Properties

Label 1000.2.f.d.749.11
Level $1000$
Weight $2$
Character 1000.749
Analytic conductor $7.985$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(749,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.749");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 6 x^{18} - 5 x^{17} - 3 x^{16} + 20 x^{15} - 28 x^{14} + 24 x^{13} + 16 x^{12} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 749.11
Root \(0.368522 - 1.36535i\) of defining polynomial
Character \(\chi\) \(=\) 1000.749
Dual form 1000.2.f.d.749.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.368522 - 1.36535i) q^{2} +0.513027 q^{3} +(-1.72838 - 1.00633i) q^{4} +(0.189062 - 0.700464i) q^{6} +1.12889i q^{7} +(-2.01094 + 1.98900i) q^{8} -2.73680 q^{9} +3.99787i q^{11} +(-0.886708 - 0.516272i) q^{12} -1.12390 q^{13} +(1.54133 + 0.416020i) q^{14} +(1.97462 + 3.47863i) q^{16} +2.93982i q^{17} +(-1.00857 + 3.73671i) q^{18} -3.24181i q^{19} +0.579150i q^{21} +(5.45850 + 1.47330i) q^{22} +5.39053i q^{23} +(-1.03167 + 1.02041i) q^{24} +(-0.414183 + 1.53452i) q^{26} -2.94314 q^{27} +(1.13603 - 1.95115i) q^{28} +7.35068i q^{29} +7.19613 q^{31} +(5.47725 - 1.41410i) q^{32} +2.05101i q^{33} +(4.01389 + 1.08339i) q^{34} +(4.73025 + 2.75411i) q^{36} -10.6176 q^{37} +(-4.42622 - 1.19468i) q^{38} -0.576592 q^{39} +2.08421 q^{41} +(0.790745 + 0.213429i) q^{42} -6.26007 q^{43} +(4.02315 - 6.90984i) q^{44} +(7.35999 + 1.98653i) q^{46} +2.24328i q^{47} +(1.01303 + 1.78463i) q^{48} +5.72561 q^{49} +1.50821i q^{51} +(1.94253 + 1.13101i) q^{52} -1.64494 q^{53} +(-1.08461 + 4.01842i) q^{54} +(-2.24536 - 2.27012i) q^{56} -1.66314i q^{57} +(10.0363 + 2.70889i) q^{58} -5.55039i q^{59} +6.65010i q^{61} +(2.65193 - 9.82527i) q^{62} -3.08954i q^{63} +(0.0877382 - 7.99952i) q^{64} +(2.80036 + 0.755843i) q^{66} -6.79788 q^{67} +(2.95841 - 5.08113i) q^{68} +2.76549i q^{69} -3.27833 q^{71} +(5.50354 - 5.44351i) q^{72} -6.97819i q^{73} +(-3.91280 + 14.4967i) q^{74} +(-3.26232 + 5.60310i) q^{76} -4.51314 q^{77} +(-0.212487 + 0.787253i) q^{78} -8.60333 q^{79} +6.70050 q^{81} +(0.768075 - 2.84568i) q^{82} +13.4761 q^{83} +(0.582813 - 1.00099i) q^{84} +(-2.30697 + 8.54721i) q^{86} +3.77110i q^{87} +(-7.95176 - 8.03946i) q^{88} +10.9910 q^{89} -1.26876i q^{91} +(5.42463 - 9.31691i) q^{92} +3.69181 q^{93} +(3.06287 + 0.826697i) q^{94} +(2.80998 - 0.725472i) q^{96} +18.6691i q^{97} +(2.11001 - 7.81749i) q^{98} -10.9414i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - 4 q^{3} - 3 q^{4} - q^{6} - 12 q^{8} + 12 q^{9} - 6 q^{12} - 6 q^{13} - 6 q^{14} + 9 q^{16} + 17 q^{18} + 8 q^{22} + 3 q^{24} + 10 q^{26} + 8 q^{27} + 2 q^{28} + 24 q^{31} - 7 q^{32} + 3 q^{34}+ \cdots + 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.368522 1.36535i 0.260584 0.965451i
\(3\) 0.513027 0.296196 0.148098 0.988973i \(-0.452685\pi\)
0.148098 + 0.988973i \(0.452685\pi\)
\(4\) −1.72838 1.00633i −0.864192 0.503163i
\(5\) 0 0
\(6\) 0.189062 0.700464i 0.0771841 0.285963i
\(7\) 1.12889i 0.426679i 0.976978 + 0.213340i \(0.0684341\pi\)
−0.976978 + 0.213340i \(0.931566\pi\)
\(8\) −2.01094 + 1.98900i −0.710974 + 0.703219i
\(9\) −2.73680 −0.912268
\(10\) 0 0
\(11\) 3.99787i 1.20540i 0.797967 + 0.602701i \(0.205909\pi\)
−0.797967 + 0.602701i \(0.794091\pi\)
\(12\) −0.886708 0.516272i −0.255970 0.149035i
\(13\) −1.12390 −0.311714 −0.155857 0.987780i \(-0.549814\pi\)
−0.155857 + 0.987780i \(0.549814\pi\)
\(14\) 1.54133 + 0.416020i 0.411938 + 0.111186i
\(15\) 0 0
\(16\) 1.97462 + 3.47863i 0.493655 + 0.869658i
\(17\) 2.93982i 0.713010i 0.934293 + 0.356505i \(0.116032\pi\)
−0.934293 + 0.356505i \(0.883968\pi\)
\(18\) −1.00857 + 3.73671i −0.237723 + 0.880750i
\(19\) 3.24181i 0.743723i −0.928288 0.371862i \(-0.878720\pi\)
0.928288 0.371862i \(-0.121280\pi\)
\(20\) 0 0
\(21\) 0.579150i 0.126381i
\(22\) 5.45850 + 1.47330i 1.16376 + 0.314109i
\(23\) 5.39053i 1.12400i 0.827136 + 0.562002i \(0.189969\pi\)
−0.827136 + 0.562002i \(0.810031\pi\)
\(24\) −1.03167 + 1.02041i −0.210588 + 0.208291i
\(25\) 0 0
\(26\) −0.414183 + 1.53452i −0.0812279 + 0.300945i
\(27\) −2.94314 −0.566407
\(28\) 1.13603 1.95115i 0.214689 0.368733i
\(29\) 7.35068i 1.36499i 0.730891 + 0.682494i \(0.239105\pi\)
−0.730891 + 0.682494i \(0.760895\pi\)
\(30\) 0 0
\(31\) 7.19613 1.29246 0.646232 0.763141i \(-0.276344\pi\)
0.646232 + 0.763141i \(0.276344\pi\)
\(32\) 5.47725 1.41410i 0.968251 0.249980i
\(33\) 2.05101i 0.357036i
\(34\) 4.01389 + 1.08339i 0.688377 + 0.185799i
\(35\) 0 0
\(36\) 4.73025 + 2.75411i 0.788374 + 0.459019i
\(37\) −10.6176 −1.74552 −0.872759 0.488152i \(-0.837671\pi\)
−0.872759 + 0.488152i \(0.837671\pi\)
\(38\) −4.42622 1.19468i −0.718028 0.193803i
\(39\) −0.576592 −0.0923287
\(40\) 0 0
\(41\) 2.08421 0.325498 0.162749 0.986667i \(-0.447964\pi\)
0.162749 + 0.986667i \(0.447964\pi\)
\(42\) 0.790745 + 0.213429i 0.122015 + 0.0329329i
\(43\) −6.26007 −0.954652 −0.477326 0.878726i \(-0.658394\pi\)
−0.477326 + 0.878726i \(0.658394\pi\)
\(44\) 4.02315 6.90984i 0.606513 1.04170i
\(45\) 0 0
\(46\) 7.35999 + 1.98653i 1.08517 + 0.292898i
\(47\) 2.24328i 0.327216i 0.986525 + 0.163608i \(0.0523132\pi\)
−0.986525 + 0.163608i \(0.947687\pi\)
\(48\) 1.01303 + 1.78463i 0.146219 + 0.257590i
\(49\) 5.72561 0.817945
\(50\) 0 0
\(51\) 1.50821i 0.211191i
\(52\) 1.94253 + 1.13101i 0.269381 + 0.156843i
\(53\) −1.64494 −0.225950 −0.112975 0.993598i \(-0.536038\pi\)
−0.112975 + 0.993598i \(0.536038\pi\)
\(54\) −1.08461 + 4.01842i −0.147597 + 0.546838i
\(55\) 0 0
\(56\) −2.24536 2.27012i −0.300049 0.303358i
\(57\) 1.66314i 0.220288i
\(58\) 10.0363 + 2.70889i 1.31783 + 0.355694i
\(59\) 5.55039i 0.722599i −0.932450 0.361299i \(-0.882333\pi\)
0.932450 0.361299i \(-0.117667\pi\)
\(60\) 0 0
\(61\) 6.65010i 0.851458i 0.904851 + 0.425729i \(0.139982\pi\)
−0.904851 + 0.425729i \(0.860018\pi\)
\(62\) 2.65193 9.82527i 0.336796 1.24781i
\(63\) 3.08954i 0.389246i
\(64\) 0.0877382 7.99952i 0.0109673 0.999940i
\(65\) 0 0
\(66\) 2.80036 + 0.755843i 0.344700 + 0.0930379i
\(67\) −6.79788 −0.830493 −0.415247 0.909709i \(-0.636305\pi\)
