Properties

Label 1000.2.d.c.501.32
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.32
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23486 + 0.689292i) q^{2} +2.52102i q^{3} +(1.04975 + 1.70236i) q^{4} +(-1.73772 + 3.11311i) q^{6} -0.987050 q^{7} +(0.122873 + 2.82576i) q^{8} -3.35556 q^{9} +O(q^{10})\) \(q+(1.23486 + 0.689292i) q^{2} +2.52102i q^{3} +(1.04975 + 1.70236i) q^{4} +(-1.73772 + 3.11311i) q^{6} -0.987050 q^{7} +(0.122873 + 2.82576i) q^{8} -3.35556 q^{9} -2.58742i q^{11} +(-4.29168 + 2.64645i) q^{12} +3.40597i q^{13} +(-1.21887 - 0.680366i) q^{14} +(-1.79604 + 3.57411i) q^{16} -6.42173 q^{17} +(-4.14364 - 2.31296i) q^{18} +2.95990i q^{19} -2.48838i q^{21} +(1.78349 - 3.19510i) q^{22} +3.90476 q^{23} +(-7.12380 + 0.309766i) q^{24} +(-2.34771 + 4.20590i) q^{26} -0.896380i q^{27} +(-1.03616 - 1.68031i) q^{28} -5.52423i q^{29} -1.53121 q^{31} +(-4.68146 + 3.17552i) q^{32} +6.52296 q^{33} +(-7.92993 - 4.42645i) q^{34} +(-3.52251 - 5.71237i) q^{36} +8.80977i q^{37} +(-2.04024 + 3.65506i) q^{38} -8.58654 q^{39} +10.8421 q^{41} +(1.71522 - 3.07279i) q^{42} -1.76479i q^{43} +(4.40472 - 2.71615i) q^{44} +(4.82183 + 2.69152i) q^{46} +13.3842 q^{47} +(-9.01041 - 4.52787i) q^{48} -6.02573 q^{49} -16.1893i q^{51} +(-5.79819 + 3.57543i) q^{52} +4.36357i q^{53} +(0.617868 - 1.10690i) q^{54} +(-0.121282 - 2.78916i) q^{56} -7.46198 q^{57} +(3.80781 - 6.82164i) q^{58} -7.09201i q^{59} +6.56276i q^{61} +(-1.89083 - 1.05545i) q^{62} +3.31211 q^{63} +(-7.96980 + 0.694419i) q^{64} +(8.05493 + 4.49622i) q^{66} -13.1309i q^{67} +(-6.74123 - 10.9321i) q^{68} +9.84401i q^{69} +5.68370 q^{71} +(-0.412308 - 9.48200i) q^{72} +12.9136 q^{73} +(-6.07251 + 10.8788i) q^{74} +(-5.03881 + 3.10716i) q^{76} +2.55392i q^{77} +(-10.6032 - 5.91864i) q^{78} -0.0125371 q^{79} -7.80689 q^{81} +(13.3884 + 7.47336i) q^{82} -1.90681i q^{83} +(4.23611 - 2.61218i) q^{84} +(1.21646 - 2.17927i) q^{86} +13.9267 q^{87} +(7.31143 - 0.317925i) q^{88} +4.82356 q^{89} -3.36187i q^{91} +(4.09903 + 6.64731i) q^{92} -3.86023i q^{93} +(16.5277 + 9.22566i) q^{94} +(-8.00556 - 11.8021i) q^{96} -7.44702 q^{97} +(-7.44093 - 4.15349i) q^{98} +8.68226i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64} + 42 q^{66} + 96 q^{71} + 6 q^{74} - 2 q^{76} + 96 q^{79} - 56 q^{81} + 116 q^{84} + 46 q^{86} - 44 q^{89} - 14 q^{94} + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23486 + 0.689292i 0.873177 + 0.487403i
\(3\) 2.52102i 1.45551i 0.685835 + 0.727757i \(0.259437\pi\)
−0.685835 + 0.727757i \(0.740563\pi\)
\(4\) 1.04975 + 1.70236i 0.524876 + 0.851179i
\(5\) 0 0
\(6\) −1.73772 + 3.11311i −0.709422 + 1.27092i
\(7\) −0.987050 −0.373070 −0.186535 0.982448i \(-0.559726\pi\)
−0.186535 + 0.982448i \(0.559726\pi\)
\(8\) 0.122873 + 2.82576i 0.0434422 + 0.999056i
\(9\) −3.35556 −1.11852
\(10\) 0 0
\(11\) 2.58742i 0.780138i −0.920786 0.390069i \(-0.872451\pi\)
0.920786 0.390069i \(-0.127549\pi\)
\(12\) −4.29168 + 2.64645i −1.23890 + 0.763964i
\(13\) 3.40597i 0.944647i 0.881425 + 0.472324i \(0.156585\pi\)
−0.881425 + 0.472324i \(0.843415\pi\)
\(14\) −1.21887 0.680366i −0.325756 0.181835i
\(15\) 0 0
\(16\) −1.79604 + 3.57411i −0.449011 + 0.893526i
\(17\) −6.42173 −1.55750 −0.778750 0.627335i \(-0.784146\pi\)
−0.778750 + 0.627335i \(0.784146\pi\)
\(18\) −4.14364 2.31296i −0.976666 0.545171i
\(19\) 2.95990i 0.679048i 0.940597 + 0.339524i \(0.110266\pi\)
−0.940597 + 0.339524i \(0.889734\pi\)
\(20\) 0 0
\(21\) 2.48838i 0.543008i
\(22\) 1.78349 3.19510i 0.380242 0.681198i
\(23\) 3.90476 0.814200 0.407100 0.913384i \(-0.366540\pi\)
0.407100 + 0.913384i \(0.366540\pi\)
\(24\) −7.12380 + 0.309766i −1.45414 + 0.0632307i
\(25\) 0 0
\(26\) −2.34771 + 4.20590i −0.460424 + 0.824844i
\(27\) 0.896380i 0.172508i
\(28\) −1.03616 1.68031i −0.195815 0.317549i
\(29\) 5.52423i 1.02582i −0.858441 0.512912i \(-0.828567\pi\)
0.858441 0.512912i \(-0.171433\pi\)
\(30\) 0 0
\(31\) −1.53121 −0.275014 −0.137507 0.990501i \(-0.543909\pi\)
−0.137507 + 0.990501i \(0.543909\pi\)
\(32\) −4.68146 + 3.17552i −0.827573 + 0.561357i
\(33\) 6.52296 1.13550
\(34\) −7.92993 4.42645i −1.35997 0.759130i
\(35\) 0 0
\(36\) −3.52251 5.71237i −0.587085 0.952061i
\(37\) 8.80977i 1.44832i 0.689634 + 0.724158i \(0.257772\pi\)
−0.689634 + 0.724158i \(0.742228\pi\)
\(38\) −2.04024 + 3.65506i −0.330970 + 0.592929i
\(39\) −8.58654 −1.37495
\(40\) 0 0
\(41\) 10.8421 1.69325 0.846624 0.532191i \(-0.178631\pi\)
0.846624 + 0.532191i \(0.178631\pi\)
\(42\) 1.71522 3.07279i 0.264664 0.474142i
\(43\) 1.76479i 0.269128i −0.990905 0.134564i \(-0.957037\pi\)
0.990905 0.134564i \(-0.0429634\pi\)
\(44\) 4.40472 2.71615i 0.664036 0.409475i
\(45\) 0 0
\(46\) 4.82183 + 2.69152i 0.710940 + 0.396844i
\(47\) 13.3842 1.95229 0.976146 0.217113i \(-0.0696640\pi\)
0.976146 + 0.217113i \(0.0696640\pi\)
\(48\) −9.01041 4.52787i −1.30054 0.653541i
\(49\) −6.02573 −0.860819
\(50\) 0 0
\(51\) 16.1893i 2.26696i
\(52\) −5.79819 + 3.57543i −0.804064 + 0.495823i
\(53\) 4.36357i 0.599383i 0.954036 + 0.299691i \(0.0968837\pi\)
−0.954036 + 0.299691i \(0.903116\pi\)
\(54\) 0.617868 1.10690i 0.0840812 0.150630i
\(55\) 0 0
\(56\) −0.121282 2.78916i −0.0162070 0.372718i
\(57\) −7.46198 −0.988364
\(58\) 3.80781 6.82164i 0.499990 0.895725i
\(59\) 7.09201i 0.923301i −0.887062 0.461651i \(-0.847257\pi\)
0.887062 0.461651i \(-0.152743\pi\)
\(60\) 0 0
\(61\) 6.56276i 0.840275i 0.907460 + 0.420138i \(0.138018\pi\)
−0.907460 + 0.420138i \(0.861982\pi\)
\(62\) −1.89083 1.05545i −0.240136 0.134043i
\(63\) 3.31211 0.417286
\(64\) −7.96980 + 0.694419i −0.996226 + 0.0868023i
\(65\) 0 0
\(66\) 8.05493 + 4.49622i 0.991493 + 0.553447i
\(67\) 13.1309i 1.60419i −0.597195 0.802096i \(-0.703718\pi\)
0.597195 0.802096i \(-0.296282\pi\)
\(68\) −6.74123 10.9321i −0.817494 1.32571i
\(69\) 9.84401i 1.18508i
\(70\) 0 0
\(71\) 5.68370 0.674531 0.337265 0.941410i \(-0.390498\pi\)
0.337265 + 0.941410i \(0.390498\pi\)
\(72\) −0.412308 9.48200i −0.0485910 1.11746i
\(73\) 12.9136 1.51143 0.755713 0.654903i \(-0.227290\pi\)
