Properties

Label 1000.2.d.c.501.6
Level $1000$
Weight $2$
Character 1000.501
Analytic conductor $7.985$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(501,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.501");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 501.6
Character \(\chi\) \(=\) 1000.501
Dual form 1000.2.d.c.501.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36535 + 0.368522i) q^{2} -0.513027i q^{3} +(1.72838 - 1.00633i) q^{4} +(0.189062 + 0.700464i) q^{6} +1.12889 q^{7} +(-1.98900 + 2.01094i) q^{8} +2.73680 q^{9} +O(q^{10})\) \(q+(-1.36535 + 0.368522i) q^{2} -0.513027i q^{3} +(1.72838 - 1.00633i) q^{4} +(0.189062 + 0.700464i) q^{6} +1.12889 q^{7} +(-1.98900 + 2.01094i) q^{8} +2.73680 q^{9} -3.99787i q^{11} +(-0.516272 - 0.886708i) q^{12} +1.12390i q^{13} +(-1.54133 + 0.416020i) q^{14} +(1.97462 - 3.47863i) q^{16} +2.93982 q^{17} +(-3.73671 + 1.00857i) q^{18} -3.24181i q^{19} -0.579150i q^{21} +(1.47330 + 5.45850i) q^{22} -5.39053 q^{23} +(1.03167 + 1.02041i) q^{24} +(-0.414183 - 1.53452i) q^{26} -2.94314i q^{27} +(1.95115 - 1.13603i) q^{28} +7.35068i q^{29} +7.19613 q^{31} +(-1.41410 + 5.47725i) q^{32} -2.05101 q^{33} +(-4.01389 + 1.08339i) q^{34} +(4.73025 - 2.75411i) q^{36} -10.6176i q^{37} +(1.19468 + 4.42622i) q^{38} +0.576592 q^{39} +2.08421 q^{41} +(0.213429 + 0.790745i) q^{42} +6.26007i q^{43} +(-4.02315 - 6.90984i) q^{44} +(7.35999 - 1.98653i) q^{46} +2.24328 q^{47} +(-1.78463 - 1.01303i) q^{48} -5.72561 q^{49} -1.50821i q^{51} +(1.13101 + 1.94253i) q^{52} +1.64494i q^{53} +(1.08461 + 4.01842i) q^{54} +(-2.24536 + 2.27012i) q^{56} -1.66314 q^{57} +(-2.70889 - 10.0363i) q^{58} -5.55039i q^{59} -6.65010i q^{61} +(-9.82527 + 2.65193i) q^{62} +3.08954 q^{63} +(-0.0877382 - 7.99952i) q^{64} +(2.80036 - 0.755843i) q^{66} -6.79788i q^{67} +(5.08113 - 2.95841i) q^{68} +2.76549i q^{69} -3.27833 q^{71} +(-5.44351 + 5.50354i) q^{72} +6.97819 q^{73} +(3.91280 + 14.4967i) q^{74} +(-3.26232 - 5.60310i) q^{76} -4.51314i q^{77} +(-0.787253 + 0.212487i) q^{78} +8.60333 q^{79} +6.70050 q^{81} +(-2.84568 + 0.768075i) q^{82} -13.4761i q^{83} +(-0.582813 - 1.00099i) q^{84} +(-2.30697 - 8.54721i) q^{86} +3.77110 q^{87} +(8.03946 + 7.95176i) q^{88} -10.9910 q^{89} +1.26876i q^{91} +(-9.31691 + 5.42463i) q^{92} -3.69181i q^{93} +(-3.06287 + 0.826697i) q^{94} +(2.80998 + 0.725472i) q^{96} +18.6691 q^{97} +(7.81749 - 2.11001i) q^{98} -10.9414i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 40 q + 6 q^{4} - 2 q^{6} - 24 q^{9} + 12 q^{14} + 18 q^{16} - 6 q^{24} + 20 q^{26} + 48 q^{31} - 6 q^{34} - 40 q^{36} + 8 q^{39} + 44 q^{41} + 8 q^{44} - 30 q^{46} + 12 q^{49} - 2 q^{54} + 50 q^{56} + 72 q^{64} + 42 q^{66} + 96 q^{71} + 6 q^{74} - 2 q^{76} + 96 q^{79} - 56 q^{81} + 116 q^{84} + 46 q^{86} - 44 q^{89} - 14 q^{94} + 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36535 + 0.368522i −0.965451 + 0.260584i