−0.415247 + 0.909709i \(0.636305\pi\)
\(68\) 2.95841 5.08113i 0.358760 0.616178i
\(69\) 2.76549i 0.332926i
\(70\) 0 0
\(71\) −3.27833 −0.389066 −0.194533 0.980896i \(-0.562319\pi\)
−0.194533 + 0.980896i \(0.562319\pi\)
\(72\) 5.50354 5.44351i 0.648598 0.641524i
\(73\) 6.97819i 0.816736i −0.912817 0.408368i \(-0.866098\pi\)
0.912817 0.408368i \(-0.133902\pi\)
\(74\) −3.91280 + 14.4967i −0.454854 + 1.68521i
\(75\) 0 0
\(76\) −3.26232 + 5.60310i −0.374214 + 0.642719i
\(77\) −4.51314 −0.514320
\(78\) −0.212487 + 0.787253i −0.0240594 + 0.0891388i
\(79\) −8.60333 −0.967950 −0.483975 0.875082i \(-0.660807\pi\)
−0.483975 + 0.875082i \(0.660807\pi\)
\(80\) 0 0
\(81\) 6.70050 0.744500
\(82\) 0.768075 2.84568i 0.0848197 0.314253i
\(83\) 13.4761 1.47919 0.739596 0.673052i \(-0.235017\pi\)
0.739596 + 0.673052i \(0.235017\pi\)
\(84\) 0.582813 1.00099i 0.0635901 0.109217i
\(85\) 0 0
\(86\) −2.30697 + 8.54721i −0.248767 + 0.921669i
\(87\) 3.77110i 0.404304i
\(88\) −7.95176 8.03946i −0.847661 0.857009i
\(89\) 10.9910 1.16504 0.582521 0.812816i \(-0.302066\pi\)
0.582521 + 0.812816i \(0.302066\pi\)
\(90\) 0 0
\(91\) 1.26876i 0.133002i
\(92\) 5.42463 9.31691i 0.565557 0.971355i
\(93\) 3.69181 0.382823
\(94\) 3.06287 + 0.826697i 0.315911 + 0.0852673i
\(95\) 0 0
\(96\) 2.80998 0.725472i 0.286792 0.0740432i
\(97\) 18.6691i 1.89556i 0.318931 + 0.947778i \(0.396676\pi\)
−0.318931 + 0.947778i \(0.603324\pi\)
\(98\) 2.11001 7.81749i 0.213144 0.789686i
\(99\) 10.9414i 1.09965i
\(100\) 0 0
\(101\) 1.76372i 0.175497i 0.996143 + 0.0877485i \(0.0279672\pi\)
−0.996143 + 0.0877485i \(0.972033\pi\)
\(102\) 2.05923 + 0.555807i 0.203895 + 0.0550331i
\(103\) 3.89194i 0.383484i −0.981445 0.191742i \(-0.938586\pi\)
0.981445 0.191742i \(-0.0614137\pi\)
\(104\) 2.26010 2.23545i 0.221621 0.219203i
\(105\) 0 0
\(106\) −0.606196 + 2.24592i −0.0588789 + 0.218143i
\(107\) −16.0146 −1.54819 −0.774094 0.633071i \(-0.781794\pi\)
−0.774094 + 0.633071i \(0.781794\pi\)
\(108\) 5.08687 + 2.96175i 0.489484 + 0.284995i
\(109\) 15.6094i 1.49511i 0.664199 + 0.747556i \(0.268773\pi\)
−0.664199 + 0.747556i \(0.731227\pi\)
\(110\) 0 0
\(111\) −5.44710 −0.517016
\(112\) −3.92698 + 2.22912i −0.371065 + 0.210632i
\(113\) 2.97052i 0.279443i −0.990191 0.139722i \(-0.955379\pi\)
0.990191 0.139722i \(-0.0446208\pi\)
\(114\) −2.27077 0.612903i −0.212677 0.0574036i
\(115\) 0 0
\(116\) 7.39718 12.7048i 0.686811 1.17961i
\(117\) 3.07590 0.284367
\(118\) −7.57824 2.04544i −0.697634 0.188298i
\(119\) −3.31872 −0.304227
\(120\) 0 0
\(121\) −4.98293 −0.452994
\(122\) 9.07974 + 2.45071i 0.822041 + 0.221876i
\(123\) 1.06925 0.0964114
\(124\) −12.4377 7.24165i −1.11694 0.650320i
\(125\) 0 0
\(126\) −4.21832 1.13856i −0.375798 0.101431i
\(127\) 12.2692i 1.08871i 0.838855 + 0.544356i \(0.183226\pi\)
−0.838855 + 0.544356i \(0.816774\pi\)
\(128\) −10.8898 3.06779i −0.962535 0.271157i
\(129\) −3.21158 −0.282764
\(130\) 0 0
\(131\) 13.2639i 1.15887i −0.815019 0.579434i \(-0.803274\pi\)
0.815019 0.579434i \(-0.196726\pi\)
\(132\) 2.06399 3.54494i 0.179647 0.308547i
\(133\) 3.65964 0.317331
\(134\) −2.50517 + 9.28151i −0.216413 + 0.801800i
\(135\) 0 0
\(136\) −5.84730 5.91179i −0.501402 0.506932i
\(137\) 13.3863i 1.14367i −0.820368 0.571836i \(-0.806231\pi\)
0.820368 0.571836i \(-0.193769\pi\)
\(138\) 3.77587 + 1.01914i 0.321424 + 0.0867552i
\(139\) 20.2594i 1.71838i −0.511657 0.859190i \(-0.670968\pi\)
0.511657 0.859190i \(-0.329032\pi\)
\(140\) 0 0
\(141\) 1.15086i 0.0969201i
\(142\) −1.20814 + 4.47608i −0.101385 + 0.375624i
\(143\) 4.49321i 0.375741i
\(144\) −5.40414 9.52033i −0.450345 0.793361i
\(145\) 0 0
\(146\) −9.52770 2.57162i −0.788518 0.212828i
\(147\) 2.93739 0.242272
\(148\) 18.3512 + 10.6847i 1.50846 + 0.878279i
\(149\) 14.8567i 1.21711i 0.793512 + 0.608555i \(0.208251\pi\)
−0.793512 + 0.608555i \(0.791749\pi\)
\(150\) 0 0
\(151\) 10.1436 0.825477 0.412739 0.910850i \(-0.364572\pi\)
0.412739 + 0.910850i \(0.364572\pi\)
\(152\) 6.44798 + 6.51909i 0.523000 + 0.528768i
\(153\) 8.04570i 0.650456i
\(154\) −1.66319 + 6.16203i −0.134024 + 0.496551i
\(155\) 0 0
\(156\) 0.996573 + 0.580240i 0.0797897 + 0.0464564i
\(157\) −7.49744 −0.598361 −0.299180 0.954197i \(-0.596713\pi\)
−0.299180 + 0.954197i \(0.596713\pi\)
\(158\) −3.17051 + 11.7466i −0.252232 + 0.934508i
\(159\) −0.843898 −0.0669255
\(160\) 0 0
\(161\) −6.08530 −0.479589
\(162\) 2.46928 9.14856i 0.194005 0.718778i
\(163\) −8.95189 −0.701166 −0.350583 0.936532i \(-0.614017\pi\)
−0.350583 + 0.936532i \(0.614017\pi\)
\(164\) −3.60231 2.09739i −0.281293 0.163779i
\(165\) 0 0
\(166\) 4.96623 18.3996i 0.385454 1.42809i
\(167\) 2.49946i 0.193414i −0.995313 0.0967070i \(-0.969169\pi\)
0.995313 0.0967070i \(-0.0308310\pi\)
\(168\) −1.15193 1.16463i −0.0888734 0.0898535i
\(169\) −11.7368 −0.902834
\(170\) 0 0
\(171\) 8.87221i 0.678475i
\(172\) 10.8198 + 6.29967i 0.825002 + 0.480345i
\(173\) 0.589561 0.0448235 0.0224118 0.999749i \(-0.492866\pi\)
0.0224118 + 0.999749i \(0.492866\pi\)
\(174\) 5.14889 + 1.38973i 0.390336 + 0.105355i
\(175\) 0 0
\(176\) −13.9071 + 7.89426i −1.04829 + 0.595052i
\(177\) 2.84750i 0.214031i
\(178\) 4.05042 15.0066i 0.303592 1.12479i
\(179\) 10.3029i 0.770077i −0.922901 0.385038i \(-0.874188\pi\)
0.922901 0.385038i \(-0.125812\pi\)
\(180\) 0 0
\(181\) 17.8021i 1.32322i −0.749848 0.661610i \(-0.769873\pi\)
0.749848 0.661610i \(-0.230127\pi\)
\(182\) −1.73231 0.467565i −0.128407 0.0346583i
\(183\) 3.41168i 0.252199i
\(184\) −10.7218 10.8400i −0.790420 0.799137i
\(185\) 0 0
\(186\) 1.36051 5.04063i 0.0997577 0.369597i
\(187\) −11.7530 −0.859464
\(188\) 2.25747 3.87724i 0.164643 0.282777i
\(189\) 3.32247i 0.241674i
\(190\) 0 0
\(191\) −18.9069 −1.36806 −0.684029 0.729455i \(-0.739774\pi\)
−0.684029 + 0.729455i \(0.739774\pi\)
\(192\) 0.0450121 4.10397i 0.00324847 0.296179i
\(193\) 10.2705i 0.739288i 0.929173 + 0.369644i \(0.120520\pi\)
−0.929173 + 0.369644i \(0.879480\pi\)
\(194\) 25.4899 + 6.87995i 1.83007 + 0.493952i
\(195\) 0 0
\(196\) −9.89606 5.76183i −0.706861 0.411559i
