451677i \(-0.985618\pi\)
0.998979 0.0451677i \(-0.0143822\pi\)
\(678\) −24.8936 44.5965i −0.956031 1.71272i
\(679\) 7.35058 0.282089
\(680\) 0 0
\(681\) −48.1430 −1.84484
\(682\) 2.73091 + 4.89239i 0.104572 + 0.187339i
\(683\) 32.6775i 1.25037i 0.780477 + 0.625185i \(0.214976\pi\)
−0.780477 + 0.625185i \(0.785024\pi\)
\(684\) 16.9080 + 10.4263i 0.646495 + 0.398659i
\(685\) 0 0
\(686\) 15.8766 8.86226i 0.606173 0.338363i
\(687\) −1.18232 −0.0451085
\(688\) −6.30755 + 3.16964i −0.240473 + 0.120841i
\(689\) −14.8622 −0.566205
\(690\) 0 0
\(691\) 26.6872i 1.01523i −0.861585 0.507614i \(-0.830528\pi\)
0.861585 0.507614i \(-0.169472\pi\)
\(692\) 28.0259 + 17.2821i 1.06539 + 0.656966i
\(693\) 8.56982i 0.325541i
\(694\) 5.99656 + 10.7428i 0.227626 + 0.407790i
\(695\) 0 0
\(696\) 1.71122 39.3535i 0.0648635 1.49169i
\(697\) 69.6250 2.63723
\(698\) −19.5646 35.0498i −0.740533 1.32666i
\(699\) 34.2377i 1.29499i
\(700\) 0 0
\(701\) 7.22199i 0.272771i −0.990656 0.136385i \(-0.956451\pi\)
0.990656 0.136385i \(-0.0435485\pi\)
\(702\) −3.77008 + 2.10444i −0.142293 + 0.0794271i
\(703\) 26.0760 0.983477
\(704\) 1.79675 20.6213i 0.0677177 0.777193i
\(705\) 0 0
\(706\) 0.594704 0.331961i 0.0223820 0.0124935i
\(707\) 16.6649i 0.626749i
\(708\) −18.7686 + 30.4367i −0.705369 + 1.14388i
\(709\) 18.4855i 0.694239i −0.937821 0.347120i \(-0.887160\pi\)
0.937821 0.347120i \(-0.112840\pi\)
\(710\) 0 0
\(711\) 0.0420691 0.00157772
\(712\) −0.592685 + 13.6302i −0.0222118 + 0.510814i
\(713\) 5.97903 0.223917
\(714\) −11.0147 19.7327i −0.412214 0.738476i
\(715\) 0 0
\(716\) −9.81501 6.05239i −0.366804 0.226188i
\(717\) 66.8299i 2.49581i
\(718\) 31.8142 17.7585i 1.18729 0.662743i
\(719\) 49.0942 1.83091 0.915453 0.402425i \(-0.131833\pi\)
0.915453 + 0.402425i \(0.131833\pi\)
\(720\) 0 0
\(721\) −14.5783 −0.542925
\(722\) −12.6437 + 7.05765i −0.470550 + 0.262659i
\(723\) 42.6555i 1.58637i
\(724\) −12.6036 7.77196i −0.468409 0.288843i
\(725\) 0 0
\(726\) −7.48131 13.4027i −0.277658 0.497420i
\(727\) 28.2967 1.04947 0.524734 0.851266i \(-0.324165\pi\)
0.524734 + 0.851266i \(0.324165\pi\)
\(728\) −9.49982 0.413083i −0.352087 0.0153099i
\(729\) 32.9759 1.22133
\(730\) 0 0
\(731\) 11.3330i 0.419167i
\(732\) 17.3680 28.1653i 0.641940 1.04102i
\(733\) 0.896942i 0.0331293i 0.999863 + 0.0165646i \(0.00527293\pi\)
−0.999863 + 0.0165646i \(0.994727\pi\)
\(734\) −41.4322 + 23.1273i −1.52929 + 0.853643i
\(735\) 0 0
\(736\) −18.2800 12.3996i −0.673810 0.457057i
\(737\) 33.9751 1.25149