\(3\) 0.513027i 0.296196i −0.988973 0.148098i \(-0.952685\pi\)
0.988973 0.148098i \(-0.0473152\pi\)
\(4\) 1.72838 1.00633i 0.864192 0.503163i
\(5\) 0 0
\(6\) 0.189062 + 0.700464i 0.0771841 + 0.285963i
\(7\) 1.12889 0.426679 0.213340 0.976978i \(-0.431566\pi\)
0.213340 + 0.976978i \(0.431566\pi\)
\(8\) −1.98900 + 2.01094i −0.703219 + 0.710974i
\(9\) 2.73680 0.912268
\(10\) 0 0
\(11\) 3.99787i 1.20540i −0.797967 0.602701i \(-0.794091\pi\)
0.797967 0.602701i \(-0.205909\pi\)
\(12\) −0.516272 0.886708i −0.149035 0.255970i
\(13\) 1.12390i 0.311714i 0.987780 + 0.155857i \(0.0498140\pi\)
−0.987780 + 0.155857i \(0.950186\pi\)
\(14\) −1.54133 + 0.416020i −0.411938 + 0.111186i
\(15\) 0 0
\(16\) 1.97462 3.47863i 0.493655 0.869658i
\(17\) 2.93982 0.713010 0.356505 0.934293i \(-0.383968\pi\)
0.356505 + 0.934293i \(0.383968\pi\)
\(18\) −3.73671 + 1.00857i −0.880750 + 0.237723i
\(19\) 3.24181i 0.743723i −0.928288 0.371862i \(-0.878720\pi\)
0.928288 0.371862i \(-0.121280\pi\)
\(20\) 0 0
\(21\) 0.579150i 0.126381i
\(22\) 1.47330 + 5.45850i 0.314109 + 1.16376i
\(23\) −5.39053 −1.12400 −0.562002 0.827136i \(-0.689969\pi\)
−0.562002 + 0.827136i \(0.689969\pi\)
\(24\) 1.03167 + 1.02041i 0.210588 + 0.208291i
\(25\) 0 0
\(26\) −0.414183 1.53452i −0.0812279 0.300945i
\(27\) 2.94314i 0.566407i
\(28\) 1.95115 1.13603i 0.368733 0.214689i
\(29\) 7.35068i 1.36499i 0.730891 + 0.682494i \(0.239105\pi\)
−0.730891 + 0.682494i \(0.760895\pi\)
\(30\) 0 0
\(31\) 7.19613 1.29246 0.646232 0.763141i \(-0.276344\pi\)
0.646232 + 0.763141i \(0.276344\pi\)
\(32\) −1.41410 + 5.47725i −0.249980 + 0.968251i
\(33\) −2.05101 −0.357036
\(34\) −4.01389 + 1.08339i −0.688377 + 0.185799i
\(35\) 0 0
\(36\) 4.73025 2.75411i 0.788374 0.459019i
\(37\) 10.6176i 1.74552i −0.488152 0.872759i \(-0.662329\pi\)
0.488152 0.872759i \(-0.337671\pi\)
\(38\) 1.19468 + 4.42622i 0.193803 + 0.718028i
\(39\) 0.576592 0.0923287
\(40\) 0 0
\(41\) 2.08421 0.325498 0.162749 0.986667i \(-0.447964\pi\)
0.162749 + 0.986667i \(0.447964\pi\)
\(42\) 0.213429 + 0.790745i 0.0329329 + 0.122015i
\(43\) 6.26007i 0.954652i 0.878726 + 0.477326i \(0.158394\pi\)
−0.878726 + 0.477326i \(0.841606\pi\)
\(44\) −4.02315 6.90984i −0.606513 1.04170i
\(45\) 0 0
\(46\) 7.35999 1.98653i 1.08517 0.292898i
\(47\) 2.24328 0.327216 0.163608 0.986525i \(-0.447687\pi\)
0.163608 + 0.986525i \(0.447687\pi\)
\(48\) −1.78463 1.01303i −0.257590 0.146219i
\(49\) −5.72561 −0.817945
\(50\) 0 0
\(51\) 1.50821i 0.211191i