\(197\) 0.207142 0.0147583 0.00737913 0.999973i \(-0.497651\pi\)
0.00737913 + 0.999973i \(0.497651\pi\)
\(198\) −14.9388 4.03213i −1.06166 0.286551i
\(199\) 12.2911 0.871295 0.435647 0.900117i \(-0.356519\pi\)
0.435647 + 0.900117i \(0.356519\pi\)
\(200\) 0 0
\(201\) −3.48750 −0.245989
\(202\) 2.40811 + 0.649970i 0.169434 + 0.0457318i
\(203\) −8.29809 −0.582412
\(204\) 1.51775 2.60676i 0.106263 0.182510i
\(205\) 0 0
\(206\) −5.31387 1.43426i −0.370235 0.0999299i
\(207\) 14.7528i 1.02539i
\(208\) −2.21928 3.90964i −0.153879 0.271085i
\(209\) 12.9603 0.896485
\(210\) 0 0
\(211\) 3.91559i 0.269560i 0.990876 + 0.134780i \(0.0430328\pi\)
−0.990876 + 0.134780i \(0.956967\pi\)
\(212\) 2.84309 + 1.65534i 0.195264 + 0.113689i
\(213\) −1.68187 −0.115240
\(214\) −5.90172 + 21.8656i −0.403433 + 1.49470i
\(215\) 0 0
\(216\) 5.91846 5.85390i 0.402700 0.398308i
\(217\) 8.12363i 0.551468i
\(218\) 21.3124 + 5.75241i 1.44346 + 0.389603i
\(219\) 3.58000i 0.241914i
\(220\) 0 0
\(221\) 3.30407i 0.222256i
\(222\) −2.00737 + 7.43722i −0.134726 + 0.499153i
\(223\) 23.8519i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(224\) 1.59636 + 6.18320i 0.106661 + 0.413133i
\(225\) 0 0
\(226\) −4.05582 1.09470i −0.269789 0.0728185i
\(227\) 24.7012 1.63948 0.819738 0.572738i \(-0.194119\pi\)
0.819738 + 0.572738i \(0.194119\pi\)
\(228\) −1.67366 + 2.87454i −0.110841 + 0.190371i
\(229\) 22.0732i 1.45864i 0.684175 + 0.729318i \(0.260163\pi\)
−0.684175 + 0.729318i \(0.739837\pi\)
\(230\) 0 0
\(231\) −2.31536 −0.152340
\(232\) −14.6205 14.7818i −0.959884 0.970470i
\(233\) 19.6085i 1.28460i 0.766454 + 0.642299i \(0.222019\pi\)
−0.766454 + 0.642299i \(0.777981\pi\)
\(234\) 1.13354 4.19969i 0.0741016 0.274543i
\(235\) 0 0
\(236\) −5.58550 + 9.59320i −0.363585 + 0.624464i
\(237\) −4.41374 −0.286703
\(238\) −1.22302 + 4.53123i −0.0792767 + 0.293716i
\(239\) 12.3845 0.801088 0.400544 0.916278i \(-0.368821\pi\)
0.400544 + 0.916278i \(0.368821\pi\)
\(240\) 0 0
\(241\) −20.4095 −1.31469 −0.657347 0.753588i \(-0.728321\pi\)
−0.657347 + 0.753588i \(0.728321\pi\)
\(242\) −1.83632 + 6.80346i −0.118043 + 0.437343i
\(243\) 12.2669 0.786925
\(244\) 6.69216 11.4939i 0.428422 0.735823i
\(245\) 0 0
\(246\) 0.394043 1.45991i 0.0251233 0.0930805i
\(247\) 3.64348i 0.231829i
\(248\) −14.4710 + 14.3131i −0.918908 + 0.908885i
\(249\) 6.91359 0.438131
\(250\) 0 0
\(251\) 22.2016i 1.40135i −0.713479 0.700676i \(-0.752882\pi\)
0.713479 0.700676i \(-0.247118\pi\)
\(252\) −3.10908 + 5.33991i −0.195854 + 0.336383i
\(253\) −21.5506 −1.35488
\(254\) 16.7517 + 4.52145i 1.05110 + 0.283701i
\(255\) 0 0
\(256\) −8.20176 + 13.7379i −0.512610 + 0.858621i
\(257\) 13.0592i 0.814614i 0.913291 + 0.407307i \(0.133532\pi\)
−0.913291 + 0.407307i \(0.866468\pi\)
\(258\) −1.18354 + 4.38495i −0.0736839 + 0.272995i
\(259\) 11.9860i 0.744776i
\(260\) 0 0
\(261\) 20.1174i 1.24523i
\(262\) −18.1099 4.88802i −1.11883 0.301983i
\(263\) 29.2389i 1.80295i −0.432835 0.901473i \(-0.642487\pi\)
0.432835 0.901473i \(-0.357513\pi\)
\(264\) −4.07947 4.12446i −0.251074 0.253843i
\(265\) 0 0
\(266\) 1.34866 4.99671i 0.0826915 0.306368i
\(267\) 5.63867 0.345081
\(268\) 11.7493 + 6.84088i 0.717705 + 0.417873i
\(269\) 21.4247i 1.30629i 0.757235 + 0.653143i \(0.226550\pi\)
−0.757235 + 0.653143i \(0.773450\pi\)
\(270\) 0 0
\(271\) 1.15797 0.0703415 0.0351708 0.999381i \(-0.488802\pi\)
0.0351708 + 0.999381i \(0.488802\pi\)
\(272\) −10.2265 + 5.80502i −0.620075 + 0.351981i
\(273\) 0.650908i 0.0393947i
\(274\) −18.2771 4.93316i −1.10416 0.298023i
\(275\) 0 0
\(276\) 2.78298 4.77983i 0.167516 0.287712i
\(277\) 16.8055 1.00975 0.504873 0.863194i \(-0.331539\pi\)
0.504873 + 0.863194i \(0.331539\pi\)
\(278\) −27.6612 7.46603i −1.65901 0.447783i
\(279\) −19.6944 −1.17907
\(280\) 0 0
\(281\) 8.99127 0.536374 0.268187 0.963367i \(-0.413575\pi\)
0.268187 + 0.963367i \(0.413575\pi\)
\(282\) 1.57133 + 0.424118i 0.0935716 + 0.0252559i
\(283\) −15.4397 −0.917798 −0.458899 0.888489i \(-0.651756\pi\)
−0.458899 + 0.888489i \(0.651756\pi\)
\(284\) 5.66621 + 3.29907i 0.336228 + 0.195764i
\(285\) 0 0
\(286\) −6.13482 1.65585i −0.362760 0.0979122i
\(287\) 2.35283i 0.138883i
\(288\) −14.9902 + 3.87012i −0.883304 + 0.228049i
\(289\) 8.35748 0.491616
\(290\) 0 0
\(291\) 9.57773i 0.561457i
\(292\) −7.02233 + 12.0610i −0.410951 + 0.705816i
\(293\) 1.62062 0.0946777 0.0473389 0.998879i \(-0.484926\pi\)
0.0473389 + 0.998879i \(0.484926\pi\)
\(294\) 1.08249 4.01058i 0.0631323 0.233902i
\(295\) 0 0
\(296\) 21.3513 21.1184i 1.24102 1.22748i
\(297\) 11.7663i 0.682748i
\(298\) 20.2847 + 5.47503i 1.17506 + 0.317160i
\(299\) 6.05843i 0.350368i
\(300\) 0 0
\(301\) 7.06691i 0.407330i
\(302\) 3.73815 13.8496i 0.215106 0.796958i
\(303\) 0.904838i 0.0519816i
\(304\) 11.2771 6.40135i 0.646785 0.367142i
\(305\) 0 0
\(306\) −10.9852 2.96502i −0.627984 0.169499i
\(307\) 13.3243 0.760458 0.380229 0.924892i \(-0.375845\pi\)
0.380229 + 0.924892i \(0.375845\pi\)
\(308\) 7.80044 + 4.54169i 0.444471 + 0.258787i
\(309\) 1.99667i 0.113587i
\(310\) 0 0
\(311\) −3.20457 −0.181714 −0.0908572 0.995864i \(-0.528961\pi\)
−0.0908572 + 0.995864i \(0.528961\pi\)
\(312\) 1.15949 1.14684i 0.0656433 0.0649273i
\(313\) 24.2715i 1.37190i 0.727647 + 0.685952i \(0.240614\pi\)
−0.727647 + 0.685952i \(0.759386\pi\)
\(314\) −2.76297 + 10.2367i −0.155923 + 0.577688i
\(315\) 0 0
\(316\) 14.8698 + 8.65775i 0.836494 + 0.487036i
\(317\) 3.79177 0.212967 0.106483 0.994314i \(-0.466041\pi\)
0.106483 + 0.994314i \(0.466041\pi\)
\(318\) −0.310995 + 1.15222i −0.0174397 + 0.0646133i
\(319\) −29.3870 −1.64536
\(320\) 0 0
\(321\) −8.21591 −0.458567
\(322\) −2.24257 + 8.30859i −0.124973 + 0.463020i
\(323\) 9.53034 0.530282
\(324\) −11.5810 6.74288i −0.643391 0.374605i
\(325\) 0 0
\(326\) −3.29897 + 12.2225i −0.182713 + 0.676941i
\(327\) 8.00806i 0.442847i
\(328\) −4.19121 + 4.14549i −0.231421 + 0.228896i
\(329\) −2.53241 −0.139616
\(330\) 0 0
\(331\) 2.26196i 0.124328i 0.998066 + 0.0621642i \(0.0198002\pi\)
−0.998066 + 0.0621642i \(0.980200\pi\)
\(332\) −23.2918 13.5613i −1.27830 0.744274i