\(738\) 44.9257 25.0773i 1.65374 0.923110i
\(739\) 4.13752i 0.152201i 0.997100 + 0.0761006i \(0.0242470\pi\)
−0.997100 + 0.0761006i \(0.975753\pi\)
\(740\) 0 0
\(741\) 25.4153i 0.933655i
\(742\) −2.96882 5.31861i −0.108989 0.195252i
\(743\) −30.8313 −1.13109 −0.565545 0.824717i \(-0.691334\pi\)
−0.565545 + 0.824717i \(0.691334\pi\)
\(744\) 10.9081 + 0.474318i 0.399909 + 0.0173893i
\(745\) 0 0
\(746\) 1.36734 + 2.44958i 0.0500620 + 0.0896854i
\(747\) 6.39843i 0.234106i
\(748\) 28.2859 + 17.4424i 1.03424 + 0.637758i
\(749\) 8.47479i 0.309662i
\(750\) 0 0
\(751\) 1.39394 0.0508655 0.0254327 0.999677i \(-0.491904\pi\)
0.0254327 + 0.999677i \(0.491904\pi\)
\(752\) 24.0387 + 47.8367i 0.876600 + 1.74443i
\(753\) −75.2380 −2.74182
\(754\) 23.2343 12.9693i 0.846144 0.472314i
\(755\) 0 0
\(756\) −1.50620 0.928791i −0.0547799 0.0337798i
\(757\) 28.5258i 1.03679i −0.855142 0.518393i \(-0.826530\pi\)
0.855142 0.518393i \(-0.173470\pi\)
\(758\) −5.42777 9.72378i −0.197145 0.353184i
\(759\) 25.4706 0.924525
\(760\) 0 0
\(761\) 14.1092 0.511458 0.255729 0.966748i \(-0.417684\pi\)
0.255729 + 0.966748i \(0.417684\pi\)
\(762\) −13.0217 23.3282i −0.471726 0.845092i
\(763\) 7.39431i 0.267692i
\(764\) −10.4440 + 16.9367i −0.377850 + 0.612750i
\(765\) 0 0
\(766\) 22.7201 12.6822i 0.820909 0.458228i
\(767\) −24.1552 −0.872194
\(768\) −32.3661 24.0719i −1.16791 0.868620i
\(769\) 50.3144 1.81438 0.907192 0.420716i \(-0.138221\pi\)
0.907192 + 0.420716i \(0.138221\pi\)
\(770\) 0 0
\(771\) 7.99013i 0.287758i
\(772\) 1.56956 2.54532i 0.0564897 0.0916080i
\(773\) 48.4710i 1.74338i −0.490056 0.871691i \(-0.663024\pi\)
0.490056 0.871691i \(-0.336976\pi\)
\(774\) −4.08190 7.31267i −0.146721 0.262848i
\(775\) 0 0
\(776\) −0.915038 + 21.0435i −0.0328480 + 0.755417i
\(777\) −21.9220 −0.786448
\(778\) −4.60591 8.25142i −0.165130 0.295828i
\(779\) 32.0915i 1.14980i
\(780\) 0 0
\(781\) 14.7061i 0.526227i
\(782\) 30.9645 17.2843i 1.10729 0.618084i
\(783\) 4.95181 0.176963
\(784\) 10.8225 + 21.5366i 0.386517 + 0.769165i
\(785\) 0 0
\(786\) −28.7847 + 16.0675i −1.02672 + 0.573108i
\(787\) 1.32396i 0.0471941i −0.999722 0.0235971i \(-0.992488\pi\)
0.999722 0.0235971i \(-0.00751187\pi\)
\(788\) −1.07251 0.661359i −0.0382066 0.0235599i
\(789\) 3.61192i 0.128588i
\(790\) 0 0
\(791\) 14.1399 0.502756
\(792\) 24.5340 + 1.06682i 0.871776 + 0.0379076i
\(793\) 22.3526 0.793764
\(794\) 11.3368 + 20.3098i 0.402329 + 0.720767i
\(795\) 0 0
\(796\) 23.2769 37.7476i 0.825028 1.33793i