\(52\) 1.13101 + 1.94253i 0.156843 + 0.269381i
\(53\) 1.64494i 0.225950i 0.993598 + 0.112975i \(0.0360380\pi\)
−0.993598 + 0.112975i \(0.963962\pi\)
\(54\) 1.08461 + 4.01842i 0.147597 + 0.546838i
\(55\) 0 0
\(56\) −2.24536 + 2.27012i −0.300049 + 0.303358i
\(57\) −1.66314 −0.220288
\(58\) −2.70889 10.0363i −0.355694 1.31783i
\(59\) 5.55039i 0.722599i −0.932450 0.361299i \(-0.882333\pi\)
0.932450 0.361299i \(-0.117667\pi\)
\(60\) 0 0
\(61\) 6.65010i 0.851458i −0.904851 0.425729i \(-0.860018\pi\)
0.904851 0.425729i \(-0.139982\pi\)
\(62\) −9.82527 + 2.65193i −1.24781 + 0.336796i
\(63\) 3.08954 0.389246
\(64\) −0.0877382 7.99952i −0.0109673 0.999940i
\(65\) 0 0
\(66\) 2.80036 0.755843i 0.344700 0.0930379i
\(67\) 6.79788i 0.830493i −0.909709 0.415247i \(-0.863695\pi\)
0.909709 0.415247i \(-0.136305\pi\)
\(68\) 5.08113 2.95841i 0.616178 0.358760i
\(69\) 2.76549i 0.332926i
\(70\) 0 0
\(71\) −3.27833 −0.389066 −0.194533 0.980896i \(-0.562319\pi\)
−0.194533 + 0.980896i \(0.562319\pi\)
\(72\) −5.44351 + 5.50354i −0.641524 + 0.648598i
\(73\) 6.97819 0.816736 0.408368 0.912817i \(-0.366098\pi\)
0.408368 + 0.912817i \(0.366098\pi\)
\(74\) 3.91280 + 14.4967i 0.454854 + 1.68521i
\(75\) 0 0
\(76\) −3.26232 5.60310i −0.374214 0.642719i
\(77\) 4.51314i 0.514320i
\(78\) −0.787253 + 0.212487i −0.0891388 + 0.0240594i
\(79\) 8.60333 0.967950 0.483975 0.875082i \(-0.339193\pi\)
0.483975 + 0.875082i \(0.339193\pi\)
\(80\) 0 0
\(81\) 6.70050 0.744500
\(82\) −2.84568 + 0.768075i −0.314253 + 0.0848197i
\(83\) 13.4761i 1.47919i −0.673052 0.739596i \(-0.735017\pi\)
0.673052 0.739596i \(-0.264983\pi\)
\(84\) −0.582813 1.00099i −0.0635901 0.109217i
\(85\) 0 0
\(86\) −2.30697 8.54721i −0.248767 0.921669i
\(87\) 3.77110 0.404304
\(88\) 8.03946 + 7.95176i 0.857009 + 0.847661i
\(89\) −10.9910 −1.16504 −0.582521 0.812816i \(-0.697934\pi\)
−0.582521 + 0.812816i \(0.697934\pi\)
\(90\) 0 0
\(91\) 1.26876i 0.133002i
\(92\) −9.31691 + 5.42463i −0.971355 + 0.565557i
\(93\) 3.69181i 0.382823i
\(94\) −3.06287 + 0.826697i −0.315911 + 0.0852673i
\(95\) 0 0
\(96\) 2.80998 + 0.725472i 0.286792 + 0.0740432i
\(97\) 18.6691 1.89556 0.947778 0.318931i \(-0.103324\pi\)
0.947778 + 0.318931i \(0.103324\pi\)
\(98\) 7.81749 2.11001i 0.789686 0.213144i
\(99\) 10.9414i 1.09965i
\(100\) 0 0
\(101\) 1.76372i 0.175497i −0.996143 0.0877485i \(-0.972033\pi\)
0.996143 0.0877485i \(-0.0279672\pi\)
\(102\) 0.555807 + 2.05923i 0.0550331 + 0.203895i
\(103\) 3.89194 0.383484 0.191742 0.981445i \(-0.438586\pi\)
0.191742 + 0.981445i \(0.438586\pi\)
\(104\) −2.26010 2.23545i −0.221621 0.219203i
\(105\) 0 0
\(106\) −0.606196 2.24592i −0.0588789 0.218143i