0.755713 + 0.654903i \(0.227290\pi\)
\(74\) −6.07251 + 10.8788i −0.705914 + 1.26464i
\(75\) 0 0
\(76\) −5.03881 + 3.10716i −0.577991 + 0.356416i
\(77\) 2.55392i 0.291046i
\(78\) −10.6032 5.91864i −1.20057 0.670154i
\(79\) −0.0125371 −0.00141054 −0.000705269 1.00000i \(-0.500224\pi\)
−0.000705269 1.00000i \(0.500224\pi\)
\(80\) 0 0
\(81\) −7.80689 −0.867432
\(82\) 13.3884 + 7.47336i 1.47851 + 0.825295i
\(83\) 1.90681i 0.209300i −0.994509 0.104650i \(-0.966628\pi\)
0.994509 0.104650i \(-0.0333722\pi\)
\(84\) 4.23611 2.61218i 0.462197 0.285012i
\(85\) 0 0
\(86\) 1.21646 2.17927i 0.131174 0.234997i
\(87\) 13.9267 1.49310
\(88\) 7.31143 0.317925i 0.779401 0.0338909i
\(89\) 4.82356 0.511296 0.255648 0.966770i \(-0.417711\pi\)
0.255648 + 0.966770i \(0.417711\pi\)
\(90\) 0 0
\(91\) 3.36187i 0.352419i
\(92\) 4.09903 + 6.64731i 0.427354 + 0.693029i
\(93\) 3.86023i 0.400287i
\(94\) 16.5277 + 9.22566i 1.70470 + 0.951554i
\(95\) 0 0
\(96\) −8.00556 11.8021i −0.817064 1.20454i
\(97\) −7.44702 −0.756131 −0.378065 0.925779i \(-0.623411\pi\)
−0.378065 + 0.925779i \(0.623411\pi\)
\(98\) −7.44093 4.15349i −0.751647 0.419566i
\(99\) 8.68226i 0.872600i
\(100\) 0 0
\(101\) 16.8836i 1.67998i 0.542603 + 0.839989i \(0.317439\pi\)
−0.542603 + 0.839989i \(0.682561\pi\)
\(102\) 11.1592 19.9916i 1.10492 1.97946i
\(103\) 14.7696 1.45529 0.727645 0.685954i \(-0.240615\pi\)
0.727645 + 0.685954i \(0.240615\pi\)
\(104\) −9.62446 + 0.418502i −0.943756 + 0.0410375i
\(105\) 0 0
\(106\) −3.00778 + 5.38839i −0.292141 + 0.523367i
\(107\) 8.58598i 0.830038i 0.909813 + 0.415019i \(0.136225\pi\)
−0.909813 + 0.415019i \(0.863775\pi\)
\(108\) 1.52596 0.940977i 0.146836 0.0905455i
\(109\) 7.49133i 0.717539i 0.933426 + 0.358769i \(0.116804\pi\)
−0.933426 + 0.358769i \(0.883196\pi\)
\(110\) 0 0
\(111\) −22.2096 −2.10805
\(112\) 1.77278 3.52782i 0.167512 0.333348i
\(113\) −14.3254 −1.34762 −0.673810 0.738905i \(-0.735343\pi\)
−0.673810 + 0.738905i \(0.735343\pi\)
\(114\) −9.21450 5.14349i −0.863017 0.481732i
\(115\) 0 0
\(116\) 9.40421 5.79907i 0.873159 0.538430i
\(117\) 11.4290i 1.05661i
\(118\) 4.88847 8.75763i 0.450020 0.806205i
\(119\) 6.33857 0.581056
\(120\) 0 0
\(121\) 4.30524 0.391385
\(122\) −4.52366 + 8.10408i −0.409553 + 0.733709i
\(123\) 27.3331i 2.46455i
\(124\) −1.60740 2.60667i −0.144348 0.234086i
\(125\) 0 0
\(126\) 4.08998 + 2.28301i 0.364365 + 0.203387i
\(127\) −7.49354 −0.664944 −0.332472 0.943113i \(-0.607883\pi\)
−0.332472 + 0.943113i \(0.607883\pi\)
\(128\) −10.3202 4.63602i −0.912189 0.409770i
\(129\) 4.44908 0.391720
\(130\) 0 0
\(131\) 9.24629i 0.807852i 0.914792 + 0.403926i \(0.132355\pi\)
−0.914792 + 0.403926i \(0.867645\pi\)
\(132\) 6.84749 + 11.1044i 0.595997 + 0.966514i
\(133\) 2.92157i 0.253332i
\(134\) 9.05101 16.2148i 0.781888 1.40074i
\(135\) 0 0
\(136\) −0.789058 18.1463i −0.0676611 1.55603i
\(137\) 11.4199 0.975669 0.487835 0.872936i \(-0.337787\pi\)
0.487835 + 0.872936i \(0.337787\pi\)
\(138\) −6.78540 + 12.1560i −0.577611 + 1.03478i
\(139\) 20.7292i 1.75823i −0.476614 0.879113i \(-0.658136\pi\)
0.476614 0.879113i \(-0.341864\pi\)
\(140\) 0 0
\(141\) 33.7420i 2.84159i
\(142\) 7.01856 + 3.91773i 0.588985 + 0.328769i
\(143\) 8.81270 0.736955
\(144\) 6.02673 11.9931i 0.502228 0.999428i
\(145\) 0 0
\(146\) 15.9465 + 8.90127i 1.31974 + 0.736674i
\(147\) 15.1910i 1.25293i
\(148\) −14.9974 + 9.24807i −1.23278 + 0.760187i
\(149\) 16.0809i 1.31740i −0.752405 0.658701i \(-0.771106\pi\)
0.752405 0.658701i \(-0.228894\pi\)
\(150\) 0 0
\(151\) −11.3444 −0.923193 −0.461597 0.887090i \(-0.652723\pi\)
−0.461597 + 0.887090i \(0.652723\pi\)
\(152\) −8.36396 + 0.363692i −0.678407 + 0.0294993i
\(153\) 21.5485 1.74209
\(154\) −1.76039 + 3.15372i −0.141857 + 0.254134i
\(155\) 0 0
\(156\) −9.01374 14.6174i −0.721677 1.17033i
\(157\) 3.42796i 0.273581i 0.990600 + 0.136790i \(0.0436787\pi\)
−0.990600 + 0.136790i \(0.956321\pi\)
\(158\) −0.0154816 0.00864175i −0.00123165 0.000687501i
\(159\) −11.0007 −0.872410
\(160\) 0 0
\(161\) −3.85420 −0.303753
\(162\) −9.64041 5.38123i −0.757422 0.422789i
\(163\) 5.39025i 0.422197i −0.977465 0.211098i \(-0.932296\pi\)
0.977465 0.211098i \(-0.0677040\pi\)
\(164\) 11.3815 + 18.4571i 0.888745 + 1.44126i
\(165\) 0 0
\(166\) 1.31435 2.35465i 0.102014 0.182756i
\(167\) −10.1776 −0.787565 −0.393783 0.919204i \(-0.628834\pi\)
−0.393783 + 0.919204i \(0.628834\pi\)
\(168\) 7.03155 0.305754i 0.542496 0.0235895i
\(169\) 1.39934 0.107641
\(170\) 0 0
\(171\) 9.93213i 0.759529i
\(172\) 3.00431 1.85259i 0.229076 0.141259i
\(173\) 16.4630i 1.25166i 0.779960 + 0.625829i \(0.215239\pi\)
−0.779960 + 0.625829i \(0.784761\pi\)
\(174\) 17.1975 + 9.59957i 1.30374 + 0.727742i
\(175\) 0 0
\(176\) 9.24773 + 4.64712i 0.697074 + 0.350290i
\(177\) 17.8791 1.34388
\(178\) 5.95642 + 3.32484i 0.446452 + 0.249208i
\(179\) 5.76554i 0.430937i 0.976511 + 0.215468i \(0.0691278\pi\)
−0.976511 + 0.215468i \(0.930872\pi\)
\(180\) 0 0
\(181\) 7.40362i 0.550307i 0.961400 + 0.275153i \(0.0887286\pi\)
−0.961400 + 0.275153i \(0.911271\pi\)
\(182\) 2.31731 4.15143i 0.171770 0.307724i
\(183\) −16.5449 −1.22303
\(184\) 0.479790 + 11.0339i 0.0353706 + 0.813431i
\(185\) 0 0
\(186\) 2.66083 4.76684i 0.195101 0.349521i
\(187\) 16.6157i 1.21506i
\(188\) 14.0501 + 22.7848i 1.02471 + 1.66175i
\(189\) 0.884772i 0.0643577i
\(190\) 0 0
\(191\) −9.94899 −0.719884 −0.359942 0.932975i \(-0.617203\pi\)
−0.359942 + 0.932975i \(0.617203\pi\)
\(192\) −1.75065 20.0921i −0.126342 1.45002i
\(193\) −1.49517 −0.107625 −0.0538124 0.998551i \(-0.517137\pi\)
−0.0538124 + 0.998551i \(0.517137\pi\)
\(194\) −9.19602 5.13318i −0.660236 0.368541i
\(195\) 0 0
\(196\) −6.32552 10.2580i −0.451823 0.732711i
\(197\) 0.630014i 0.0448867i −0.999748 0.0224433i \(-0.992855\pi\)
0.999748 0.0224433i \(-0.00714454\pi\)
\(198\) −5.98462 + 10.7214i −0.425308 + 0.761934i
\(199\) 22.1737 1.57185 0.785927 0.618319i \(-0.212186\pi\)
0.785927 + 0.618319i \(0.212186\pi\)
\(200\) 0 0