\(797\) 8.06593i 0.285710i −0.989744 0.142855i \(-0.954372\pi\)
0.989744 0.142855i \(-0.0456282\pi\)
\(798\) −9.09517 + 5.07688i −0.321965 + 0.179720i
\(799\) −85.9501 −3.04069
\(800\) 0 0
\(801\) −16.1858 −0.571896
\(802\) 5.56755 3.10778i 0.196597 0.109739i
\(803\) 33.4130i 1.17912i
\(804\) 34.7502 56.3536i 1.22554 1.98744i
\(805\) 0 0
\(806\) 3.59485 + 6.44013i 0.126623 + 0.226844i
\(807\) −34.9512 −1.23034
\(808\) 47.7089 + 2.07454i 1.67839 + 0.0729819i
\(809\) −11.0404 −0.388159 −0.194080 0.980986i \(-0.562172\pi\)
−0.194080 + 0.980986i \(0.562172\pi\)
\(810\) 0 0
\(811\) 0.410182i 0.0144034i −0.999974 0.00720172i \(-0.997708\pi\)
0.999974 0.00720172i \(-0.00229240\pi\)
\(812\) 9.28242 + 5.72397i 0.325749 + 0.200872i
\(813\) 34.2672i 1.20180i
\(814\) 28.1481 15.7121i 0.986591 0.550710i
\(815\) 0 0
\(816\) 57.8624 29.0767i 2.02559 1.01789i
\(817\) −5.22361 −0.182751
\(818\) −12.8357 + 7.16484i −0.448790 + 0.250513i
\(819\) 11.2810i 0.394188i
\(820\) 0 0
\(821\) 41.6835i 1.45476i 0.686233 + 0.727382i \(0.259263\pi\)
−0.686233 + 0.727382i \(0.740737\pi\)
\(822\) 19.8446 + 35.5514i 0.692161 + 1.24000i
\(823\) 29.3227 1.02213 0.511063 0.859543i \(-0.329252\pi\)
0.511063 + 0.859543i \(0.329252\pi\)
\(824\) 1.81478 41.7352i 0.0632210 1.45392i
\(825\) 0 0
\(826\) −4.82516 8.64422i −0.167889 0.300771i
\(827\) 5.80461i 0.201846i −0.994894 0.100923i \(-0.967820\pi\)
0.994894 0.100923i \(-0.0321796\pi\)
\(828\) 13.7546 22.3054i 0.478004 0.775168i
\(829\) 38.6044i 1.34079i −0.742006 0.670393i \(-0.766125\pi\)
0.742006 0.670393i \(-0.233875\pi\)
\(830\) 0 0
\(831\) 38.7380 1.34381
\(832\) 2.36517 27.1450i 0.0819976 0.941082i
\(833\) −38.6957 −1.34072
\(834\) 64.5322 36.0216i 2.23457 1.24732i
\(835\) 0 0
\(836\) 8.03955 13.0375i 0.278053 0.450913i
\(837\) 1.37255i 0.0474423i
\(838\) 1.47722 + 2.64641i 0.0510296 + 0.0914188i
\(839\) 20.9360 0.722791 0.361395 0.932413i \(-0.382300\pi\)
0.361395 + 0.932413i \(0.382300\pi\)
\(840\) 0 0
\(841\) −1.51708 −0.0523131
\(842\) −11.1142 19.9110i −0.383021 0.686177i
\(843\) 75.3899i 2.59657i
\(844\) 6.97966 + 4.30398i 0.240250 + 0.148149i
\(845\) 0 0
\(846\) −55.4596 + 30.9573i −1.90674 + 1.06433i
\(847\) 4.24949 0.146014
\(848\) 15.5959 7.83716i 0.535564 0.269129i
\(849\) 21.1565 0.726090
\(850\) 0 0
\(851\) 34.4001i 1.17922i
\(852\) 24.3926 + 15.0416i 0.835678 + 0.515317i
\(853\) 48.1468i 1.64851i 0.566215 + 0.824257i \(0.308407\pi\)
−0.566215 + 0.824257i \(0.691593\pi\)