\(107\) 16.0146i 1.54819i −0.633071 0.774094i \(-0.718206\pi\)
0.633071 0.774094i \(-0.281794\pi\)
\(108\) −2.96175 5.08687i −0.284995 0.489484i
\(109\) 15.6094i 1.49511i 0.664199 + 0.747556i \(0.268773\pi\)
−0.664199 + 0.747556i \(0.731227\pi\)
\(110\) 0 0
\(111\) −5.44710 −0.517016
\(112\) 2.22912 3.92698i 0.210632 0.371065i
\(113\) 2.97052 0.279443 0.139722 0.990191i \(-0.455379\pi\)
0.139722 + 0.990191i \(0.455379\pi\)
\(114\) 2.27077 0.612903i 0.212677 0.0574036i
\(115\) 0 0
\(116\) 7.39718 + 12.7048i 0.686811 + 1.17961i
\(117\) 3.07590i 0.284367i
\(118\) 2.04544 + 7.57824i 0.188298 + 0.697634i
\(119\) 3.31872 0.304227
\(120\) 0 0
\(121\) −4.98293 −0.452994
\(122\) 2.45071 + 9.07974i 0.221876 + 0.822041i
\(123\) 1.06925i 0.0964114i
\(124\) 12.4377 7.24165i 1.11694 0.650320i
\(125\) 0 0
\(126\) −4.21832 + 1.13856i −0.375798 + 0.101431i
\(127\) 12.2692 1.08871 0.544356 0.838855i \(-0.316774\pi\)
0.544356 + 0.838855i \(0.316774\pi\)
\(128\) 3.06779 + 10.8898i 0.271157 + 0.962535i
\(129\) 3.21158 0.282764
\(130\) 0 0
\(131\) 13.2639i 1.15887i 0.815019 + 0.579434i \(0.196726\pi\)
−0.815019 + 0.579434i \(0.803274\pi\)
\(132\) −3.54494 + 2.06399i −0.308547 + 0.179647i
\(133\) 3.65964i 0.317331i
\(134\) 2.50517 + 9.28151i 0.216413 + 0.801800i
\(135\) 0 0
\(136\) −5.84730 + 5.91179i −0.501402 + 0.506932i
\(137\) −13.3863 −1.14367 −0.571836 0.820368i \(-0.693769\pi\)
−0.571836 + 0.820368i \(0.693769\pi\)
\(138\) −1.01914 3.77587i −0.0867552 0.321424i
\(139\) 20.2594i 1.71838i −0.511657 0.859190i \(-0.670968\pi\)
0.511657 0.859190i \(-0.329032\pi\)
\(140\) 0 0
\(141\) 1.15086i 0.0969201i
\(142\) 4.47608 1.20814i 0.375624 0.101385i
\(143\) 4.49321 0.375741
\(144\) 5.40414 9.52033i 0.450345 0.793361i
\(145\) 0 0
\(146\) −9.52770 + 2.57162i −0.788518 + 0.212828i
\(147\) 2.93739i 0.242272i
\(148\) −10.6847 18.3512i −0.878279 1.50846i
\(149\) 14.8567i 1.21711i 0.793512 + 0.608555i \(0.208251\pi\)
−0.793512 + 0.608555i \(0.791749\pi\)
\(150\) 0 0
\(151\) 10.1436 0.825477 0.412739 0.910850i \(-0.364572\pi\)
0.412739 + 0.910850i \(0.364572\pi\)
\(152\) 6.51909 + 6.44798i 0.528768 + 0.523000i
\(153\) 8.04570 0.650456
\(154\) 1.66319 + 6.16203i 0.134024 + 0.496551i
\(155\) 0 0
\(156\) 0.996573 0.580240i 0.0797897 0.0464564i
\(157\) 7.49744i 0.598361i −0.954197 0.299180i \(-0.903287\pi\)
0.954197 0.299180i \(-0.0967132\pi\)
\(158\) −11.7466 + 3.17051i −0.934508 + 0.252232i
\(159\) 0.843898 0.0669255
\(160\) 0 0
\(161\) −6.08530 −0.479589
\(162\) −9.14856 + 2.46928i −0.718778 + 0.194005i
\(163\) 8.95189i 0.701166i 0.936532 + 0.350583i \(0.114017\pi\)
−0.936532 + 0.350583i \(0.885983\pi\)
\(164\) 3.60231 2.09739i 0.281293 0.163779i
\(165\) 0 0