\(201\) 33.1032 2.33492
\(202\) −11.6377 + 20.8488i −0.818827 + 1.46692i
\(203\) 5.45269i 0.382704i
\(204\) 27.5601 16.9948i 1.92959 1.18987i
\(205\) 0 0
\(206\) 18.2383 + 10.1806i 1.27073 + 0.709313i
\(207\) −13.1027 −0.910699
\(208\) −12.1733 6.11727i −0.844067 0.424157i
\(209\) 7.65852 0.529751
\(210\) 0 0
\(211\) 4.10000i 0.282256i −0.989991 0.141128i \(-0.954927\pi\)
0.989991 0.141128i \(-0.0450728\pi\)
\(212\) −7.42836 + 4.58067i −0.510182 + 0.314601i
\(213\) 14.3287i 0.981789i
\(214\) −5.91825 + 10.6025i −0.404563 + 0.724770i
\(215\) 0 0
\(216\) 2.53295 0.110141i 0.172346 0.00749414i
\(217\) 1.51138 0.102599
\(218\) −5.16371 + 9.25073i −0.349731 + 0.626538i
\(219\) 32.5556i 2.19990i
\(220\) 0 0
\(221\) 21.8723i 1.47129i
\(222\) −27.4258 15.3089i −1.84070 1.02747i
\(223\) 6.67042 0.446684 0.223342 0.974740i \(-0.428303\pi\)
0.223342 + 0.974740i \(0.428303\pi\)
\(224\) 4.62084 3.13439i 0.308743 0.209425i
\(225\) 0 0
\(226\) −17.6898 9.87438i −1.17671 0.656834i
\(227\) 19.0966i 1.26749i 0.773544 + 0.633743i \(0.218482\pi\)
−0.773544 + 0.633743i \(0.781518\pi\)
\(228\) −7.83323 12.7030i −0.518768 0.841274i
\(229\) 0.468986i 0.0309914i −0.999880 0.0154957i \(-0.995067\pi\)
0.999880 0.0154957i \(-0.00493264\pi\)
\(230\) 0 0
\(231\) −6.43848 −0.423621
\(232\) 15.6101 0.678778i 1.02485 0.0445640i
\(233\) −13.5809 −0.889711 −0.444856 0.895602i \(-0.646745\pi\)
−0.444856 + 0.895602i \(0.646745\pi\)
\(234\) 7.87789 14.1131i 0.514994 0.922605i
\(235\) 0 0
\(236\) 12.0731 7.44485i 0.785894 0.484619i
\(237\) 0.0316064i 0.00205306i
\(238\) 7.82724 + 4.36913i 0.507365 + 0.283209i
\(239\) 26.5090 1.71473 0.857363 0.514712i \(-0.172101\pi\)
0.857363 + 0.514712i \(0.172101\pi\)
\(240\) 0 0
\(241\) −16.9199 −1.08991 −0.544953 0.838466i \(-0.683453\pi\)
−0.544953 + 0.838466i \(0.683453\pi\)
\(242\) 5.31636 + 2.96757i 0.341749 + 0.190763i
\(243\) 22.3705i 1.43507i
\(244\) −11.1722 + 6.88927i −0.715225 + 0.441040i
\(245\) 0 0
\(246\) −18.8405 + 33.7526i −1.20123 + 2.15199i
\(247\) −10.0814 −0.641461
\(248\) −0.188145 4.32684i −0.0119472 0.274755i
\(249\) 4.80712 0.304639
\(250\) 0 0
\(251\) 29.8442i 1.88375i −0.335963 0.941875i \(-0.609062\pi\)
0.335963 0.941875i \(-0.390938\pi\)
\(252\) 3.47689 + 5.63839i 0.219023 + 0.355185i
\(253\) 10.1033i 0.635188i
\(254\) −9.25346 5.16524i −0.580614 0.324096i
\(255\) 0 0
\(256\) −9.54847 12.8385i −0.596779 0.802406i
\(257\) 3.16940 0.197702 0.0988508 0.995102i \(-0.468483\pi\)
0.0988508 + 0.995102i \(0.468483\pi\)
\(258\) 5.49399 + 3.06672i 0.342041 + 0.190926i
\(259\) 8.69568i 0.540323i
\(260\) 0 0
\(261\) 18.5369i 1.14740i
\(262\) −6.37340 + 11.4179i −0.393750 + 0.705398i
\(263\) −1.43272 −0.0883452 −0.0441726 0.999024i \(-0.514065\pi\)
−0.0441726 + 0.999024i \(0.514065\pi\)
\(264\) 0.801495 + 18.4323i 0.0493286 + 1.13443i
\(265\) 0 0
\(266\) 2.01382 3.60773i 0.123475 0.221204i
\(267\) 12.1603i 0.744199i
\(268\) 22.3534 13.7842i 1.36545 0.842002i
\(269\) 13.8639i 0.845295i −0.906294 0.422648i \(-0.861101\pi\)
0.906294 0.422648i \(-0.138899\pi\)
\(270\) 0 0
\(271\) 13.5926 0.825689 0.412845 0.910802i \(-0.364535\pi\)
0.412845 + 0.910802i \(0.364535\pi\)
\(272\) 11.5337 22.9520i 0.699334 1.39167i
\(273\) 8.47535 0.512951
\(274\) 14.1020 + 7.87166i 0.851932 + 0.475544i
\(275\) 0 0
\(276\) −16.7580 + 10.3338i −1.00871 + 0.622019i
\(277\) 15.3660i 0.923252i −0.887075 0.461626i \(-0.847266\pi\)
0.887075 0.461626i \(-0.152734\pi\)
\(278\) 14.2885 25.5976i 0.856965 1.53524i
\(279\) 5.13809 0.307609
\(280\) 0 0
\(281\) 29.9045 1.78395 0.891976 0.452082i \(-0.149319\pi\)
0.891976 + 0.452082i \(0.149319\pi\)
\(282\) −23.2581 + 41.6666i −1.38500 + 2.48121i
\(283\) 8.39203i 0.498855i −0.968394 0.249427i \(-0.919758\pi\)
0.968394 0.249427i \(-0.0802424\pi\)
\(284\) 5.96647 + 9.67568i 0.354045 + 0.574146i
\(285\) 0 0
\(286\) 10.8824 + 6.07453i 0.643492 + 0.359194i
\(287\) −10.7017 −0.631700
\(288\) 15.7089 10.6556i 0.925658 0.627890i
\(289\) 24.2387 1.42580
\(290\) 0 0
\(291\) 18.7741i 1.10056i
\(292\) 13.5561 + 21.9836i 0.793311 + 1.28649i
\(293\) 17.3090i 1.01120i −0.862767 0.505602i \(-0.831271\pi\)
0.862767 0.505602i \(-0.168729\pi\)
\(294\) 10.4711 18.7588i 0.610684 1.09403i
\(295\) 0 0
\(296\) −24.8943 + 1.08248i −1.44695 + 0.0629180i
\(297\) −2.31931 −0.134580
\(298\) 11.0845 19.8577i 0.642106 1.15033i
\(299\) 13.2995i 0.769132i
\(300\) 0 0
\(301\) 1.74194i 0.100404i
\(302\) −14.0087 7.81960i −0.806111 0.449967i
\(303\) −42.5639 −2.44523
\(304\) −10.5790 5.31611i −0.606747 0.304900i
\(305\) 0 0
\(306\) 26.6094 + 14.8532i 1.52116 + 0.849103i
\(307\) 6.86621i 0.391875i −0.980616 0.195938i \(-0.937225\pi\)
0.980616 0.195938i \(-0.0627750\pi\)
\(308\) −4.34768 + 2.68098i −0.247732 + 0.152763i
\(309\) 37.2345i 2.11819i
\(310\) 0 0
\(311\) 16.2362 0.920669 0.460335 0.887745i \(-0.347729\pi\)
0.460335 + 0.887745i \(0.347729\pi\)
\(312\) −1.05505 24.2635i −0.0597307 1.37365i
\(313\) −23.2770 −1.31570 −0.657848 0.753151i \(-0.728533\pi\)
−0.657848 + 0.753151i \(0.728533\pi\)
\(314\) −2.36286 + 4.23304i −0.133344 + 0.238884i
\(315\) 0 0
\(316\) −0.0131609 0.0213427i −0.000740357 0.00120062i
\(317\) 10.9755i 0.616444i −0.951314 0.308222i \(-0.900266\pi\)
0.951314 0.308222i \(-0.0997340\pi\)
\(318\) −13.5843 7.58268i −0.761768 0.425215i
\(319\) −14.2935 −0.800283
\(320\) 0 0
\(321\) −21.6455 −1.20813
\(322\) −4.75939 2.65667i −0.265230 0.148050i
\(323\) 19.0077i 1.05762i
\(324\) −8.19530 13.2901i −0.455294 0.738340i
\(325\) 0 0
\(326\) 3.71546 6.65619i 0.205780 0.368652i
\(327\) −18.8858 −1.04439
\(328\) 1.33220 + 30.6371i 0.0735584 + 1.69165i
\(329\) −13.2109 −0.728341
\(330\) 0 0
\(331\) 8.51210i 0.467867i −0.972253 0.233934i \(-0.924840\pi\)
0.972253 0.233934i \(-0.0751599\pi\)
\(332\) 3.24608 2.00168i 0.178152 0.109857i
\(333\) 29.5617i 1.61997i
\(334\) −12.5679 7.01533i −0.687684 0.383862i
\(335\) 0 0
\(336\) 8.89372 + 4.46923i 0.485192 + 0.243816i
\(337\) −7.85182 −0.427716 −0.213858 0.976865i \(-0.568603\pi\)