\(333\) 29.0582 1.59238
\(334\) −3.41265 0.921106i −0.186732 0.0504007i
\(335\) 0 0
\(336\) −2.01465 + 1.14360i −0.109908 + 0.0623885i
\(337\) 28.6654i 1.56150i −0.624843 0.780751i \(-0.714837\pi\)
0.624843 0.780751i \(-0.285163\pi\)
\(338\) −4.32528 + 16.0249i −0.235264 + 0.871642i
\(339\) 1.52396i 0.0827701i
\(340\) 0 0
\(341\) 28.7692i 1.55794i
\(342\) 12.1137 + 3.26960i 0.655034 + 0.176800i
\(343\) 14.3658i 0.775679i
\(344\) 12.5886 12.4513i 0.678732 0.671329i
\(345\) 0 0
\(346\) 0.217266 0.804960i 0.0116803 0.0432749i
\(347\) −3.03845 −0.163112 −0.0815562 0.996669i \(-0.525989\pi\)
−0.0815562 + 0.996669i \(0.525989\pi\)
\(348\) 3.79495 6.51791i 0.203431 0.349396i
\(349\) 26.1606i 1.40035i −0.713973 0.700173i \(-0.753106\pi\)
0.713973 0.700173i \(-0.246894\pi\)
\(350\) 0 0
\(351\) 3.30780 0.176557
\(352\) 5.65339 + 21.8973i 0.301327 + 1.16713i
\(353\) 29.4943i 1.56983i −0.619606 0.784913i \(-0.712708\pi\)
0.619606 0.784913i \(-0.287292\pi\)
\(354\) −3.88784 1.04937i −0.206637 0.0557731i
\(355\) 0 0
\(356\) −18.9966 11.0605i −1.00682 0.586206i
\(357\) −1.70259 −0.0901108
\(358\) −14.0671 3.79685i −0.743472 0.200670i
\(359\) −8.91327 −0.470424 −0.235212 0.971944i \(-0.575578\pi\)
−0.235212 + 0.971944i \(0.575578\pi\)
\(360\) 0 0
\(361\) 8.49064 0.446876
\(362\) −24.3062 6.56046i −1.27750 0.344810i
\(363\) −2.55638 −0.134175
\(364\) −1.27678 + 2.19290i −0.0669217 + 0.114939i
\(365\) 0 0
\(366\) 4.65815 + 1.25728i 0.243485 + 0.0657190i
\(367\) 22.6852i 1.18416i −0.805880 0.592079i \(-0.798307\pi\)
0.805880 0.592079i \(-0.201693\pi\)
\(368\) −18.7517 + 10.6442i −0.977499 + 0.554870i
\(369\) −5.70406 −0.296942
\(370\) 0 0
\(371\) 1.85695i 0.0964081i
\(372\) −6.38087 3.71516i −0.330833 0.192622i
\(373\) −6.46312 −0.334648 −0.167324 0.985902i \(-0.553513\pi\)
−0.167324 + 0.985902i \(0.553513\pi\)
\(374\) −4.33123 + 16.0470i −0.223963 + 0.829770i
\(375\) 0 0
\(376\) −4.46189 4.51109i −0.230104 0.232642i
\(377\) 8.26145i 0.425486i
\(378\) −4.53635 1.22440i −0.233324 0.0629764i
\(379\) 4.31785i 0.221793i 0.993832 + 0.110897i \(0.0353722\pi\)
−0.993832 + 0.110897i \(0.964628\pi\)
\(380\) 0 0
\(381\) 6.29441i 0.322472i
\(382\) −6.96762 + 25.8147i −0.356494 + 1.32079i
\(383\) 11.1049i 0.567432i −0.958908 0.283716i \(-0.908433\pi\)
0.958908 0.283716i \(-0.0915673\pi\)
\(384\) −5.58678 1.57386i −0.285099 0.0803157i
\(385\) 0 0
\(386\) 14.0229 + 3.78491i 0.713746 + 0.192647i
\(387\) 17.1326 0.870898
\(388\) 18.7871 32.2673i 0.953773 1.63812i
\(389\) 15.5490i 0.788368i 0.919032 + 0.394184i \(0.128973\pi\)
−0.919032 + 0.394184i \(0.871027\pi\)
\(390\) 0 0
\(391\) −15.8472 −0.801426
\(392\) −11.5139 + 11.3883i −0.581537 + 0.575194i
\(393\) 6.80472i 0.343253i
\(394\) 0.0763364 0.282822i 0.00384577 0.0142484i
\(395\) 0 0
\(396\) −11.0106 + 18.9109i −0.553302 + 0.950308i
\(397\) 26.9682 1.35350 0.676748 0.736214i \(-0.263389\pi\)
0.676748 + 0.736214i \(0.263389\pi\)
\(398\) 4.52955 16.7817i 0.227046 0.841193i
\(399\) 1.87750 0.0939924
\(400\) 0 0
\(401\) 36.1092 1.80321 0.901603 0.432565i \(-0.142391\pi\)
0.901603 + 0.432565i \(0.142391\pi\)
\(402\) −1.28522 + 4.76167i −0.0641009 + 0.237490i
\(403\) −8.08775 −0.402880
\(404\) 1.77488 3.04839i 0.0883035 0.151663i
\(405\) 0 0
\(406\) −3.05803 + 11.3298i −0.151767 + 0.562290i
\(407\) 42.4476i 2.10405i
\(408\) −2.99982 3.03291i −0.148513 0.150151i
\(409\) −15.5149 −0.767163 −0.383581 0.923507i \(-0.625309\pi\)
−0.383581 + 0.923507i \(0.625309\pi\)
\(410\) 0 0
\(411\) 6.86755i 0.338751i
\(412\) −3.91656 + 6.72676i −0.192955 + 0.331404i
\(413\) 6.26576 0.308318
\(414\) −20.1428 5.43674i −0.989966 0.267201i
\(415\) 0 0
\(416\) −6.15590 + 1.58931i −0.301818 + 0.0779225i
\(417\) 10.3936i 0.508978i
\(418\) 4.77617 17.6955i 0.233610 0.865513i
\(419\) 26.9362i 1.31592i 0.753054 + 0.657959i \(0.228580\pi\)
−0.753054 + 0.657959i \(0.771420\pi\)
\(420\) 0 0
\(421\) 6.14641i 0.299557i 0.988720 + 0.149779i \(0.0478561\pi\)
−0.988720 + 0.149779i \(0.952144\pi\)
\(422\) 5.34616 + 1.44298i 0.260247 + 0.0702431i
\(423\) 6.13941i 0.298508i
\(424\) 3.30787 3.27179i 0.160644 0.158892i
\(425\) 0 0
\(426\) −0.619807 + 2.29635i −0.0300297 + 0.111259i
\(427\) −7.50721 −0.363299
\(428\) 27.6793 + 16.1159i 1.33793 + 0.778990i
\(429\) 2.30514i 0.111293i
\(430\) 0 0
\(431\) 36.8901 1.77693 0.888467 0.458940i \(-0.151771\pi\)
0.888467 + 0.458940i \(0.151771\pi\)
\(432\) −5.81157 10.2381i −0.279609 0.492580i
\(433\) 11.5824i 0.556617i 0.960492 + 0.278308i \(0.0897737\pi\)
−0.960492 + 0.278308i \(0.910226\pi\)
\(434\) 11.0916 + 2.99373i 0.532415 + 0.143704i
\(435\) 0 0
\(436\) 15.7082 26.9791i 0.752284 1.29206i
\(437\) 17.4751 0.835948
\(438\) −4.88797 1.31931i −0.233556 0.0630390i
\(439\) 4.15174 0.198152 0.0990760 0.995080i \(-0.468411\pi\)
0.0990760 + 0.995080i \(0.468411\pi\)
\(440\) 0 0
\(441\) −15.6699 −0.746185
\(442\) −4.51122 1.21762i −0.214577 0.0579163i
\(443\) 15.7327 0.747482 0.373741 0.927533i \(-0.378075\pi\)
0.373741 + 0.927533i \(0.378075\pi\)
\(444\) 9.41468 + 5.48155i 0.446801 + 0.260143i
\(445\) 0 0
\(446\) 32.5663 + 8.78995i 1.54206 + 0.416216i
\(447\) 7.62190i 0.360504i
\(448\) 9.03056 + 0.0990465i 0.426654 + 0.00467951i
\(449\) 20.6861 0.976239 0.488120 0.872777i \(-0.337683\pi\)
0.488120 + 0.872777i \(0.337683\pi\)
\(450\) 0 0
\(451\) 8.33238i 0.392356i
\(452\) −2.98931 + 5.13420i −0.140605 + 0.241493i
\(453\) 5.20396 0.244503
\(454\) 9.10293 33.7259i 0.427222 1.58283i
\(455\) 0 0
\(456\) 3.30799 + 3.34447i 0.154911 + 0.156619i
\(457\) 28.7187i 1.34340i 0.740821 + 0.671702i \(0.234436\pi\)
−0.740821 + 0.671702i \(0.765564\pi\)
\(458\) 30.1377 + 8.13444i 1.40824 + 0.380098i
\(459\) 8.65228i 0.403854i
\(460\) 0 0
\(461\) 27.7063i 1.29041i 0.764008 + 0.645207i \(0.223229\pi\)
−0.764008 + 0.645207i \(0.776771\pi\)
\(462\) −0.853262 + 3.16129i −0.0396973 + 0.147077i
\(463\) 26.9572i 1.25281i −0.779499 0.626404i \(-0.784526\pi\)
0.779499 0.626404i \(-0.215474\pi\)
\(464\) −25.5703 + 14.5148i −1.18707 + 0.673832i
\(465\) 0 0
\(466\) 26.7726 + 7.22617i 1.24022 + 0.334746i