\(166\) 4.96623 + 18.3996i 0.385454 + 1.42809i
\(167\) −2.49946 −0.193414 −0.0967070 0.995313i \(-0.530831\pi\)
−0.0967070 + 0.995313i \(0.530831\pi\)
\(168\) 1.16463 + 1.15193i 0.0898535 + 0.0888734i
\(169\) 11.7368 0.902834
\(170\) 0 0
\(171\) 8.87221i 0.678475i
\(172\) 6.29967 + 10.8198i 0.480345 + 0.825002i
\(173\) 0.589561i 0.0448235i −0.999749 0.0224118i \(-0.992866\pi\)
0.999749 0.0224118i \(-0.00713448\pi\)
\(174\) −5.14889 + 1.38973i −0.390336 + 0.105355i
\(175\) 0 0
\(176\) −13.9071 7.89426i −1.04829 0.595052i
\(177\) −2.84750 −0.214031
\(178\) 15.0066 4.05042i 1.12479 0.303592i
\(179\) 10.3029i 0.770077i −0.922901 0.385038i \(-0.874188\pi\)
0.922901 0.385038i \(-0.125812\pi\)
\(180\) 0 0
\(181\) 17.8021i 1.32322i 0.749848 + 0.661610i \(0.230127\pi\)
−0.749848 + 0.661610i \(0.769873\pi\)
\(182\) −0.467565 1.73231i −0.0346583 0.128407i
\(183\) −3.41168 −0.252199
\(184\) 10.7218 10.8400i 0.790420 0.799137i
\(185\) 0 0
\(186\) 1.36051 + 5.04063i 0.0997577 + 0.369597i
\(187\) 11.7530i 0.859464i
\(188\) 3.87724 2.25747i 0.282777 0.164643i
\(189\) 3.32247i 0.241674i
\(190\) 0 0
\(191\) −18.9069 −1.36806 −0.684029 0.729455i \(-0.739774\pi\)
−0.684029 + 0.729455i \(0.739774\pi\)
\(192\) −4.10397 + 0.0450121i −0.296179 + 0.00324847i
\(193\) −10.2705 −0.739288 −0.369644 0.929173i \(-0.620520\pi\)
−0.369644 + 0.929173i \(0.620520\pi\)
\(194\) −25.4899 + 6.87995i −1.83007 + 0.493952i
\(195\) 0 0
\(196\) −9.89606 + 5.76183i −0.706861 + 0.411559i
\(197\) 0.207142i 0.0147583i 0.999973 + 0.00737913i \(0.00234887\pi\)
−0.999973 + 0.00737913i \(0.997651\pi\)
\(198\) 4.03213 + 14.9388i 0.286551 + 1.06166i
\(199\) −12.2911 −0.871295 −0.435647 0.900117i \(-0.643481\pi\)
−0.435647 + 0.900117i \(0.643481\pi\)
\(200\) 0 0
\(201\) −3.48750 −0.245989
\(202\) 0.649970 + 2.40811i 0.0457318 + 0.169434i
\(203\) 8.29809i 0.582412i
\(204\) −1.51775 2.60676i −0.106263 0.182510i
\(205\) 0 0
\(206\) −5.31387 + 1.43426i −0.370235 + 0.0999299i
\(207\) −14.7528 −1.02539
\(208\) 3.90964 + 2.21928i 0.271085 + 0.153879i
\(209\) −12.9603 −0.896485
\(210\) 0 0
\(211\) 3.91559i 0.269560i −0.990876 0.134780i \(-0.956967\pi\)
0.990876 0.134780i \(-0.0430328\pi\)
\(212\) 1.65534 + 2.84309i 0.113689 + 0.195264i
\(213\) 1.68187i 0.115240i
\(214\) 5.90172 + 21.8656i 0.403433 + 1.49470i
\(215\) 0 0
\(216\) 5.91846 + 5.85390i 0.402700 + 0.398308i
\(217\) 8.12363 0.551468
\(218\) −5.75241 21.3124i −0.389603 1.44346i
\(219\) 3.58000i 0.241914i
\(220\) 0 0
\(221\) 3.30407i 0.222256i
\(222\) 7.43722 2.00737i 0.499153 0.134726i
\(223\) −23.8519 −1.59724 −0.798621 0.601834i \(-0.794437\pi\)
−0.798621 + 0.601834i \(0.794437\pi\)
\(224\) −1.59636 + 6.18320i −0.106661 + 0.413133i