−0.213858 + 0.976865i \(0.568603\pi\)
\(338\) 1.72798 + 0.964552i 0.0939899 + 0.0524647i
\(339\) 36.1147i 1.96148i
\(340\) 0 0
\(341\) 3.96190i 0.214549i
\(342\) 6.84615 12.2648i 0.370197 0.663203i
\(343\) 12.8570 0.694215
\(344\) 4.98687 0.216845i 0.268874 0.0116915i
\(345\) 0 0
\(346\) −11.3478 + 20.3295i −0.610063 + 1.09292i
\(347\) 8.69959i 0.467019i −0.972355 0.233509i \(-0.924979\pi\)
0.972355 0.233509i \(-0.0750209\pi\)
\(348\) 14.6196 + 23.7082i 0.783692 + 1.27089i
\(349\) 28.3837i 1.51934i −0.650307 0.759671i \(-0.725360\pi\)
0.650307 0.759671i \(-0.274640\pi\)
\(350\) 0 0
\(351\) 3.05305 0.162960
\(352\) 8.21641 + 12.1129i 0.437936 + 0.645621i
\(353\) 0.481597 0.0256328 0.0128164 0.999918i \(-0.495920\pi\)
0.0128164 + 0.999918i \(0.495920\pi\)
\(354\) 22.0782 + 12.3239i 1.17344 + 0.655010i
\(355\) 0 0
\(356\) 5.06354 + 8.21143i 0.268367 + 0.435205i
\(357\) 15.9797i 0.845735i
\(358\) −3.97414 + 7.11963i −0.210040 + 0.376284i
\(359\) −25.7634 −1.35974 −0.679871 0.733332i \(-0.737964\pi\)
−0.679871 + 0.733332i \(0.737964\pi\)
\(360\) 0 0
\(361\) 10.2390 0.538894
\(362\) −5.10326 + 9.14242i −0.268221 + 0.480515i
\(363\) 10.8536i 0.569667i
\(364\) 5.72310 3.52913i 0.299972 0.184976i
\(365\) 0 0
\(366\) −20.4306 11.4043i −1.06792 0.596110i
\(367\) −33.5522 −1.75141 −0.875705 0.482846i \(-0.839603\pi\)
−0.875705 + 0.482846i \(0.839603\pi\)
\(368\) −7.01312 + 13.9560i −0.365584 + 0.727509i
\(369\) −36.3813 −1.89393
\(370\) 0 0
\(371\) 4.30706i 0.223611i
\(372\) 6.57149 4.05228i 0.340716 0.210101i
\(373\) 1.98369i 0.102712i −0.998680 0.0513558i \(-0.983646\pi\)
0.998680 0.0513558i \(-0.0163542\pi\)
\(374\) −11.4531 + 20.5181i −0.592226 + 1.06097i
\(375\) 0 0
\(376\) 1.64456 + 37.8206i 0.0848118 + 1.95045i
\(377\) 18.8154 0.969041
\(378\) −0.609866 + 1.09257i −0.0313681 + 0.0561956i
\(379\) 7.87441i 0.404481i −0.979336 0.202241i \(-0.935178\pi\)
0.979336 0.202241i \(-0.0648223\pi\)
\(380\) 0 0
\(381\) 18.8914i 0.967836i
\(382\) −12.2856 6.85776i −0.628586 0.350874i
\(383\) 18.3989 0.940140 0.470070 0.882629i \(-0.344229\pi\)
0.470070 + 0.882629i \(0.344229\pi\)
\(384\) 11.6875 26.0176i 0.596426 1.32770i
\(385\) 0 0
\(386\) −1.84633 1.03061i −0.0939756 0.0524567i
\(387\) 5.92187i 0.301025i
\(388\) −7.81753 12.6775i −0.396875 0.643602i
\(389\) 6.68208i 0.338795i −0.985548 0.169397i \(-0.945818\pi\)
0.985548 0.169397i \(-0.0541821\pi\)
\(390\) 0 0
\(391\) −25.0754 −1.26812
\(392\) −0.740400 17.0273i −0.0373958 0.860006i
\(393\) −23.3101 −1.17584
\(394\) 0.434264 0.777979i 0.0218779 0.0391940i
\(395\) 0 0
\(396\) −14.7803 + 9.11422i −0.742739 + 0.458007i
\(397\) 16.4470i 0.825454i −0.910855 0.412727i \(-0.864576\pi\)
0.910855 0.412727i \(-0.135424\pi\)
\(398\) 27.3814 + 15.2842i 1.37251 + 0.766127i
\(399\) 7.36535 0.368729
\(400\) 0 0
\(401\) −4.50865 −0.225151 −0.112576 0.993643i \(-0.535910\pi\)
−0.112576 + 0.993643i \(0.535910\pi\)
\(402\) 40.8778 + 22.8178i 2.03880 + 1.13805i
\(403\) 5.21528i 0.259792i
\(404\) −28.7419 + 17.7236i −1.42996 + 0.881780i
\(405\) 0 0
\(406\) −3.75850 + 6.73330i −0.186531 + 0.334168i
\(407\) 22.7946 1.12989
\(408\) 45.7472 1.98923i 2.26482 0.0984817i
\(409\) 10.3945 0.513974 0.256987 0.966415i \(-0.417270\pi\)
0.256987 + 0.966415i \(0.417270\pi\)
\(410\) 0 0
\(411\) 28.7899i 1.42010i
\(412\) 15.5044 + 25.1431i 0.763847 + 1.23871i
\(413\) 7.00017i 0.344456i
\(414\) −16.1800 9.03158i −0.795202 0.443878i
\(415\) 0 0
\(416\) −10.8157 15.9449i −0.530285 0.781765i
\(417\) 52.2587 2.55912
\(418\) 9.45719 + 5.27896i 0.462566 + 0.258202i
\(419\) 2.14309i 0.104697i 0.998629 + 0.0523484i \(0.0166706\pi\)
−0.998629 + 0.0523484i \(0.983329\pi\)
\(420\) 0 0
\(421\) 16.1241i 0.785840i −0.919573 0.392920i \(-0.871465\pi\)
0.919573 0.392920i \(-0.128535\pi\)
\(422\) 2.82610 5.06292i 0.137572 0.246459i
\(423\) −44.9117 −2.18368
\(424\) −12.3304 + 0.536165i −0.598817 + 0.0260385i
\(425\) 0 0
\(426\) −9.87669 + 17.6940i −0.478527 + 0.857275i
\(427\) 6.47777i 0.313481i
\(428\) −14.6164 + 9.01314i −0.706510 + 0.435667i
\(429\) 22.2170i 1.07265i
\(430\) 0 0
\(431\) 30.9580 1.49119 0.745597 0.666397i \(-0.232164\pi\)
0.745597 + 0.666397i \(0.232164\pi\)
\(432\) 3.20376 + 1.60994i 0.154141 + 0.0774581i
\(433\) −13.6048 −0.653807 −0.326903 0.945058i \(-0.606005\pi\)
−0.326903 + 0.945058i \(0.606005\pi\)
\(434\) 1.86635 + 1.04179i 0.0895875 + 0.0500073i
\(435\) 0 0
\(436\) −12.7529 + 7.86403i −0.610754 + 0.376619i
\(437\) 11.5577i 0.552881i
\(438\) −22.4403 + 40.2015i −1.07224 + 1.92090i
\(439\) −10.5245 −0.502308 −0.251154 0.967947i \(-0.580810\pi\)
−0.251154 + 0.967947i \(0.580810\pi\)
\(440\) 0 0
\(441\) 20.2197 0.962844
\(442\) 15.0764 27.0092i 0.717110 1.28469i
\(443\) 3.73431i 0.177422i −0.996057 0.0887112i \(-0.971725\pi\)
0.996057 0.0887112i \(-0.0282748\pi\)
\(444\) −23.3146 37.8087i −1.10646 1.79432i
\(445\) 0 0
\(446\) 8.23703 + 4.59787i 0.390035 + 0.217715i
\(447\) 40.5405 1.91750
\(448\) 7.86659 0.685426i 0.371662 0.0323833i
\(449\) 0.546483 0.0257901 0.0128951 0.999917i \(-0.495895\pi\)
0.0128951 + 0.999917i \(0.495895\pi\)
\(450\) 0 0
\(451\) 28.0531i 1.32097i
\(452\) −15.0381 24.3869i −0.707333 1.14707i
\(453\) 28.5995i 1.34372i
\(454\) −13.1631 + 23.5816i −0.617777 + 1.10674i
\(455\) 0 0
\(456\) −0.916876 21.0858i −0.0429367 0.987431i
\(457\) −10.5326 −0.492694 −0.246347 0.969182i \(-0.579230\pi\)
−0.246347 + 0.969182i \(0.579230\pi\)
\(458\) 0.323268 0.579131i 0.0151053 0.0270610i
\(459\) 5.75631i 0.268682i
\(460\) 0 0
\(461\) 22.9918i 1.07083i 0.844588 + 0.535417i \(0.179846\pi\)
−0.844588 + 0.535417i \(0.820154\pi\)
\(462\) −7.95062 4.43800i −0.369896 0.206474i
\(463\) 11.8921 0.552674 0.276337 0.961061i \(-0.410879\pi\)
0.276337 + 0.961061i \(0.410879\pi\)
\(464\) 19.7442 + 9.92174i 0.916600 + 0.460605i
\(465\) 0 0
\(466\) −16.7704 9.36118i −0.776875 0.433648i
\(467\) 22.8888i 1.05917i 0.848258 + 0.529583i \(0.177652\pi\)
−0.848258 + 0.529583i \(0.822348\pi\)
\(468\) 19.4562 11.9976i 0.899362 0.554588i