\(854\) 4.46508 + 7.99913i 0.152792 + 0.273725i
\(855\) 0 0
\(856\) −24.2619 1.05498i −0.829254 0.0360586i
\(857\) −45.8270 −1.56542 −0.782710 0.622386i \(-0.786163\pi\)
−0.782710 + 0.622386i \(0.786163\pi\)
\(858\) 15.3140 + 27.4349i 0.522812 + 0.936612i
\(859\) 0.681686i 0.0232588i −0.999932 0.0116294i \(-0.996298\pi\)
0.999932 0.0116294i \(-0.00370184\pi\)
\(860\) 0 0
\(861\) 26.9792i 0.919448i
\(862\) −38.2288 + 21.3391i −1.30208 + 0.726813i
\(863\) −31.6018 −1.07574 −0.537869 0.843029i \(-0.680770\pi\)
−0.537869 + 0.843029i \(0.680770\pi\)
\(864\) 2.84647 4.19637i 0.0968389 0.142763i
\(865\) 0 0
\(866\) −16.8001 + 9.37771i −0.570889 + 0.318668i
\(867\) 61.1062i 2.07528i
\(868\) −1.58658 + 2.57292i −0.0538520 + 0.0873305i
\(869\) 0.0324389i 0.00110041i
\(870\) 0 0
\(871\) 44.7234 1.51540
\(872\) 21.1687 + 0.920482i 0.716862 + 0.0311714i
\(873\) −24.9890 −0.845748
\(874\) −7.96665 14.2722i −0.269476 0.482763i
\(875\) 0 0
\(876\) −55.4212 34.1753i −1.87251 1.15468i
\(877\) 31.3435i 1.05840i 0.848499 + 0.529198i \(0.177507\pi\)
−0.848499 + 0.529198i \(0.822493\pi\)
\(878\) 12.9963 7.25447i 0.438604 0.244827i
\(879\) 43.6364 1.47182
\(880\) 0 0
\(881\) −5.59365 −0.188455 −0.0942274 0.995551i \(-0.530038\pi\)
−0.0942274 + 0.995551i \(0.530038\pi\)
\(882\) −24.9685 + 13.9373i −0.840733 + 0.469293i
\(883\) 3.97695i 0.133835i −0.997759 0.0669175i \(-0.978684\pi\)
0.997759 0.0669175i \(-0.0213164\pi\)
\(884\) 37.2344 + 22.9604i 1.25233 + 0.772243i
\(885\) 0 0
\(886\) 2.57403 + 4.61134i 0.0864763 + 0.154921i
\(887\) −24.7381 −0.830624 −0.415312 0.909679i \(-0.636328\pi\)
−0.415312 + 0.909679i \(0.636328\pi\)
\(888\) 2.72896 62.7590i 0.0915781 2.10605i
\(889\) 7.39650 0.248071
\(890\) 0 0
\(891\) 20.1997i 0.676716i
\(892\) −7.00229 + 11.3554i −0.234454 + 0.380208i
\(893\) 39.6161i 1.32570i
\(894\) 50.0617 27.9442i 1.67431 0.934595i
\(895\) 0 0
\(896\) 10.1866 4.57598i 0.340310 0.152873i
\(897\) 33.5284 1.11948
\(898\) −0.674830 + 0.376687i −0.0225194 + 0.0125702i
\(899\) 8.45878i 0.282116i
\(900\) 0 0
\(901\) 28.0217i 0.933538i
\(902\) −19.3368 34.6416i −0.643844 1.15344i
\(903\) 4.39147 0.146139
\(904\) −1.76020 + 40.4801i −0.0585435 + 1.34635i
\(905\) 0 0
\(906\) 19.7134 + 35.3163i 0.654934 + 1.17331i
\(907\) 24.6646i 0.818976i −0.912316 0.409488i \(-0.865707\pi\)
0.912316 0.409488i \(-0.134293\pi\)
\(908\) 32.5092 + 20.0467i 1.07886 + 0.665273i
\(909\) 56.6539i 1.87909i
\(910\) 0 0
\(911\) −11.4372 −0.378930 −0.189465 0.981887i \(-0.560675\pi\)