\(225\) 0 0
\(226\) −4.05582 + 1.09470i −0.269789 + 0.0728185i
\(227\) 24.7012i 1.63948i 0.572738 + 0.819738i \(0.305881\pi\)
−0.572738 + 0.819738i \(0.694119\pi\)
\(228\) −2.87454 + 1.67366i −0.190371 + 0.110841i
\(229\) 22.0732i 1.45864i 0.684175 + 0.729318i \(0.260163\pi\)
−0.684175 + 0.729318i \(0.739837\pi\)
\(230\) 0 0
\(231\) −2.31536 −0.152340
\(232\) −14.7818 14.6205i −0.970470 0.959884i
\(233\) −19.6085 −1.28460 −0.642299 0.766454i \(-0.722019\pi\)
−0.642299 + 0.766454i \(0.722019\pi\)
\(234\) −1.13354 4.19969i −0.0741016 0.274543i
\(235\) 0 0
\(236\) −5.58550 9.59320i −0.363585 0.624464i
\(237\) 4.41374i 0.286703i
\(238\) −4.53123 + 1.22302i −0.293716 + 0.0792767i
\(239\) −12.3845 −0.801088 −0.400544 0.916278i \(-0.631179\pi\)
−0.400544 + 0.916278i \(0.631179\pi\)
\(240\) 0 0
\(241\) −20.4095 −1.31469 −0.657347 0.753588i \(-0.728321\pi\)
−0.657347 + 0.753588i \(0.728321\pi\)
\(242\) 6.80346 1.83632i 0.437343 0.118043i
\(243\) 12.2669i 0.786925i
\(244\) −6.69216 11.4939i −0.428422 0.735823i
\(245\) 0 0
\(246\) 0.394043 + 1.45991i 0.0251233 + 0.0930805i
\(247\) 3.64348 0.231829
\(248\) −14.3131 + 14.4710i −0.908885 + 0.918908i
\(249\) −6.91359 −0.438131
\(250\) 0 0
\(251\) 22.2016i 1.40135i 0.713479 + 0.700676i \(0.247118\pi\)
−0.713479 + 0.700676i \(0.752882\pi\)
\(252\) 5.33991 3.10908i 0.336383 0.195854i
\(253\) 21.5506i 1.35488i
\(254\) −16.7517 + 4.52145i −1.05110 + 0.283701i
\(255\) 0 0
\(256\) −8.20176 13.7379i −0.512610 0.858621i
\(257\) 13.0592 0.814614 0.407307 0.913291i \(-0.366468\pi\)
0.407307 + 0.913291i \(0.366468\pi\)
\(258\) −4.38495 + 1.18354i −0.272995 + 0.0736839i
\(259\) 11.9860i 0.744776i
\(260\) 0 0
\(261\) 20.1174i 1.24523i
\(262\) −4.88802 18.1099i −0.301983 1.11883i
\(263\) 29.2389 1.80295 0.901473 0.432835i \(-0.142487\pi\)
0.901473 + 0.432835i \(0.142487\pi\)
\(264\) 4.07947 4.12446i 0.251074 0.253843i
\(265\) 0 0
\(266\) 1.34866 + 4.99671i 0.0826915 + 0.306368i
\(267\) 5.63867i 0.345081i
\(268\) −6.84088 11.7493i −0.417873 0.717705i
\(269\) 21.4247i 1.30629i 0.757235 + 0.653143i \(0.226550\pi\)
−0.757235 + 0.653143i \(0.773450\pi\)
\(270\) 0 0
\(271\) 1.15797 0.0703415 0.0351708 0.999381i \(-0.488802\pi\)
0.0351708 + 0.999381i \(0.488802\pi\)
\(272\) 5.80502 10.2265i 0.351981 0.620075i
\(273\) 0.650908 0.0393947
\(274\) 18.2771 4.93316i 1.10416 0.298023i
\(275\) 0 0
\(276\) 2.78298 + 4.77983i 0.167516 + 0.287712i
\(277\) 16.8055i 1.00975i 0.863194 + 0.504873i \(0.168461\pi\)
−0.863194 + 0.504873i \(0.831539\pi\)
\(278\) 7.46603 + 27.6612i 0.447783 + 1.65901i
\(279\) 19.6944 1.17907
\(280\) 0 0
\(281\) 8.99127 0.536374 0.268187 0.963367i \(-0.413575\pi\)