\(469\) 12.9608i 0.598475i
\(470\) 0 0
\(471\) −8.64196 −0.398200
\(472\) 20.0403 0.871417i 0.922429 0.0401102i
\(473\) −4.56626 −0.209957
\(474\) 0.0217861 0.0390294i 0.00100067 0.00179268i
\(475\) 0 0
\(476\) 6.65393 + 10.7905i 0.304982 + 0.494582i
\(477\) 14.6422i 0.670422i
\(478\) 32.7349 + 18.2725i 1.49726 + 0.835763i
\(479\) −13.7929 −0.630212 −0.315106 0.949056i \(-0.602040\pi\)
−0.315106 + 0.949056i \(0.602040\pi\)
\(480\) 0 0
\(481\) −30.0058 −1.36815
\(482\) −20.8937 11.6628i −0.951681 0.531224i
\(483\) 9.71652i 0.442117i
\(484\) 4.51943 + 7.32906i 0.205429 + 0.333139i
\(485\) 0 0
\(486\) 15.4198 27.6244i 0.699457 1.25307i
\(487\) −3.39709 −0.153937 −0.0769685 0.997034i \(-0.524524\pi\)
−0.0769685 + 0.997034i \(0.524524\pi\)
\(488\) −18.5448 + 0.806386i −0.839482 + 0.0365034i
\(489\) 13.5889 0.614513
\(490\) 0 0
\(491\) 0.924686i 0.0417305i 0.999782 + 0.0208652i \(0.00664209\pi\)
−0.999782 + 0.0208652i \(0.993358\pi\)
\(492\) −46.5308 + 28.6930i −2.09777 + 1.29358i
\(493\) 35.4751i 1.59772i
\(494\) −12.4490 6.94900i −0.560109 0.312650i
\(495\) 0 0
\(496\) 2.75013 5.47272i 0.123484 0.245733i
\(497\) −5.61009 −0.251647
\(498\) 5.93612 + 3.31351i 0.266004 + 0.148482i
\(499\) 6.18797i 0.277012i −0.990362 0.138506i \(-0.955770\pi\)
0.990362 0.138506i \(-0.0442300\pi\)
\(500\) 0 0
\(501\) 25.6579i 1.14631i
\(502\) 20.5714 36.8534i 0.918146 1.64485i
\(503\) −32.4360 −1.44625 −0.723126 0.690716i \(-0.757295\pi\)
−0.723126 + 0.690716i \(0.757295\pi\)
\(504\) 0.406969 + 9.35921i 0.0181278 + 0.416892i
\(505\) 0 0
\(506\) 6.96411 12.4761i 0.309593 0.554631i
\(507\) 3.52776i 0.156673i
\(508\) −7.86636 12.7567i −0.349013 0.565986i
\(509\) 17.6619i 0.782848i 0.920210 + 0.391424i \(0.128017\pi\)
−0.920210 + 0.391424i \(0.871983\pi\)
\(510\) 0 0
\(511\) −12.7464 −0.563867
\(512\) −2.94153 22.4354i −0.129999 0.991514i
\(513\) 2.65320 0.117142
\(514\) 3.91376 + 2.18464i 0.172629 + 0.0963605i
\(515\) 0 0
\(516\) 4.67043 + 7.57393i 0.205604 + 0.333424i
\(517\) 34.6307i 1.52306i
\(518\) 5.99386 10.7379i 0.263355 0.471798i
\(519\) −41.5036 −1.82181
\(520\) 0 0
\(521\) 32.0921 1.40598 0.702989 0.711200i \(-0.251848\pi\)
0.702989 + 0.711200i \(0.251848\pi\)
\(522\) −12.7773 + 22.8904i −0.559249 + 1.00189i
\(523\) 15.8864i 0.694666i 0.937742 + 0.347333i \(0.112913\pi\)
−0.937742 + 0.347333i \(0.887087\pi\)
\(524\) −15.7405 + 9.70631i −0.687627 + 0.424022i
\(525\) 0 0
\(526\) −1.76920 0.987561i −0.0771410 0.0430597i
\(527\) 9.83305 0.428334
\(528\) −11.7155 + 23.3137i −0.509852 + 1.01460i
\(529\) −7.75281 −0.337079
\(530\) 0 0
\(531\) 23.7977i 1.03273i
\(532\) 4.97356 3.06692i 0.215631 0.132968i
\(533\) 36.9279i 1.59952i
\(534\) −8.38201 + 15.0163i −0.362725 + 0.649817i
\(535\) 0 0
\(536\) 37.1047 1.61343i 1.60268 0.0696896i
\(537\) −14.5351 −0.627234
\(538\) 9.55626 17.1199i 0.412000 0.738092i
\(539\) 15.5911i 0.671557i
\(540\) 0 0
\(541\) 12.3537i 0.531128i −0.964093 0.265564i \(-0.914442\pi\)
0.964093 0.265564i \(-0.0855582\pi\)
\(542\) 16.7849 + 9.36925i 0.720973 + 0.402444i
\(543\) −18.6647 −0.800979
\(544\) 30.0631 20.3923i 1.28894 0.874314i
\(545\) 0 0
\(546\) 10.4659 + 5.84199i 0.447897 + 0.250014i
\(547\) 24.2942i 1.03875i −0.854548 0.519373i \(-0.826166\pi\)
0.854548 0.519373i \(-0.173834\pi\)
\(548\) 11.9881 + 19.4408i 0.512105 + 0.830469i
\(549\) 22.0218i 0.939865i
\(550\) 0 0
\(551\) 16.3512 0.696583
\(552\) −27.8168 + 1.20956i −1.18396 + 0.0514824i
\(553\) 0.0123748 0.000526229
\(554\) 10.5917 18.9748i 0.449996 0.806163i
\(555\) 0 0
\(556\) 35.2885 21.7605i 1.49656 0.922850i
\(557\) 36.4662i 1.54512i 0.634941 + 0.772561i \(0.281024\pi\)
−0.634941 + 0.772561i \(0.718976\pi\)
\(558\) 6.34481 + 3.54164i 0.268597 + 0.149930i
\(559\) 6.01084 0.254231
\(560\) 0 0
\(561\) −41.8887 −1.76854
\(562\) 36.9278 + 20.6129i 1.55771 + 0.869504i
\(563\) 15.3735i 0.647916i −0.946072 0.323958i \(-0.894986\pi\)
0.946072 0.323958i \(-0.105014\pi\)
\(564\) −57.4410 + 35.4207i −2.41870 + 1.49148i
\(565\) 0 0
\(566\) 5.78457 10.3630i 0.243143 0.435588i
\(567\) 7.70579 0.323613
\(568\) 0.698373 + 16.0607i 0.0293031 + 0.673894i
\(569\) −38.5969 −1.61807 −0.809034 0.587762i \(-0.800009\pi\)
−0.809034 + 0.587762i \(0.800009\pi\)
\(570\) 0 0
\(571\) 47.4014i 1.98369i 0.127468 + 0.991843i \(0.459315\pi\)
−0.127468 + 0.991843i \(0.540685\pi\)
\(572\) 9.25115 + 15.0024i 0.386810 + 0.627280i
\(573\) 25.0816i 1.04780i
\(574\) −13.2151 7.37658i −0.551586 0.307893i
\(575\) 0 0
\(576\) 26.7432 2.33016i 1.11430 0.0970902i
\(577\) −26.2255 −1.09178 −0.545890 0.837857i \(-0.683808\pi\)
−0.545890 + 0.837857i \(0.683808\pi\)
\(578\) 29.9313 + 16.7075i 1.24498 + 0.694941i
\(579\) 3.76937i 0.156650i
\(580\) 0 0
\(581\) 1.88212i 0.0780835i
\(582\) 12.9409 23.1834i 0.536416 0.960983i
\(583\) 11.2904 0.467601
\(584\) 1.58674 + 36.4908i 0.0656596 + 1.51000i
\(585\) 0 0
\(586\) 11.9310 21.3742i 0.492864 0.882959i
\(587\) 43.4873i 1.79491i −0.441104 0.897456i \(-0.645413\pi\)
0.441104 0.897456i \(-0.354587\pi\)
\(588\) 25.8605 15.9468i 1.06647 0.657635i
\(589\) 4.53225i 0.186748i
\(590\) 0 0
\(591\) 1.58828 0.0653332
\(592\) −31.4870 15.8227i −1.29411 0.650309i
\(593\) −17.1599 −0.704673 −0.352336 0.935873i \(-0.614613\pi\)
−0.352336 + 0.935873i \(0.614613\pi\)
\(594\) −2.86403 1.59869i −0.117512 0.0655949i
\(595\) 0 0
\(596\) 27.3755 16.8810i 1.12135 0.691473i
\(597\) 55.9005i 2.28786i
\(598\) −9.16726 + 16.4230i −0.374877 + 0.671588i
\(599\) 30.0179 1.22650 0.613248 0.789890i \(-0.289863\pi\)
0.613248 + 0.789890i \(0.289863\pi\)
\(600\) 0 0
\(601\) 13.2518 0.540553 0.270277 0.962783i \(-0.412885\pi\)
0.270277 + 0.962783i \(0.412885\pi\)
\(602\) −1.20070 + 2.15105i −0.0489370 + 0.0876701i
\(603\) 44.0615i 1.79432i
\(604\) −11.9088 19.3122i −0.484562 0.785802i
\(605\) 0 0
\(606\) −52.5604 29.3390i −2.13512 1.19181i
\(607\) 37.4734 1.52100 0.760499 0.649339i \(-0.224954\pi\)
0.760499 + 0.649339i \(0.224954\pi\)
\(608\) −9.39922 13.8567i −0.381189 0.561962i
\(609\) −13.7464 −0.557030