−0.189465 + 0.981887i \(0.560675\pi\)
\(912\) −13.4020 26.6699i −0.443786 0.883129i
\(913\) 4.93374 0.163283
\(914\) −13.0063 + 7.26003i −0.430209 + 0.240140i
\(915\) 0 0
\(916\) 0.798381 + 0.492318i 0.0263793 + 0.0162667i
\(917\) 9.12655i 0.301385i
\(918\) 3.96778 + 7.10823i 0.130956 + 0.234607i
\(919\) −2.39236 −0.0789167 −0.0394583 0.999221i \(-0.512563\pi\)
−0.0394583 + 0.999221i \(0.512563\pi\)
\(920\) 0 0
\(921\) 17.3099 0.570380
\(922\) 15.8481 + 28.3916i 0.521928 + 0.935028i
\(923\) 19.3585i 0.637194i
\(924\) −6.75881 + 10.9606i −0.222348 + 0.360577i
\(925\) 0 0
\(926\) 14.6851 8.19716i 0.482582 0.269375i
\(927\) 49.5602 1.62777
\(928\) −17.5423 + 25.8615i −0.575853 + 0.848944i
\(929\) −7.84705 −0.257453 −0.128727 0.991680i \(-0.541089\pi\)
−0.128727 + 0.991680i \(0.541089\pi\)
\(930\) 0 0
\(931\) 17.8356i 0.584537i
\(932\) 14.2565 23.1195i 0.466988 0.757303i
\(933\) 40.9318i 1.34005i
\(934\) −15.7771 28.2644i −0.516241 0.924839i
\(935\) 0 0
\(936\) 32.2955 + 1.40431i 1.05561 + 0.0459013i
\(937\) 9.82605 0.321003 0.160502 0.987036i \(-0.448689\pi\)
0.160502 + 0.987036i \(0.448689\pi\)
\(938\) 8.93380 + 16.0048i 0.291699 + 0.522575i
\(939\) 58.6819i 1.91501i
\(940\) 0 0
\(941\) 21.9950i 0.717015i 0.933527 + 0.358508i \(0.116714\pi\)
−0.933527 + 0.358508i \(0.883286\pi\)
\(942\) 10.6716 5.95684i 0.347699 0.194084i
\(943\) −42.3358 −1.37864
\(944\) 25.3476 12.7375i 0.824994 0.414572i
\(945\) 0 0
\(946\) −5.63869 + 3.14749i −0.183330 + 0.102334i
\(947\) 17.0055i 0.552605i 0.961071 + 0.276302i \(0.0891092\pi\)
−0.961071 + 0.276302i \(0.910891\pi\)
\(948\) −0.0538054 0.0331789i −0.00174752 0.00107760i
\(949\) 43.9835i 1.42776i
\(950\) 0 0
\(951\) 27.6694 0.897243
\(952\) −0.778839 + 17.9113i −0.0252423 + 0.580507i
\(953\) 23.5659 0.763374 0.381687 0.924292i \(-0.375343\pi\)
0.381687 + 0.924292i \(0.375343\pi\)
\(954\) 10.0928 + 18.0811i 0.326766 + 0.585397i
\(955\) 0 0
\(956\) 27.8279 45.1278i 0.900018 1.45954i
\(957\) 36.0343i 1.16482i
\(958\) 17.0322 9.50732i 0.550287 0.307168i
\(959\) −11.2720 −0.363993
\(960\) 0 0
\(961\) −28.6554 −0.924367
\(962\) 37.0530 20.6828i 1.19464 0.666840i
\(963\) 28.8108i 0.928414i
\(964\) −17.7617 + 28.8037i −0.572066 + 0.927705i
\(965\) 0 0
\(966\) 6.69753 + 11.9985i 0.215489 + 0.386046i
\(967\) 38.1868 1.22801 0.614003 0.789304i \(-0.289558\pi\)
0.614003 + 0.789304i \(0.289558\pi\)
\(968\) −0.528998 + 12.1656i −0.0170026 + 0.391016i
\(969\) 47.9189 1.53938
\(970\) 0 0