0.268187 + 0.963367i \(0.413575\pi\)
\(282\) 0.424118 + 1.57133i 0.0252559 + 0.0935716i
\(283\) 15.4397i 0.917798i 0.888489 + 0.458899i \(0.151756\pi\)
−0.888489 + 0.458899i \(0.848244\pi\)
\(284\) −5.66621 + 3.29907i −0.336228 + 0.195764i
\(285\) 0 0
\(286\) −6.13482 + 1.65585i −0.362760 + 0.0979122i
\(287\) 2.35283 0.138883
\(288\) −3.87012 + 14.9902i −0.228049 + 0.883304i
\(289\) −8.35748 −0.491616
\(290\) 0 0
\(291\) 9.57773i 0.561457i
\(292\) 12.0610 7.02233i 0.705816 0.410951i
\(293\) 1.62062i 0.0946777i −0.998879 0.0473389i \(-0.984926\pi\)
0.998879 0.0473389i \(-0.0150741\pi\)
\(294\) −1.08249 4.01058i −0.0631323 0.233902i
\(295\) 0 0
\(296\) 21.3513 + 21.1184i 1.24102 + 1.22748i
\(297\) −11.7663 −0.682748
\(298\) −5.47503 20.2847i −0.317160 1.17506i
\(299\) 6.05843i 0.350368i
\(300\) 0 0
\(301\) 7.06691i 0.407330i
\(302\) −13.8496 + 3.73815i −0.796958 + 0.215106i
\(303\) −0.904838 −0.0519816
\(304\) −11.2771 6.40135i −0.646785 0.367142i
\(305\) 0 0
\(306\) −10.9852 + 2.96502i −0.627984 + 0.169499i
\(307\) 13.3243i 0.760458i 0.924892 + 0.380229i \(0.124155\pi\)
−0.924892 + 0.380229i \(0.875845\pi\)
\(308\) −4.54169 7.80044i −0.258787 0.444471i
\(309\) 1.99667i 0.113587i
\(310\) 0 0
\(311\) −3.20457 −0.181714 −0.0908572 0.995864i \(-0.528961\pi\)
−0.0908572 + 0.995864i \(0.528961\pi\)
\(312\) −1.14684 + 1.15949i −0.0649273 + 0.0656433i
\(313\) −24.2715 −1.37190 −0.685952 0.727647i \(-0.740614\pi\)
−0.685952 + 0.727647i \(0.740614\pi\)
\(314\) 2.76297 + 10.2367i 0.155923 + 0.577688i
\(315\) 0 0
\(316\) 14.8698 8.65775i 0.836494 0.487036i
\(317\) 3.79177i 0.212967i 0.994314 + 0.106483i \(0.0339591\pi\)
−0.994314 + 0.106483i \(0.966041\pi\)
\(318\) −1.15222 + 0.310995i −0.0646133 + 0.0174397i
\(319\) 29.3870 1.64536
\(320\) 0 0
\(321\) −8.21591 −0.458567
\(322\) 8.30859 2.24257i 0.463020 0.124973i
\(323\) 9.53034i 0.530282i
\(324\) 11.5810 6.74288i 0.643391 0.374605i
\(325\) 0 0
\(326\) −3.29897 12.2225i −0.182713 0.676941i
\(327\) 8.00806 0.442847
\(328\) −4.14549 + 4.19121i −0.228896 + 0.231421i
\(329\) 2.53241 0.139616
\(330\) 0 0
\(331\) 2.26196i 0.124328i −0.998066 0.0621642i \(-0.980200\pi\)
0.998066 0.0621642i \(-0.0198002\pi\)
\(332\) −13.5613 23.2918i −0.744274 1.27830i
\(333\) 29.0582i 1.59238i
\(334\) 3.41265 0.921106i 0.186732 0.0504007i
\(335\) 0 0
\(336\) −2.01465 1.14360i −0.109908 0.0623885i
\(337\) −28.6654 −1.56150 −0.780751 0.624843i \(-0.785163\pi\)
−0.780751 + 0.624843i \(0.785163\pi\)
\(338\) −16.0249 + 4.32528i −0.871642 + 0.235264i
\(339\) 1.52396i 0.0827701i
\(340\) 0 0
\(341\) 28.7692i 1.55794i
\(342\) 3.26960 + 12.1137i 0.176800 + 0.655034i
\(343\) −14.3658 −0.775679
\(344\) −12.5886 12.4513i −0.678732 0.671329i