\(610\) 0 0
\(611\) 45.5864i 1.84423i
\(612\) 22.6206 + 36.6833i 0.914384 + 1.48283i
\(613\) 12.7689i 0.515731i −0.966181 0.257866i \(-0.916981\pi\)
0.966181 0.257866i \(-0.0830192\pi\)
\(614\) 4.73283 8.47880i 0.191001 0.342177i
\(615\) 0 0
\(616\) −7.21674 + 0.313807i −0.290771 + 0.0126437i
\(617\) 0.516811 0.0208060 0.0104030 0.999946i \(-0.496689\pi\)
0.0104030 + 0.999946i \(0.496689\pi\)
\(618\) −25.6654 + 45.9793i −1.03242 + 1.84956i
\(619\) 0.00333486i 0.000134040i 1.00000 6.70198e-5i \(2.13330e-5\pi\)
−1.00000 6.70198e-5i \(0.999979\pi\)
\(620\) 0 0
\(621\) 3.50015i 0.140456i
\(622\) 20.0494 + 11.1915i 0.803907 + 0.448737i
\(623\) −4.76109 −0.190749
\(624\) 15.4218 30.6892i 0.617366 1.22855i
\(625\) 0 0
\(626\) −28.7438 16.0447i −1.14883 0.641274i
\(627\) 19.3073i 0.771060i
\(628\) −5.83561 + 3.59850i −0.232866 + 0.143596i
\(629\) 56.5740i 2.25575i
\(630\) 0 0
\(631\) −25.5020 −1.01522 −0.507608 0.861588i \(-0.669470\pi\)
−0.507608 + 0.861588i \(0.669470\pi\)
\(632\) −0.00154048 0.0354269i −6.12768e−5 0.00140921i
\(633\) 10.3362 0.410827
\(634\) 7.56531 13.5532i 0.300457 0.538265i
\(635\) 0 0
\(636\) −11.5480 18.7271i −0.457907 0.742576i
\(637\) 20.5235i 0.813170i
\(638\) −17.6505 9.85241i −0.698789 0.390061i
\(639\) −19.0720 −0.754476
\(640\) 0 0
\(641\) −26.0346 −1.02831 −0.514153 0.857698i \(-0.671894\pi\)
−0.514153 + 0.857698i \(0.671894\pi\)
\(642\) −26.7291 14.9200i −1.05491 0.588847i
\(643\) 43.3445i 1.70934i −0.519172 0.854670i \(-0.673760\pi\)
0.519172 0.854670i \(-0.326240\pi\)
\(644\) −4.04595 6.56122i −0.159433 0.258548i
\(645\) 0 0
\(646\) 13.1019 23.4718i 0.515486 0.923487i
\(647\) 8.45686 0.332474 0.166237 0.986086i \(-0.446838\pi\)
0.166237 + 0.986086i \(0.446838\pi\)
\(648\) −0.959256 22.0604i −0.0376831 0.866613i
\(649\) −18.3500 −0.720302
\(650\) 0 0
\(651\) 3.81024i 0.149335i
\(652\) 9.17613 5.65842i 0.359365 0.221601i
\(653\) 33.3643i 1.30565i −0.757511 0.652823i \(-0.773585\pi\)
0.757511 0.652823i \(-0.226415\pi\)
\(654\) −23.3213 13.0178i −0.911935 0.509038i
\(655\) 0 0
\(656\) −19.4728 + 38.7507i −0.760286 + 1.51296i
\(657\) −43.3325 −1.69056
\(658\) −16.3136 9.10618i −0.635971 0.354996i
\(659\) 32.6141i 1.27046i 0.772321 + 0.635232i \(0.219096\pi\)
−0.772321 + 0.635232i \(0.780904\pi\)
\(660\) 0 0
\(661\) 18.8002i 0.731242i 0.930764 + 0.365621i \(0.119143\pi\)
−0.930764 + 0.365621i \(0.880857\pi\)
\(662\) 5.86733 10.5112i 0.228040 0.408531i
\(663\) 55.1405 2.14148
\(664\) 5.38819 0.234296i 0.209102 0.00909245i
\(665\) 0 0
\(666\) 20.3767 36.5045i 0.789580 1.41452i
\(667\) 21.5708i 0.835225i
\(668\) −10.6839 17.3259i −0.413374 0.670359i
\(669\) 16.8163i 0.650155i
\(670\) 0 0
\(671\) 16.9806 0.655530
\(672\) 7.90188 + 11.6492i 0.304822 + 0.449379i
\(673\) −33.1539 −1.27799 −0.638995 0.769211i \(-0.720650\pi\)
−0.638995 + 0.769211i \(0.720650\pi\)
\(674\) −9.69589 5.41220i −0.373472 0.208470i
\(675\) 0 0
\(676\) 1.46896 + 2.38217i 0.0564983 + 0.0916220i
\(677\) 2.35046i 0.0903354i −0.998979 0.0451677i \(-0.985618\pi\)
0.998979 0.0451677i \(-0.0143822\pi\)
\(678\) 24.8936 44.5965i 0.956031 1.71272i
\(679\) 7.35058 0.282089
\(680\) 0 0
\(681\) −48.1430 −1.84484
\(682\) −2.73091 + 4.89239i −0.104572 + 0.187339i
\(683\) 32.6775i 1.25037i 0.780477 + 0.625185i \(0.214976\pi\)
−0.780477 + 0.625185i \(0.785024\pi\)
\(684\) 16.9080 10.4263i 0.646495 0.398659i
\(685\) 0 0
\(686\) 15.8766 + 8.86226i 0.606173 + 0.338363i
\(687\) 1.18232 0.0451085
\(688\) 6.30755 + 3.16964i 0.240473 + 0.120841i
\(689\) −14.8622 −0.566205
\(690\) 0 0
\(691\) 26.6872i 1.01523i 0.861585 + 0.507614i \(0.169472\pi\)
−0.861585 + 0.507614i \(0.830528\pi\)
\(692\) −28.0259 + 17.2821i −1.06539 + 0.656966i
\(693\) 8.56982i 0.325541i
\(694\) 5.99656 10.7428i 0.227626 0.407790i
\(695\) 0 0
\(696\) 1.71122 + 39.3535i 0.0648635 + 1.49169i
\(697\) −69.6250 −2.63723
\(698\) 19.5646 35.0498i 0.740533 1.32666i
\(699\) 34.2377i 1.29499i
\(700\) 0 0
\(701\) 7.22199i 0.272771i 0.990656 + 0.136385i \(0.0435485\pi\)
−0.990656 + 0.136385i \(0.956451\pi\)
\(702\) 3.77008 + 2.10444i 0.142293 + 0.0794271i
\(703\) −26.0760 −0.983477
\(704\) 1.79675 + 20.6213i 0.0677177 + 0.777193i
\(705\) 0 0
\(706\) 0.594704 + 0.331961i 0.0223820 + 0.0124935i
\(707\) 16.6649i 0.626749i
\(708\) 18.7686 + 30.4367i 0.705369 + 1.14388i
\(709\) 18.4855i 0.694239i 0.937821 + 0.347120i \(0.112840\pi\)
−0.937821 + 0.347120i \(0.887160\pi\)
\(710\) 0 0
\(711\) 0.0420691 0.00157772
\(712\) 0.592685 + 13.6302i 0.0222118 + 0.510814i
\(713\) −5.97903 −0.223917
\(714\) −11.0147 + 19.7327i −0.412214 + 0.738476i
\(715\) 0 0
\(716\) −9.81501 + 6.05239i −0.366804 + 0.226188i
\(717\) 66.8299i 2.49581i
\(718\) −31.8142 17.7585i −1.18729 0.662743i
\(719\) 49.0942 1.83091 0.915453 0.402425i \(-0.131833\pi\)
0.915453 + 0.402425i \(0.131833\pi\)
\(720\) 0 0
\(721\) −14.5783 −0.542925
\(722\) 12.6437 + 7.05765i 0.470550 + 0.262659i
\(723\) 42.6555i 1.58637i
\(724\) −12.6036 + 7.77196i −0.468409 + 0.288843i
\(725\) 0 0
\(726\) −7.48131 + 13.4027i −0.277658 + 0.497420i
\(727\) −28.2967 −1.04947 −0.524734 0.851266i \(-0.675835\pi\)
−0.524734 + 0.851266i \(0.675835\pi\)
\(728\) 9.49982 0.413083i 0.352087 0.0153099i
\(729\) 32.9759 1.22133
\(730\) 0 0
\(731\) 11.3330i 0.419167i
\(732\) −17.3680 28.1653i −0.641940 1.04102i
\(733\) 0.896942i 0.0331293i 0.999863 + 0.0165646i \(0.00527293\pi\)
−0.999863 + 0.0165646i \(0.994727\pi\)
\(734\) −41.4322 23.1273i −1.52929 0.853643i
\(735\) 0 0
\(736\) −18.2800 + 12.3996i −0.673810 + 0.457057i
\(737\) −33.9751 −1.25149
\(738\) −44.9257 25.0773i −1.65374 0.923110i
\(739\) 4.13752i 0.152201i −0.997100 0.0761006i \(-0.975753\pi\)
0.997100 0.0761006i \(-0.0242470\pi\)
\(740\) 0 0
\(741\) 25.4153i 0.933655i
\(742\) 2.96882 5.31861i 0.108989 0.195252i
\(743\) 30.8313 1.13109 0.565545 0.824717i \(-0.308666\pi\)
0.565545 + 0.824717i \(0.308666\pi\)
\(744\) 10.9081 0.474318i 0.399909 0.0173893i
\(745\) 0 0
\(746\) 1.36734 2.44958i 0.0500620 0.0896854i
\(747\) 6.39843i 0.234106i