\(467\) 31.3052 1.44863 0.724316 0.689468i \(-0.242156\pi\)
0.724316 + 0.689468i \(0.242156\pi\)
\(468\) −5.31633 3.09536i −0.245748 0.143083i
\(469\) 7.67404i 0.354354i
\(470\) 0 0
\(471\) −3.84639 −0.177232
\(472\) 11.0397 + 11.1615i 0.508145 + 0.513749i
\(473\) 25.0269i 1.15074i
\(474\) −1.62656 + 6.02632i −0.0747103 + 0.276798i
\(475\) 0 0
\(476\) 5.73602 + 3.33971i 0.262910 + 0.153076i
\(477\) 4.50187 0.206127
\(478\) 4.56397 16.9093i 0.208751 0.773411i
\(479\) 32.6888 1.49359 0.746794 0.665056i \(-0.231592\pi\)
0.746794 + 0.665056i \(0.231592\pi\)
\(480\) 0 0
\(481\) 11.9331 0.544103
\(482\) −7.52136 + 27.8662i −0.342589 + 1.26927i
\(483\) −3.12193 −0.142053
\(484\) 8.61241 + 5.01445i 0.391473 + 0.227929i
\(485\) 0 0
\(486\) 4.52064 16.7487i 0.205060 0.759738i
\(487\) 17.6043i 0.797726i 0.917011 + 0.398863i \(0.130595\pi\)
−0.917011 + 0.398863i \(0.869405\pi\)
\(488\) −13.2271 13.3729i −0.598761 0.605364i
\(489\) −4.59256 −0.207683
\(490\) 0 0
\(491\) 1.31132i 0.0591790i 0.999562 + 0.0295895i \(0.00942000\pi\)
−0.999562 + 0.0295895i \(0.990580\pi\)
\(492\) −1.84808 1.07602i −0.0833179 0.0485106i
\(493\) −21.6097 −0.973250
\(494\) 4.97465 + 1.34270i 0.223820 + 0.0604111i
\(495\) 0 0
\(496\) 14.2096 + 25.0327i 0.638031 + 1.12400i
\(497\) 3.70087i 0.166007i
\(498\) 2.54781 9.43950i 0.114170 0.422994i
\(499\) 21.2655i 0.951973i −0.879453 0.475987i \(-0.842091\pi\)
0.879453 0.475987i \(-0.157909\pi\)
\(500\) 0 0
\(501\) 1.28229i 0.0572885i
\(502\) −30.3130 8.18177i −1.35294 0.365170i
\(503\) 34.4786i 1.53733i 0.639654 + 0.768663i \(0.279078\pi\)
−0.639654 + 0.768663i \(0.720922\pi\)
\(504\) 6.14511 + 6.21288i 0.273725 + 0.276743i
\(505\) 0 0
\(506\) −7.94188 + 29.4242i −0.353059 + 1.30807i
\(507\) −6.02132 −0.267416
\(508\) 12.3468 21.2058i 0.547799 0.940855i
\(509\) 8.61795i 0.381984i 0.981592 + 0.190992i \(0.0611704\pi\)
−0.981592 + 0.190992i \(0.938830\pi\)
\(510\) 0 0
\(511\) 7.87759 0.348484
\(512\) 15.7346 + 16.2610i 0.695379 + 0.718643i
\(513\) 9.54110i 0.421250i
\(514\) 17.8305 + 4.81262i 0.786470 + 0.212275i
\(515\) 0 0
\(516\) 5.55085 + 3.23190i 0.244363 + 0.142276i
\(517\) −8.96833 −0.394426
\(518\) −16.3652 4.41711i −0.719045 0.194077i
\(519\) 0.302461 0.0132766
\(520\) 0 0
\(521\) −5.28810 −0.231676 −0.115838 0.993268i \(-0.536955\pi\)
−0.115838 + 0.993268i \(0.536955\pi\)
\(522\) −27.4673 7.41369i −1.20221 0.324488i
\(523\) 18.0301 0.788400 0.394200 0.919025i \(-0.371022\pi\)
0.394200 + 0.919025i \(0.371022\pi\)
\(524\) −13.3478 + 22.9250i −0.583099 + 1.00148i
\(525\) 0 0
\(526\) −39.9214 10.7752i −1.74066 0.469819i
\(527\) 21.1553i 0.921540i
\(528\) −7.13472 + 4.04997i −0.310499 + 0.176252i
\(529\) −6.05785 −0.263385
\(530\) 0 0
\(531\) 15.1903i 0.659204i
\(532\) −6.32527 3.68279i −0.274235 0.159669i
\(533\) −2.34244 −0.101463
\(534\) 2.07797 7.69878i 0.0899227 0.333159i
\(535\) 0 0
\(536\) 13.6701 13.5210i 0.590459 0.584018i
\(537\) 5.28568i 0.228094i
\(538\) 29.2523 + 7.89546i 1.26115 + 0.340397i
\(539\) 22.8902i 0.985952i
\(540\) 0 0
\(541\) 2.53085i 0.108810i 0.998519 + 0.0544050i \(0.0173262\pi\)
−0.998519 + 0.0544050i \(0.982674\pi\)
\(542\) 0.426736 1.58104i 0.0183299 0.0679113i
\(543\) 9.13296i 0.391933i
\(544\) 4.15720 + 16.1021i 0.178238 + 0.690373i
\(545\) 0 0
\(546\) −0.888720 0.239874i −0.0380337 0.0102656i
\(547\) 37.9439 1.62236 0.811182 0.584794i \(-0.198825\pi\)
0.811182 + 0.584794i \(0.198825\pi\)
\(548\) −13.4710 + 23.1367i −0.575453 + 0.988352i
\(549\) 18.2000i 0.776757i
\(550\) 0 0
\(551\) 23.8295 1.01517
\(552\) −5.50057 5.56123i −0.234120 0.236702i
\(553\) 9.71219i 0.413004i
\(554\) 6.19320 22.9455i 0.263124 0.974860i
\(555\) 0 0
\(556\) −20.3875 + 35.0160i −0.864624 + 1.48501i
\(557\) 37.0123 1.56826 0.784130 0.620596i \(-0.213109\pi\)
0.784130 + 0.620596i \(0.213109\pi\)
\(558\) −7.25782 + 26.8898i −0.307248 + 1.13834i
\(559\) 7.03571 0.297579
\(560\) 0 0
\(561\) −6.02960 −0.254570
\(562\) 3.31348 12.2763i 0.139771 0.517843i
\(563\) −14.2506 −0.600590 −0.300295 0.953846i \(-0.597085\pi\)
−0.300295 + 0.953846i \(0.597085\pi\)
\(564\) 1.15814 1.98913i 0.0487666 0.0837576i
\(565\) 0 0
\(566\) −5.68988 + 21.0807i −0.239164 + 0.886089i
\(567\) 7.56411i 0.317663i
\(568\) 6.59252 6.52061i 0.276616 0.273599i
\(569\) −25.9576 −1.08820 −0.544101 0.839020i \(-0.683129\pi\)
−0.544101 + 0.839020i \(0.683129\pi\)
\(570\) 0 0
\(571\) 20.3690i 0.852416i 0.904625 + 0.426208i \(0.140151\pi\)
−0.904625 + 0.426208i \(0.859849\pi\)
\(572\) −4.52163 + 7.76599i −0.189059 + 0.324712i
\(573\) −9.69977 −0.405214
\(574\) 3.21245 + 0.867070i 0.134085 + 0.0361908i
\(575\) 0 0
\(576\) −0.240122 + 21.8931i −0.0100051 + 0.912213i
\(577\) 44.6310i 1.85801i −0.370063 0.929007i \(-0.620664\pi\)
0.370063 0.929007i \(-0.379336\pi\)
\(578\) 3.07991 11.4109i 0.128107 0.474632i
\(579\) 5.26905i 0.218974i
\(580\) 0 0
\(581\) 15.2130i 0.631140i
\(582\) 13.0770 + 3.52960i 0.542059 + 0.146307i
\(583\) 6.57625i 0.272360i
\(584\) 13.8796 + 14.0327i 0.574344 + 0.580678i
\(585\) 0 0
\(586\) 0.597234 2.21272i 0.0246715 0.0914067i
\(587\) −18.9398 −0.781729 −0.390865 0.920448i \(-0.627824\pi\)
−0.390865 + 0.920448i \(0.627824\pi\)
\(588\) −5.07694 2.95598i −0.209370 0.121902i
\(589\) 23.3285i 0.961236i
\(590\) 0 0
\(591\) 0.106270 0.00437134
\(592\) −20.9656 36.9346i −0.861683 1.51800i
\(593\) 8.22399i 0.337719i −0.985640 0.168859i \(-0.945992\pi\)
0.985640 0.168859i \(-0.0540084\pi\)
\(594\) −16.0651 4.33612i −0.659160 0.177913i
\(595\) 0 0
\(596\) 14.9507 25.6781i 0.612404 1.05182i
\(597\) 6.30568 0.258074
\(598\) −8.27191 2.23266i −0.338263 0.0913005i
\(599\) 37.2899 1.52362 0.761812 0.647798i \(-0.224310\pi\)
0.761812 + 0.647798i \(0.224310\pi\)
\(600\) 0 0
\(601\) 23.7882 0.970341 0.485170 0.874420i \(-0.338758\pi\)
0.485170 + 0.874420i \(0.338758\pi\)
\(602\) −9.64884 2.60431i −0.393257 0.106144i
\(603\) 18.6045 0.757632
\(604\) −17.5321 10.2078i −0.713370 0.415349i
\(605\) 0 0
\(606\) 1.23542 + 0.333452i 0.0501857 + 0.0135456i