\(971\) 52.4070i 1.68182i 0.541175 + 0.840910i \(0.317980\pi\)
−0.541175 + 0.840910i \(0.682020\pi\)
\(972\) −38.0826 23.4835i −1.22150 0.753233i
\(973\) 20.4607i 0.655941i
\(974\) −4.19493 + 2.34159i −0.134414 + 0.0750294i
\(975\) 0 0
\(976\) −23.4560 + 11.7870i −0.750808 + 0.377293i
\(977\) −55.0981 −1.76274 −0.881372 0.472422i \(-0.843380\pi\)
−0.881372 + 0.472422i \(0.843380\pi\)
\(978\) −16.7804 + 9.36675i −0.536579 + 0.299516i
\(979\) 12.4806i 0.398882i
\(980\) 0 0
\(981\) 25.1376i 0.802582i
\(982\) 0.637379 + 1.14186i 0.0203396 + 0.0364381i
\(983\) −7.53753 −0.240410 −0.120205 0.992749i \(-0.538355\pi\)
−0.120205 + 0.992749i \(0.538355\pi\)
\(984\) −77.2368 3.35851i −2.46222 0.107065i
\(985\) 0 0
\(986\) −24.4527 43.8067i −0.778733 1.39509i
\(987\) 33.3050i 1.06011i
\(988\) 10.5829 17.1621i 0.336687 0.545998i
\(989\) 6.89110i 0.219124i
\(990\) 0 0
\(991\) 36.7106 1.16615 0.583076 0.812418i \(-0.301849\pi\)
0.583076 + 0.812418i \(0.301849\pi\)
\(992\) −7.16832 4.86240i −0.227594 0.154381i
\(993\) −21.4592 −0.680987
\(994\) −6.92767 + 3.86699i −0.219732 + 0.122654i
\(995\) 0 0
\(996\) 5.04629 8.18345i 0.159898 0.259302i
\(997\) 41.3341i 1.30906i 0.756035 + 0.654531i \(0.227134\pi\)
−0.756035 + 0.654531i \(0.772866\pi\)
\(998\) −4.26532 7.64127i −0.135016 0.241880i
\(999\) 7.89690 0.249847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.10 yes 40
4.3 odd 2 4000.2.d.c.2001.9 40
5.2 odd 4 1000.2.f.d.749.5 20
5.3 odd 4 1000.2.f.c.749.16 20
5.4 even 2 inner 1000.2.d.c.501.31 yes 40
8.3 odd 2 4000.2.d.c.2001.10 40
8.5 even 2 inner 1000.2.d.c.501.9 40
20.3 even 4 4000.2.f.c.3249.18 20
20.7 even 4 4000.2.f.d.3249.3 20
20.19 odd 2 4000.2.d.c.2001.32 40
40.3 even 4 4000.2.f.d.3249.4 20
40.13 odd 4 1000.2.f.d.749.6 20
40.19 odd 2 4000.2.d.c.2001.31 40
40.27 even 4 4000.2.f.c.3249.17 20
40.29 even 2 inner 1000.2.d.c.501.32 yes 40
40.37 odd 4 1000.2.f.c.749.15 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.9 40 8.5 even 2 inner
1000.2.d.c.501.10 yes 40 1.1 even 1 trivial
1000.2.d.c.501.31 yes 40 5.4 even 2 inner
1000.2.d.c.501.32 yes 40 40.29 even 2 inner
1000.2.f.c.749.15 20 40.37 odd 4
1000.2.f.c.749.16 20 5.3 odd 4
1000.2.f.d.749.5 20 5.2 odd 4
1000.2.f.d.749.6 20 40.13 odd 4
4000.2.d.c.2001.9 40 4.3 odd 2
4000.2.d.c.2001.10 40 8.3 odd 2
4000.2.d.c.2001.31 40 40.19 odd 2
4000.2.d.c.2001.32 40 20.19 odd 2
4000.2.f.c.3249.17 20 40.27 even 4
4000.2.f.c.3249.18 20 20.3 even 4
4000.2.f.d.3249.3 20 20.7 even 4
4000.2.f.d.3249.4 20 40.3 even 4