\(748\) −28.2859 + 17.4424i −1.03424 + 0.637758i
\(749\) 8.47479i 0.309662i
\(750\) 0 0
\(751\) 1.39394 0.0508655 0.0254327 0.999677i \(-0.491904\pi\)
0.0254327 + 0.999677i \(0.491904\pi\)
\(752\) −24.0387 + 47.8367i −0.876600 + 1.74443i
\(753\) 75.2380 2.74182
\(754\) 23.2343 + 12.9693i 0.846144 + 0.472314i
\(755\) 0 0
\(756\) −1.50620 + 0.928791i −0.0547799 + 0.0337798i
\(757\) 28.5258i 1.03679i −0.855142 0.518393i \(-0.826530\pi\)
0.855142 0.518393i \(-0.173470\pi\)
\(758\) 5.42777 9.72378i 0.197145 0.353184i
\(759\) 25.4706 0.924525
\(760\) 0 0
\(761\) 14.1092 0.511458 0.255729 0.966748i \(-0.417684\pi\)
0.255729 + 0.966748i \(0.417684\pi\)
\(762\) 13.0217 23.3282i 0.471726 0.845092i
\(763\) 7.39431i 0.267692i
\(764\) −10.4440 16.9367i −0.377850 0.612750i
\(765\) 0 0
\(766\) 22.7201 + 12.6822i 0.820909 + 0.458228i
\(767\) 24.1552 0.872194
\(768\) 32.3661 24.0719i 1.16791 0.868620i
\(769\) 50.3144 1.81438 0.907192 0.420716i \(-0.138221\pi\)
0.907192 + 0.420716i \(0.138221\pi\)
\(770\) 0 0
\(771\) 7.99013i 0.287758i
\(772\) −1.56956 2.54532i −0.0564897 0.0916080i
\(773\) 48.4710i 1.74338i −0.490056 0.871691i \(-0.663024\pi\)
0.490056 0.871691i \(-0.336976\pi\)
\(774\) −4.08190 + 7.31267i −0.146721 + 0.262848i
\(775\) 0 0
\(776\) −0.915038 21.0435i −0.0328480 0.755417i
\(777\) 21.9220 0.786448
\(778\) 4.60591 8.25142i 0.165130 0.295828i
\(779\) 32.0915i 1.14980i
\(780\) 0 0
\(781\) 14.7061i 0.526227i
\(782\) −30.9645 17.2843i −1.10729 0.618084i
\(783\) −4.95181 −0.176963
\(784\) 10.8225 21.5366i 0.386517 0.769165i
\(785\) 0 0
\(786\) −28.7847 16.0675i −1.02672 0.573108i
\(787\) 1.32396i 0.0471941i −0.999722 0.0235971i \(-0.992488\pi\)
0.999722 0.0235971i \(-0.00751187\pi\)
\(788\) 1.07251 0.661359i 0.0382066 0.0235599i
\(789\) 3.61192i 0.128588i
\(790\) 0 0
\(791\) 14.1399 0.502756
\(792\) −24.5340 + 1.06682i −0.871776 + 0.0379076i
\(793\) −22.3526 −0.793764
\(794\) 11.3368 20.3098i 0.402329 0.720767i
\(795\) 0 0
\(796\) 23.2769 + 37.7476i 0.825028 + 1.33793i
\(797\) 8.06593i 0.285710i −0.989744 0.142855i \(-0.954372\pi\)
0.989744 0.142855i \(-0.0456282\pi\)
\(798\) 9.09517 + 5.07688i 0.321965 + 0.179720i
\(799\) −85.9501 −3.04069
\(800\) 0 0
\(801\) −16.1858 −0.571896
\(802\) −5.56755 3.10778i −0.196597 0.109739i
\(803\) 33.4130i 1.17912i
\(804\) 34.7502 + 56.3536i 1.22554 + 1.98744i
\(805\) 0 0
\(806\) 3.59485 6.44013i 0.126623 0.226844i
\(807\) 34.9512 1.23034
\(808\) −47.7089 + 2.07454i −1.67839 + 0.0729819i
\(809\) −11.0404 −0.388159 −0.194080 0.980986i \(-0.562172\pi\)
−0.194080 + 0.980986i \(0.562172\pi\)
\(810\) 0 0
\(811\) 0.410182i 0.0144034i 0.999974 + 0.00720172i \(0.00229240\pi\)
−0.999974 + 0.00720172i \(0.997708\pi\)
\(812\) −9.28242 + 5.72397i −0.325749 + 0.200872i
\(813\) 34.2672i 1.20180i
\(814\) 28.1481 + 15.7121i 0.986591 + 0.550710i
\(815\) 0 0
\(816\) 57.8624 + 29.0767i 2.02559 + 1.01789i
\(817\) 5.22361 0.182751
\(818\) 12.8357 + 7.16484i 0.448790 + 0.250513i
\(819\) 11.2810i 0.394188i
\(820\) 0 0
\(821\) 41.6835i 1.45476i −0.686233 0.727382i \(-0.740737\pi\)
0.686233 0.727382i \(-0.259263\pi\)
\(822\) −19.8446 + 35.5514i −0.692161 + 1.24000i
\(823\) −29.3227 −1.02213 −0.511063 0.859543i \(-0.670748\pi\)
−0.511063 + 0.859543i \(0.670748\pi\)
\(824\) 1.81478 + 41.7352i 0.0632210 + 1.45392i
\(825\) 0 0
\(826\) −4.82516 + 8.64422i −0.167889 + 0.300771i
\(827\) 5.80461i 0.201846i −0.994894 0.100923i \(-0.967820\pi\)
0.994894 0.100923i \(-0.0321796\pi\)
\(828\) −13.7546 22.3054i −0.478004 0.775168i
\(829\) 38.6044i 1.34079i 0.742006 + 0.670393i \(0.233875\pi\)
−0.742006 + 0.670393i \(0.766125\pi\)
\(830\) 0 0
\(831\) 38.7380 1.34381
\(832\) −2.36517 27.1450i −0.0819976 0.941082i
\(833\) 38.6957 1.34072
\(834\) 64.5322 + 36.0216i 2.23457 + 1.24732i
\(835\) 0 0
\(836\) 8.03955 + 13.0375i 0.278053 + 0.450913i
\(837\) 1.37255i 0.0474423i
\(838\) −1.47722 + 2.64641i −0.0510296 + 0.0914188i
\(839\) 20.9360 0.722791 0.361395 0.932413i \(-0.382300\pi\)
0.361395 + 0.932413i \(0.382300\pi\)
\(840\) 0 0
\(841\) −1.51708 −0.0523131
\(842\) 11.1142 19.9110i 0.383021 0.686177i
\(843\) 75.3899i 2.59657i
\(844\) 6.97966 4.30398i 0.240250 0.148149i
\(845\) 0 0
\(846\) −55.4596 30.9573i −1.90674 1.06433i
\(847\) −4.24949 −0.146014
\(848\) −15.5959 7.83716i −0.535564 0.269129i
\(849\) 21.1565 0.726090
\(850\) 0 0
\(851\) 34.4001i 1.17922i
\(852\) −24.3926 + 15.0416i −0.835678 + 0.515317i
\(853\) 48.1468i 1.64851i 0.566215 + 0.824257i \(0.308407\pi\)
−0.566215 + 0.824257i \(0.691593\pi\)
\(854\) 4.46508 7.99913i 0.152792 0.273725i
\(855\) 0 0
\(856\) −24.2619 + 1.05498i −0.829254 + 0.0360586i
\(857\) 45.8270 1.56542 0.782710 0.622386i \(-0.213837\pi\)
0.782710 + 0.622386i \(0.213837\pi\)
\(858\) −15.3140 + 27.4349i −0.522812 + 0.936612i
\(859\) 0.681686i 0.0232588i 0.999932 + 0.0116294i \(0.00370184\pi\)
−0.999932 + 0.0116294i \(0.996298\pi\)
\(860\) 0 0
\(861\) 26.9792i 0.919448i
\(862\) 38.2288 + 21.3391i 1.30208 + 0.726813i
\(863\) 31.6018 1.07574 0.537869 0.843029i \(-0.319230\pi\)
0.537869 + 0.843029i \(0.319230\pi\)
\(864\) 2.84647 + 4.19637i 0.0968389 + 0.142763i
\(865\) 0 0
\(866\) −16.8001 9.37771i −0.570889 0.318668i
\(867\) 61.1062i 2.07528i
\(868\) 1.58658 + 2.57292i 0.0538520 + 0.0873305i
\(869\) 0.0324389i 0.00110041i
\(870\) 0 0
\(871\) 44.7234 1.51540
\(872\) −21.1687 + 0.920482i −0.716862 + 0.0311714i
\(873\) 24.9890 0.845748
\(874\) −7.96665 + 14.2722i −0.269476 + 0.482763i
\(875\) 0 0
\(876\) −55.4212 + 34.1753i −1.87251 + 1.15468i
\(877\) 31.3435i 1.05840i 0.848499 + 0.529198i \(0.177507\pi\)
−0.848499 + 0.529198i \(0.822493\pi\)
\(878\) −12.9963 7.25447i −0.438604 0.244827i
\(879\) 43.6364 1.47182
\(880\) 0 0
\(881\) −5.59365 −0.188455 −0.0942274 0.995551i \(-0.530038\pi\)
−0.0942274 + 0.995551i \(0.530038\pi\)
\(882\) 24.9685 + 13.9373i 0.840733 + 0.469293i
\(883\) 3.97695i 0.133835i −0.997759 0.0669175i \(-0.978684\pi\)
0.997759 0.0669175i \(-0.0213164\pi\)
\(884\) 37.2344 22.9604i 1.25233 0.772243i