\(607\) 32.6940i 1.32701i −0.748172 0.663505i \(-0.769068\pi\)
0.748172 0.663505i \(-0.230932\pi\)
\(608\) −4.58425 17.7562i −0.185916 0.720111i
\(609\) −4.25715 −0.172508
\(610\) 0 0
\(611\) 2.52123i 0.101998i
\(612\) −8.09659 + 13.9061i −0.327285 + 0.562119i
\(613\) 5.70642 0.230480 0.115240 0.993338i \(-0.463236\pi\)
0.115240 + 0.993338i \(0.463236\pi\)
\(614\) 4.91029 18.1924i 0.198163 0.734185i
\(615\) 0 0
\(616\) 9.07564 8.97665i 0.365668 0.361679i
\(617\) 18.9653i 0.763514i 0.924263 + 0.381757i \(0.124681\pi\)
−0.924263 + 0.381757i \(0.875319\pi\)
\(618\) −2.72616 0.735816i −0.109662 0.0295989i
\(619\) 32.0663i 1.28885i 0.764666 + 0.644427i \(0.222904\pi\)
−0.764666 + 0.644427i \(0.777096\pi\)
\(620\) 0 0
\(621\) 15.8651i 0.636643i
\(622\) −1.18095 + 4.37537i −0.0473519 + 0.175436i
\(623\) 12.4076i 0.497099i
\(624\) −1.13855 2.00575i −0.0455785 0.0802944i
\(625\) 0 0
\(626\) 33.1391 + 8.94456i 1.32451 + 0.357497i
\(627\) 6.64901 0.265536
\(628\) 12.9585 + 7.54486i 0.517098 + 0.301073i
\(629\) 31.2137i 1.24457i
\(630\) 0 0
\(631\) −11.4737 −0.456762 −0.228381 0.973572i \(-0.573343\pi\)
−0.228381 + 0.973572i \(0.573343\pi\)
\(632\) 17.3008 17.1120i 0.688187 0.680680i
\(633\) 2.00880i 0.0798427i
\(634\) 1.39735 5.17711i 0.0554958 0.205609i
\(635\) 0 0
\(636\) 1.45858 + 0.849236i 0.0578365 + 0.0336744i
\(637\) −6.43503 −0.254965
\(638\) −10.8298 + 40.1237i −0.428754 + 1.58851i
\(639\) 8.97215 0.354933
\(640\) 0 0
\(641\) −0.258289 −0.0102018 −0.00510089 0.999987i \(-0.501624\pi\)
−0.00510089 + 0.999987i \(0.501624\pi\)
\(642\) −3.02774 + 11.2176i −0.119495 + 0.442724i
\(643\) −31.8119 −1.25454 −0.627269 0.778802i \(-0.715827\pi\)
−0.627269 + 0.778802i \(0.715827\pi\)
\(644\) 10.5177 + 6.12380i 0.414457 + 0.241311i
\(645\) 0 0
\(646\) 3.51214 13.0123i 0.138183 0.511962i
\(647\) 24.3294i 0.956486i −0.878228 0.478243i \(-0.841274\pi\)
0.878228 0.478243i \(-0.158726\pi\)
\(648\) −13.4743 + 13.3273i −0.529320 + 0.523546i
\(649\) 22.1897 0.871022
\(650\) 0 0
\(651\) 4.16764i 0.163343i
\(652\) 15.4723 + 9.00851i 0.605942 + 0.352801i
\(653\) 39.3785 1.54100 0.770500 0.637440i \(-0.220007\pi\)
0.770500 + 0.637440i \(0.220007\pi\)
\(654\) 10.9338 + 2.95114i 0.427547 + 0.115399i
\(655\) 0 0
\(656\) 4.11551 + 7.25019i 0.160684 + 0.283072i
\(657\) 19.0979i 0.745082i
\(658\) −0.933248 + 3.45763i −0.0363818 + 0.134793i
\(659\) 33.7063i 1.31301i 0.754321 + 0.656506i \(0.227966\pi\)
−0.754321 + 0.656506i \(0.772034\pi\)
\(660\) 0 0
\(661\) 32.9163i 1.28029i −0.768252 0.640147i \(-0.778873\pi\)
0.768252 0.640147i \(-0.221127\pi\)
\(662\) 3.08837 + 0.833580i 0.120033 + 0.0323980i
\(663\) 1.69508i 0.0658313i
\(664\) −27.0995 + 26.8039i −1.05167 + 1.04019i
\(665\) 0 0
\(666\) 10.7086 39.6747i 0.414949 1.53736i
\(667\) −39.6241 −1.53425
\(668\) −2.51527 + 4.32003i −0.0973187 + 0.167147i
\(669\) 12.2367i 0.473097i
\(670\) 0 0
\(671\) −26.5862 −1.02635
\(672\) 0.818977 + 3.17215i 0.0315927 + 0.122368i
\(673\) 2.87683i 0.110894i −0.998462 0.0554468i \(-0.982342\pi\)
0.998462 0.0554468i \(-0.0176583\pi\)
\(674\) −39.1384 10.5638i −1.50755 0.406903i
\(675\) 0 0
\(676\) 20.2858 + 11.8111i 0.780222 + 0.454272i
\(677\) −28.6415 −1.10078 −0.550391 0.834907i \(-0.685521\pi\)
−0.550391 + 0.834907i \(0.685521\pi\)
\(678\) −2.08074 0.561612i −0.0799105 0.0215686i
\(679\) −21.0753 −0.808794
\(680\) 0 0
\(681\) 12.6724 0.485607
\(682\) 39.2801 + 10.6021i 1.50411 + 0.405974i
\(683\) 18.3147 0.700792 0.350396 0.936602i \(-0.386047\pi\)
0.350396 + 0.936602i \(0.386047\pi\)
\(684\) 8.92833 15.3346i 0.341383 0.586332i
\(685\) 0 0
\(686\) 19.6144 + 5.29410i 0.748881 + 0.202130i
\(687\) 11.3241i 0.432043i
\(688\) −12.3612 21.7765i −0.471268 0.830220i
\(689\) 1.84875 0.0704318
\(690\) 0 0
\(691\) 14.4710i 0.550502i 0.961372 + 0.275251i \(0.0887610\pi\)
−0.961372 + 0.275251i \(0.911239\pi\)
\(692\) −1.01899 0.593291i −0.0387361 0.0225535i
\(693\) 12.3516 0.469198
\(694\) −1.11973 + 4.14856i −0.0425045 + 0.157477i
\(695\) 0 0
\(696\) −7.50073 7.58344i −0.284314 0.287450i
\(697\) 6.12718i 0.232084i
\(698\) −35.7185 9.64076i −1.35197 0.364908i
\(699\) 10.0597i 0.380493i
\(700\) 0 0
\(701\) 18.5603i 0.701013i −0.936560 0.350506i \(-0.886009\pi\)
0.936560 0.350506i \(-0.113991\pi\)
\(702\) 1.21900 4.51631i 0.0460080 0.170457i
\(703\) 34.4202i 1.29818i
\(704\) 31.9810 + 0.350765i 1.20533 + 0.0132200i
\(705\) 0 0
\(706\) −40.2702 10.8693i −1.51559 0.409072i
\(707\) −1.99104 −0.0748809
\(708\) −2.86551 + 4.92157i −0.107692 + 0.184964i
\(709\) 43.3934i 1.62967i −0.579690 0.814837i \(-0.696826\pi\)
0.579690 0.814837i \(-0.303174\pi\)
\(710\) 0 0
\(711\) 23.5456 0.883029
\(712\) −22.1022 + 21.8611i −0.828314 + 0.819279i
\(713\) 38.7910i 1.45273i
\(714\) −0.627443 + 2.32464i −0.0234815 + 0.0869976i
\(715\) 0 0
\(716\) −10.3681 + 17.8074i −0.387474 + 0.665494i
\(717\) 6.35359 0.237279
\(718\) −3.28473 + 12.1698i −0.122585 + 0.454172i
\(719\) −14.8496 −0.553797 −0.276899 0.960899i \(-0.589307\pi\)
−0.276899 + 0.960899i \(0.589307\pi\)
\(720\) 0 0
\(721\) 4.39356 0.163625
\(722\) 3.12899 11.5927i 0.116449 0.431437i
\(723\) −10.4706 −0.389408
\(724\) −17.9147 + 30.7689i −0.665795 + 1.14352i
\(725\) 0 0
\(726\) −0.942081 + 3.49036i −0.0349639 + 0.129539i
\(727\) 6.22824i 0.230993i 0.993308 + 0.115496i \(0.0368459\pi\)
−0.993308 + 0.115496i \(0.963154\pi\)
\(728\) 2.52357 + 2.55140i 0.0935296 + 0.0945610i
\(729\) −13.8082 −0.511416
\(730\) 0 0
\(731\) 18.4035i 0.680676i
\(732\) 3.43326 5.89669i 0.126897 0.217948i
\(733\) −43.2406 −1.59713 −0.798564 0.601910i \(-0.794407\pi\)
−0.798564 + 0.601910i \(0.794407\pi\)
\(734\) −30.9733 8.35999i −1.14325 0.308573i
\(735\) 0 0
\(736\) 7.62276 + 29.5253i 0.280979 + 1.08832i
\(737\) 27.1770i 1.00108i
\(738\) −2.10207 + 7.78806i −0.0773783 + 0.286683i
\(739\) 10.0469i 0.369582i 0.982778 + 0.184791i \(0.0591608\pi\)
−0.982778 + 0.184791i \(0.940839\pi\)
\(740\) 0 0
\(741\) 1.86921i 0.0686670i
\(742\) −2.53540 0.684327i −0.0930773 0.0251224i
\(743\) 5.85860i 0.214931i −0.994209 0.107466i \(-0.965726\pi\)
0.994209 0.107466i \(-0.0342736\pi\)