\(885\) 0 0
\(886\) 2.57403 4.61134i 0.0864763 0.154921i
\(887\) 24.7381 0.830624 0.415312 0.909679i \(-0.363672\pi\)
0.415312 + 0.909679i \(0.363672\pi\)
\(888\) −2.72896 62.7590i −0.0915781 2.10605i
\(889\) 7.39650 0.248071
\(890\) 0 0
\(891\) 20.1997i 0.676716i
\(892\) 7.00229 + 11.3554i 0.234454 + 0.380208i
\(893\) 39.6161i 1.32570i
\(894\) 50.0617 + 27.9442i 1.67431 + 0.934595i
\(895\) 0 0
\(896\) 10.1866 + 4.57598i 0.340310 + 0.152873i
\(897\) −33.5284 −1.11948
\(898\) 0.674830 + 0.376687i 0.0225194 + 0.0125702i
\(899\) 8.45878i 0.282116i
\(900\) 0 0
\(901\) 28.0217i 0.933538i
\(902\) 19.3368 34.6416i 0.643844 1.15344i
\(903\) −4.39147 −0.146139
\(904\) −1.76020 40.4801i −0.0585435 1.34635i
\(905\) 0 0
\(906\) 19.7134 35.3163i 0.654934 1.17331i
\(907\) 24.6646i 0.818976i −0.912316 0.409488i \(-0.865707\pi\)
0.912316 0.409488i \(-0.134293\pi\)
\(908\) −32.5092 + 20.0467i −1.07886 + 0.665273i
\(909\) 56.6539i 1.87909i
\(910\) 0 0
\(911\) −11.4372 −0.378930 −0.189465 0.981887i \(-0.560675\pi\)
−0.189465 + 0.981887i \(0.560675\pi\)
\(912\) 13.4020 26.6699i 0.443786 0.883129i
\(913\) −4.93374 −0.163283
\(914\) −13.0063 7.26003i −0.430209 0.240140i
\(915\) 0 0
\(916\) 0.798381 0.492318i 0.0263793 0.0162667i
\(917\) 9.12655i 0.301385i
\(918\) −3.96778 + 7.10823i −0.130956 + 0.234607i
\(919\) −2.39236 −0.0789167 −0.0394583 0.999221i \(-0.512563\pi\)
−0.0394583 + 0.999221i \(0.512563\pi\)
\(920\) 0 0
\(921\) 17.3099 0.570380
\(922\) −15.8481 + 28.3916i −0.521928 + 0.935028i
\(923\) 19.3585i 0.637194i
\(924\) −6.75881 10.9606i −0.222348 0.360577i
\(925\) 0 0
\(926\) 14.6851 + 8.19716i 0.482582 + 0.269375i
\(927\) −49.5602 −1.62777
\(928\) 17.5423 + 25.8615i 0.575853 + 0.848944i
\(929\) −7.84705 −0.257453 −0.128727 0.991680i \(-0.541089\pi\)
−0.128727 + 0.991680i \(0.541089\pi\)
\(930\) 0 0
\(931\) 17.8356i 0.584537i
\(932\) −14.2565 23.1195i −0.466988 0.757303i
\(933\) 40.9318i 1.34005i
\(934\) −15.7771 + 28.2644i −0.516241 + 0.924839i
\(935\) 0 0
\(936\) 32.2955 1.40431i 1.05561 0.0459013i
\(937\) −9.82605 −0.321003 −0.160502 0.987036i \(-0.551311\pi\)
−0.160502 + 0.987036i \(0.551311\pi\)
\(938\) −8.93380 + 16.0048i −0.291699 + 0.522575i
\(939\) 58.6819i 1.91501i
\(940\) 0 0
\(941\) 21.9950i 0.717015i −0.933527 0.358508i \(-0.883286\pi\)
0.933527 0.358508i \(-0.116714\pi\)
\(942\) −10.6716 5.95684i −0.347699 0.194084i
\(943\) 42.3358 1.37864
\(944\) 25.3476 + 12.7375i 0.824994 + 0.414572i
\(945\) 0 0
\(946\) −5.63869 3.14749i −0.183330 0.102334i
\(947\) 17.0055i 0.552605i 0.961071 + 0.276302i \(0.0891092\pi\)
−0.961071 + 0.276302i \(0.910891\pi\)
\(948\) 0.0538054 0.0331789i 0.00174752 0.00107760i
\(949\) 43.9835i 1.42776i
\(950\) 0 0
\(951\) 27.6694 0.897243
\(952\) 0.778839 + 17.9113i 0.0252423 + 0.580507i
\(953\) −23.5659 −0.763374 −0.381687 0.924292i \(-0.624657\pi\)
−0.381687 + 0.924292i \(0.624657\pi\)
\(954\) 10.0928 18.0811i 0.326766 0.585397i
\(955\) 0 0
\(956\) 27.8279 + 45.1278i 0.900018 + 1.45954i
\(957\) 36.0343i 1.16482i
\(958\) −17.0322 9.50732i −0.550287 0.307168i
\(959\) −11.2720 −0.363993
\(960\) 0 0
\(961\) −28.6554 −0.924367
\(962\) −37.0530 20.6828i −1.19464 0.666840i
\(963\) 28.8108i 0.928414i
\(964\) −17.7617 28.8037i −0.572066 0.927705i
\(965\) 0 0
\(966\) 6.69753 11.9985i 0.215489 0.386046i
\(967\) −38.1868 −1.22801 −0.614003 0.789304i \(-0.710442\pi\)
−0.614003 + 0.789304i \(0.710442\pi\)
\(968\) 0.528998 + 12.1656i 0.0170026 + 0.391016i
\(969\) 47.9189 1.53938
\(970\) 0 0
\(971\) 52.4070i 1.68182i −0.541175 0.840910i \(-0.682020\pi\)
0.541175 0.840910i \(-0.317980\pi\)
\(972\) 38.0826 23.4835i 1.22150 0.753233i
\(973\) 20.4607i 0.655941i
\(974\) −4.19493 2.34159i −0.134414 0.0750294i
\(975\) 0 0
\(976\) −23.4560 11.7870i −0.750808 0.377293i
\(977\) 55.0981 1.76274 0.881372 0.472422i \(-0.156620\pi\)
0.881372 + 0.472422i \(0.156620\pi\)
\(978\) 16.7804 + 9.36675i 0.536579 + 0.299516i
\(979\) 12.4806i 0.398882i
\(980\) 0 0
\(981\) 25.1376i 0.802582i
\(982\) −0.637379 + 1.14186i −0.0203396 + 0.0364381i
\(983\) 7.53753 0.240410 0.120205 0.992749i \(-0.461645\pi\)
0.120205 + 0.992749i \(0.461645\pi\)
\(984\) −77.2368 + 3.35851i −2.46222 + 0.107065i
\(985\) 0 0
\(986\) −24.4527 + 43.8067i −0.778733 + 1.39509i
\(987\) 33.3050i 1.06011i
\(988\) −10.5829 17.1621i −0.336687 0.545998i
\(989\) 6.89110i 0.219124i
\(990\) 0 0
\(991\) 36.7106 1.16615 0.583076 0.812418i \(-0.301849\pi\)
0.583076 + 0.812418i \(0.301849\pi\)
\(992\) 7.16832 4.86240i 0.227594 0.154381i
\(993\) 21.4592 0.680987
\(994\) −6.92767 3.86699i −0.219732 0.122654i
\(995\) 0 0
\(996\) 5.04629 + 8.18345i 0.159898 + 0.259302i
\(997\) 41.3341i 1.30906i 0.756035 + 0.654531i \(0.227134\pi\)
−0.756035 + 0.654531i \(0.772866\pi\)
\(998\) 4.26532 7.64127i 0.135016 0.241880i
\(999\) 7.89690 0.249847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.32 yes 40
4.3 odd 2 4000.2.d.c.2001.31 40
5.2 odd 4 1000.2.f.d.749.6 20
5.3 odd 4 1000.2.f.c.749.15 20
5.4 even 2 inner 1000.2.d.c.501.9 40
8.3 odd 2 4000.2.d.c.2001.32 40
8.5 even 2 inner 1000.2.d.c.501.31 yes 40
20.3 even 4 4000.2.f.c.3249.17 20
20.7 even 4 4000.2.f.d.3249.4 20
20.19 odd 2 4000.2.d.c.2001.10 40
40.3 even 4 4000.2.f.d.3249.3 20
40.13 odd 4 1000.2.f.d.749.5 20
40.19 odd 2 4000.2.d.c.2001.9 40
40.27 even 4 4000.2.f.c.3249.18 20
40.29 even 2 inner 1000.2.d.c.501.10 yes 40
40.37 odd 4 1000.2.f.c.749.16 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.9 40 5.4 even 2 inner
1000.2.d.c.501.10 yes 40 40.29 even 2 inner
1000.2.d.c.501.31 yes 40 8.5 even 2 inner
1000.2.d.c.501.32 yes 40 1.1 even 1 trivial
1000.2.f.c.749.15 20 5.3 odd 4
1000.2.f.c.749.16 20 40.37 odd 4
1000.2.f.d.749.5 20 40.13 odd 4
1000.2.f.d.749.6 20 5.2 odd 4
4000.2.d.c.2001.9 40 40.19 odd 2
4000.2.d.c.2001.10 40 20.19 odd 2
4000.2.d.c.2001.31 40 4.3 odd 2
4000.2.d.c.2001.32 40 8.3 odd 2
4000.2.f.c.3249.17 20 20.3 even 4
4000.2.f.c.3249.18 20 40.27 even 4
4000.2.f.d.3249.3 20 40.3 even 4
4000.2.f.d.3249.4 20 20.7 even 4