\(744\) −7.42400 + 7.34302i −0.272177 + 0.269208i
\(745\) 0 0
\(746\) −2.38180 + 8.82445i −0.0872039 + 0.323086i
\(747\) −36.8814 −1.34942
\(748\) 20.3137 + 11.8273i 0.742742 + 0.432450i
\(749\) 18.0786i 0.660579i
\(750\) 0 0
\(751\) −16.0419 −0.585377 −0.292688 0.956208i \(-0.594550\pi\)
−0.292688 + 0.956208i \(0.594550\pi\)
\(752\) −7.80354 + 4.42962i −0.284566 + 0.161532i
\(753\) 11.3900i 0.415075i
\(754\) −11.2798 3.04452i −0.410786 0.110875i
\(755\) 0 0
\(756\) −3.34348 + 5.74250i −0.121601 + 0.208853i
\(757\) 15.5665 0.565773 0.282886 0.959153i \(-0.408708\pi\)
0.282886 + 0.959153i \(0.408708\pi\)
\(758\) 5.89540 + 1.59122i 0.214130 + 0.0577958i
\(759\) −11.0561 −0.401309
\(760\) 0 0
\(761\) −26.9097 −0.975477 −0.487739 0.872990i \(-0.662178\pi\)
−0.487739 + 0.872990i \(0.662178\pi\)
\(762\) 8.59410 + 2.31963i 0.311331 + 0.0840312i
\(763\) −17.6213 −0.637933
\(764\) 32.6784 + 19.0265i 1.18226 + 0.688356i
\(765\) 0 0
\(766\) −15.1621 4.09238i −0.547828 0.147864i
\(767\) 6.23810i 0.225245i
\(768\) −4.20773 + 7.04794i −0.151833 + 0.254321i
\(769\) −17.0952 −0.616470 −0.308235 0.951310i \(-0.599738\pi\)
−0.308235 + 0.951310i \(0.599738\pi\)
\(770\) 0 0
\(771\) 6.69975i 0.241286i
\(772\) 10.3355 17.7514i 0.371982 0.638886i
\(773\) −6.32624 −0.227539 −0.113770 0.993507i \(-0.536293\pi\)
−0.113770 + 0.993507i \(0.536293\pi\)
\(774\) 6.31373 23.3920i 0.226942 0.840809i
\(775\) 0 0
\(776\) −37.1328 37.5423i −1.33299 1.34769i
\(777\) 6.14916i 0.220600i
\(778\) 21.2300 + 5.73016i 0.761131 + 0.205436i
\(779\) 6.75661i 0.242081i
\(780\) 0 0
\(781\) 13.1063i 0.468981i
\(782\) −5.84003 + 21.6370i −0.208839 + 0.773738i
\(783\) 21.6341i 0.773138i
\(784\) 11.3059 + 19.9173i 0.403782 + 0.711332i
\(785\) 0 0
\(786\) −9.29085 2.50769i −0.331394 0.0894462i
\(787\) 53.5766 1.90980 0.954899 0.296929i \(-0.0959626\pi\)
0.954899 + 0.296929i \(0.0959626\pi\)
\(788\) −0.358021 0.208452i −0.0127540 0.00742581i
\(789\) 15.0003i 0.534026i
\(790\) 0 0
\(791\) 3.35339 0.119233
\(792\) 21.7624 + 22.0024i 0.773294 + 0.781822i
\(793\) 7.47406i 0.265412i
\(794\) 9.93838 36.8212i 0.352700 1.30673i
\(795\) 0 0
\(796\) −21.2438 12.3689i −0.752966 0.438403i
\(797\) −41.6834 −1.47650 −0.738251 0.674527i \(-0.764348\pi\)
−0.738251 + 0.674527i \(0.764348\pi\)
\(798\) 0.691898 2.56345i 0.0244929 0.0907450i
\(799\) −6.59483 −0.233308
\(800\) 0 0
\(801\) −30.0802 −1.06283
\(802\) 13.3070 49.3018i 0.469887 1.74091i
\(803\) 27.8979 0.984495
\(804\) 6.02773 + 3.50956i 0.212582 + 0.123772i
\(805\) 0 0
\(806\) −2.98051 + 11.0426i −0.104984 + 0.388961i
\(807\) 10.9914i 0.386917i
\(808\) −3.50805 3.54674i −0.123413 0.124774i
\(809\) 26.9010 0.945788 0.472894 0.881119i \(-0.343209\pi\)
0.472894 + 0.881119i \(0.343209\pi\)
\(810\) 0 0
\(811\) 5.88980i 0.206819i 0.994639 + 0.103409i \(0.0329752\pi\)
−0.994639 + 0.103409i \(0.967025\pi\)
\(812\) 14.3423 + 8.35058i 0.503315 + 0.293048i
\(813\) 0.594069 0.0208349
\(814\) −57.9560 15.6429i −2.03136 0.548282i
\(815\) 0 0
\(816\) −5.24649 + 2.97813i −0.183664 + 0.104255i
\(817\) 20.2940i 0.709997i
\(818\) −5.71758 + 21.1833i −0.199911 + 0.740658i
\(819\) 3.47234i 0.121334i
\(820\) 0 0
\(821\) 48.2445i 1.68374i 0.539677 + 0.841872i \(0.318546\pi\)
−0.539677 + 0.841872i \(0.681454\pi\)
\(822\) −9.37664 2.53084i −0.327048 0.0882733i
\(823\) 51.9289i 1.81013i 0.425277 + 0.905063i \(0.360177\pi\)
−0.425277 + 0.905063i \(0.639823\pi\)
\(824\) 7.74107 + 7.82644i 0.269673 + 0.272647i
\(825\) 0 0
\(826\) 2.30907 8.55498i 0.0803428 0.297666i
\(827\) −28.2849 −0.983562 −0.491781 0.870719i \(-0.663654\pi\)
−0.491781 + 0.870719i \(0.663654\pi\)
\(828\) −14.8461 + 25.4985i −0.515939 + 0.886136i
\(829\) 14.2294i 0.494209i −0.968989 0.247104i \(-0.920521\pi\)
0.968989 0.247104i \(-0.0794790\pi\)
\(830\) 0 0
\(831\) 8.62168 0.299083
\(832\) −0.0986092 + 8.99068i −0.00341866 + 0.311696i
\(833\) 16.8323i 0.583203i
\(834\) −14.1910 3.83027i −0.491393 0.132632i
\(835\) 0 0
\(836\) −22.4004 13.0423i −0.774735 0.451078i
\(837\) −21.1792 −0.732060
\(838\) 36.7774 + 9.92656i 1.27045 + 0.342907i
\(839\) −5.04346 −0.174120 −0.0870598 0.996203i \(-0.527747\pi\)
−0.0870598 + 0.996203i \(0.527747\pi\)
\(840\) 0 0
\(841\) −25.0325 −0.863191
\(842\) 8.39202 + 2.26508i 0.289208 + 0.0780600i
\(843\) 4.61277 0.158872
\(844\) 3.94035 6.76763i 0.135633 0.232952i
\(845\) 0 0
\(846\) −8.38247 2.26251i −0.288195 0.0777866i
\(847\) 5.62517i 0.193283i
\(848\) −3.24813 5.72214i −0.111541 0.196499i
\(849\) −7.92101 −0.271848
\(850\) 0 0
\(851\) 57.2343i 1.96197i
\(852\) 2.90692 + 1.69251i 0.0995895 + 0.0579845i
\(853\) −46.2026 −1.58195 −0.790974 0.611850i \(-0.790426\pi\)
−0.790974 + 0.611850i \(0.790426\pi\)
\(854\) −2.76657 + 10.2500i −0.0946701 + 0.350748i
\(855\) 0 0
\(856\) 32.2043 31.8530i 1.10072 1.08871i
\(857\) 41.5405i 1.41900i 0.704707 + 0.709499i \(0.251079\pi\)
−0.704707 + 0.709499i \(0.748921\pi\)
\(858\) −3.14733 0.849494i −0.107448 0.0290012i
\(859\) 37.9644i 1.29533i 0.761925 + 0.647665i \(0.224254\pi\)
−0.761925 + 0.647665i \(0.775746\pi\)
\(860\) 0 0
\(861\) 1.20707i 0.0411368i
\(862\) 13.5948 50.3681i 0.463041 1.71554i
\(863\) 2.89022i 0.0983843i 0.998789 + 0.0491922i \(0.0156647\pi\)
−0.998789 + 0.0491922i \(0.984335\pi\)
\(864\) −16.1203 + 4.16189i −0.548424 + 0.141590i
\(865\) 0 0
\(866\) 15.8141 + 4.26838i 0.537386 + 0.145046i
\(867\) 4.28761 0.145615
\(868\) 8.17501 14.0407i 0.277478 0.476574i
\(869\) 34.3949i 1.16677i
\(870\) 0 0
\(871\) 7.64015 0.258877
\(872\) −31.0472 31.3896i −1.05139 1.06299i
\(873\) 51.0935i 1.72925i
\(874\) 6.43996 23.8597i 0.217835 0.807067i
\(875\) 0 0
\(876\) −3.60265 + 6.18762i −0.121722 + 0.209060i
\(877\) −43.0916 −1.45510 −0.727550 0.686055i \(-0.759341\pi\)
−0.727550 + 0.686055i \(0.759341\pi\)
\(878\) 1.53001 5.66860i 0.0516353 0.191306i
\(879\) 0.831423 0.0280432
\(880\) 0 0
\(881\) −2.06410 −0.0695414 −0.0347707 0.999395i \(-0.511070\pi\)
−0.0347707 + 0.999395i \(0.511070\pi\)
\(882\) −5.77469 + 21.3949i −0.194444 + 0.720405i
\(883\) −51.4835 −1.73256 −0.866278 0.499562i \(-0.833494\pi\)
−0.866278 + 0.499562i \(0.833494\pi\)
\(884\) −3.32497 + 5.71070i −0.111831 + 0.192071i
\(885\) 0 0
\(886\) 5.79783 21.4807i 0.194782 0.721657i
\(887\) 55.5749i 1.86602i 0.359845 + 0.933012i \(0.382829\pi\)
−0.359845 + 0.933012i \(0.617171\pi\)
\(888\) 10.9538 10.8343i 0.367585 0.363575i
\(889\) −13.8505 −0.464531
\(890\) 0 0
\(891\) 26.7877i 0.897422i
\(892\) 24.0028 41.2252i 0.803672 1.38032i
\(893\) 7.27229 0.243358
\(894\) 10.4066 + 2.80884i 0.348049 + 0.0939415i
\(895\) 0 0
\(896\) 3.46319 12.2934i 0.115697 0.410694i
\(897\) 3.10814i 0.103778i
\(898\) 7.62329 28.2439i 0.254393 0.942511i
\(899\) 52.8965i 1.76420i
\(900\) 0 0
\(901\) 4.83582i 0.161105i
\(902\) 11.3766 + 3.07066i 0.378801 + 0.102242i
\(903\) 3.62552i 0.120650i
\(904\) 5.90838 + 5.97354i 0.196510 + 0.198677i
\(905\) 0 0
\(906\) 1.91777 7.10525i 0.0637137 0.236056i
\(907\) −15.8669 −0.526852 −0.263426 0.964680i \(-0.584853\pi\)
−0.263426 + 0.964680i \(0.584853\pi\)
\(908\) −42.6931 24.8574i −1.41682 0.824923i
\(909\) 4.82696i 0.160100i
\(910\) 0 0
\(911\) −30.4293 −1.00817 −0.504084 0.863655i \(-0.668170\pi\)
−0.504084 + 0.863655i \(0.668170\pi\)
\(912\) 5.78545 3.28406i 0.191575 0.108746i
\(913\) 53.8755i 1.78302i
\(914\) 39.2112 + 10.5835i 1.29699 + 0.350070i
\(915\) 0 0
\(916\) 22.2128 38.1509i 0.733931 1.26054i
\(917\) 14.9734 0.494465
\(918\) −11.8134 3.18855i −0.389901 0.105238i
\(919\) 15.1819 0.500803 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(920\) 0 0
\(921\) 6.83572 0.225245
\(922\) 37.8290 + 10.2104i 1.24583 + 0.336261i
\(923\) 3.68452 0.121278
\(924\) 4.00183 + 2.33001i 0.131651 + 0.0766517i
\(925\) 0 0
\(926\) −36.8061 9.93432i −1.20952 0.326462i
\(927\) 10.6515i 0.349840i
\(928\) 10.3946 + 40.2616i 0.341220 + 1.32165i
\(929\) 8.00028 0.262481 0.131240 0.991351i \(-0.458104\pi\)
0.131240 + 0.991351i \(0.458104\pi\)
\(930\) 0 0
\(931\) 18.5614i 0.608325i
\(932\) 19.7326 33.8911i 0.646362 1.11014i
\(933\) −1.64403 −0.0538231
\(934\) 11.5367 42.7427i 0.377491 1.39858i
\(935\) 0 0
\(936\) −6.18544 + 6.11797i −0.202178 + 0.199972i
\(937\) 10.0303i 0.327676i 0.986487 + 0.163838i \(0.0523875\pi\)
−0.986487 + 0.163838i \(0.947613\pi\)
\(938\) −10.4778 2.82805i −0.342112 0.0923391i
\(939\) 12.4519i 0.406353i
\(940\) 0 0
\(941\) 4.23635i 0.138101i 0.997613 + 0.0690506i \(0.0219970\pi\)
−0.997613 + 0.0690506i \(0.978003\pi\)
\(942\) −1.41748 + 5.25168i −0.0461839 + 0.171109i
\(943\) 11.2350i 0.365861i
\(944\) 19.3078 10.9599i 0.628414 0.356714i
\(945\) 0 0
\(946\) −34.1706 9.22296i −1.11098 0.299864i
\(947\) 3.33715 0.108443 0.0542213 0.998529i \(-0.482732\pi\)
0.0542213 + 0.998529i \(0.482732\pi\)
\(948\) 7.62863 + 4.44166i 0.247767 + 0.144258i
\(949\) 7.84281i 0.254588i
\(950\) 0 0
\(951\) 1.94528 0.0630800
\(952\) 6.67374 6.60095i 0.216297 0.213938i
\(953\) 10.9309i 0.354086i 0.984203 + 0.177043i \(0.0566531\pi\)
−0.984203 + 0.177043i \(0.943347\pi\)
\(954\) 1.65904 6.14665i 0.0537134 0.199005i
\(955\) 0 0
\(956\) −21.4052 12.4629i −0.692294 0.403078i
\(957\) −15.0763 −0.487349
\(958\) 12.0465 44.6317i 0.389205 1.44199i
\(959\) 15.1117 0.487981
\(960\) 0 0
\(961\) 20.7844 0.670463
\(962\) 4.39761 16.2929i 0.141785 0.525305i
\(963\) 43.8287 1.41236
\(964\) 35.2755 + 20.5386i 1.13615 + 0.661505i
\(965\) 0 0
\(966\) −1.15050 + 4.26253i −0.0370167 + 0.137145i
\(967\) 40.7599i 1.31075i −0.755304 0.655375i \(-0.772511\pi\)
0.755304 0.655375i \(-0.227489\pi\)
\(968\) 10.0204 9.91106i 0.322067 0.318553i
\(969\) 4.88932 0.157068
\(970\) 0 0
\(971\) 56.9328i 1.82706i −0.406772 0.913530i \(-0.633346\pi\)
0.406772 0.913530i \(-0.366654\pi\)
\(972\) −21.2020 12.3445i −0.680054 0.395951i
\(973\) 22.8706 0.733197
\(974\) 24.0361 + 6.48756i 0.770165 + 0.207875i
\(975\) 0 0
\(976\) −23.1332 + 13.1314i −0.740477 + 0.420326i
\(977\) 17.1254i 0.547892i 0.961745 + 0.273946i \(0.0883289\pi\)
−0.961745 + 0.273946i \(0.911671\pi\)
\(978\) −1.69246 + 6.27047i −0.0541189 + 0.200508i
\(979\) 43.9405i 1.40434i
\(980\) 0 0
\(981\) 42.7199i 1.36394i
\(982\) 1.79041 + 0.483250i 0.0571344 + 0.0154211i
\(983\) 51.3738i 1.63857i −0.573388 0.819284i \(-0.694371\pi\)
0.573388 0.819284i \(-0.305629\pi\)
\(984\) −2.15020 + 2.12675i −0.0685460 + 0.0677983i
\(985\) 0 0
\(986\) −7.96363 + 29.5048i −0.253614 + 0.939625i
\(987\) −1.29919 −0.0413538
\(988\) 3.66653 6.29734i 0.116648 0.200345i
\(989\) 33.7451i 1.07303i
\(990\) 0 0
\(991\) −23.9933 −0.762171 −0.381085 0.924540i \(-0.624450\pi\)
−0.381085 + 0.924540i \(0.624450\pi\)
\(992\) 39.4151 10.1761i 1.25143 0.323090i
\(993\) 1.16045i 0.0368256i
\(994\) −5.05299 1.36385i −0.160271 0.0432587i
\(995\) 0 0
\(996\) −11.9493 6.95732i −0.378629 0.220451i
\(997\) −7.90228 −0.250268 −0.125134 0.992140i \(-0.539936\pi\)
−0.125134 + 0.992140i \(0.539936\pi\)
\(998\) −29.0349 7.83679i −0.919084 0.248069i
\(999\) 31.2489 0.988673
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.f.d.749.11 20
4.3 odd 2 4000.2.f.d.3249.7 20
5.2 odd 4 1000.2.d.c.501.36 yes 40
5.3 odd 4 1000.2.d.c.501.5 40
5.4 even 2 1000.2.f.c.749.10 20
8.3 odd 2 4000.2.f.c.3249.13 20
8.5 even 2 1000.2.f.c.749.9 20
20.3 even 4 4000.2.d.c.2001.19 40
20.7 even 4 4000.2.d.c.2001.22 40
20.19 odd 2 4000.2.f.c.3249.14 20
40.3 even 4 4000.2.d.c.2001.20 40
40.13 odd 4 1000.2.d.c.501.6 yes 40
40.19 odd 2 4000.2.f.d.3249.8 20
40.27 even 4 4000.2.d.c.2001.21 40
40.29 even 2 inner 1000.2.f.d.749.12 20
40.37 odd 4 1000.2.d.c.501.35 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.5 40 5.3 odd 4
1000.2.d.c.501.6 yes 40 40.13 odd 4
1000.2.d.c.501.35 yes 40 40.37 odd 4
1000.2.d.c.501.36 yes 40 5.2 odd 4
1000.2.f.c.749.9 20 8.5 even 2
1000.2.f.c.749.10 20 5.4 even 2
1000.2.f.d.749.11 20 1.1 even 1 trivial
1000.2.f.d.749.12 20 40.29 even 2 inner
4000.2.d.c.2001.19 40 20.3 even 4
4000.2.d.c.2001.20 40 40.3 even 4
4000.2.d.c.2001.21 40 40.27 even 4
4000.2.d.c.2001.22 40 20.7 even 4
4000.2.f.c.3249.13 20 8.3 odd 2
4000.2.f.c.3249.14 20 20.19 odd 2
4000.2.f.d.3249.7 20 4.3 odd 2
4000.2.f.d.3249.8 20 40.19 odd 2