\(345\) 0 0
\(346\) 0.217266 + 0.804960i 0.0116803 + 0.0432749i
\(347\) 3.03845i 0.163112i −0.996669 0.0815562i \(-0.974011\pi\)
0.996669 0.0815562i \(-0.0259890\pi\)
\(348\) 6.51791 3.79495i 0.349396 0.203431i
\(349\) 26.1606i 1.40035i −0.713973 0.700173i \(-0.753106\pi\)
0.713973 0.700173i \(-0.246894\pi\)
\(350\) 0 0
\(351\) 3.30780 0.176557
\(352\) 21.8973 + 5.65339i 1.16713 + 0.301327i
\(353\) 29.4943 1.56983 0.784913 0.619606i \(-0.212708\pi\)
0.784913 + 0.619606i \(0.212708\pi\)
\(354\) 3.88784 1.04937i 0.206637 0.0557731i
\(355\) 0 0
\(356\) −18.9966 + 11.0605i −1.00682 + 0.586206i
\(357\) 1.70259i 0.0901108i
\(358\) 3.79685 + 14.0671i 0.200670 + 0.743472i
\(359\) 8.91327 0.470424 0.235212 0.971944i \(-0.424422\pi\)
0.235212 + 0.971944i \(0.424422\pi\)
\(360\) 0 0
\(361\) 8.49064 0.446876
\(362\) −6.56046 24.3062i −0.344810 1.27750i
\(363\) 2.55638i 0.134175i
\(364\) 1.27678 + 2.19290i 0.0669217 + 0.114939i
\(365\) 0 0
\(366\) 4.65815 1.25728i 0.243485 0.0657190i
\(367\) −22.6852 −1.18416 −0.592079 0.805880i \(-0.701693\pi\)
−0.592079 + 0.805880i \(0.701693\pi\)
\(368\) −10.6442 + 18.7517i −0.554870 + 0.977499i
\(369\) 5.70406 0.296942
\(370\) 0 0
\(371\) 1.85695i 0.0964081i
\(372\) −3.71516 6.38087i −0.192622 0.330833i
\(373\) 6.46312i 0.334648i 0.985902 + 0.167324i \(0.0535125\pi\)
−0.985902 + 0.167324i \(0.946487\pi\)
\(374\) 4.33123 + 16.0470i 0.223963 + 0.829770i
\(375\) 0 0
\(376\) −4.46189 + 4.51109i −0.230104 + 0.232642i
\(377\) −8.26145 −0.425486
\(378\) 1.22440 + 4.53635i 0.0629764 + 0.233324i
\(379\) 4.31785i 0.221793i 0.993832 + 0.110897i \(0.0353722\pi\)
−0.993832 + 0.110897i \(0.964628\pi\)
\(380\) 0 0
\(381\) 6.29441i 0.322472i
\(382\) 25.8147 6.96762i 1.32079 0.356494i
\(383\) 11.1049 0.567432 0.283716 0.958908i \(-0.408433\pi\)
0.283716 + 0.958908i \(0.408433\pi\)
\(384\) 5.58678 1.57386i 0.285099 0.0803157i
\(385\) 0 0
\(386\) 14.0229 3.78491i 0.713746 0.192647i
\(387\) 17.1326i 0.870898i
\(388\) 32.2673 18.7871i 1.63812 0.953773i
\(389\) 15.5490i 0.788368i 0.919032 + 0.394184i \(0.128973\pi\)
−0.919032 + 0.394184i \(0.871027\pi\)
\(390\) 0 0
\(391\) −15.8472 −0.801426
\(392\) 11.3883 11.5139i 0.575194 0.581537i
\(393\) 6.80472 0.343253
\(394\) −0.0763364 0.282822i −0.00384577 0.0142484i
\(395\) 0 0
\(396\) −11.0106 18.9109i −0.553302 0.950308i
\(397\) 26.9682i 1.35350i 0.736214 + 0.676748i \(0.236611\pi\)
−0.736214 + 0.676748i \(0.763389\pi\)
\(398\) 16.7817 4.52955i 0.841193 0.227046i
\(399\) −1.87750 −0.0939924
\(400\) 0 0
\(401\) 36.1092 1.80321 0.901603 0.432565i \(-0.142391\pi\)
0.901603 + 0.432565i \(0.142391\pi\)
\(402\) 4.76167 1.28522i 0.237490 0.0641009i
\(403\) 8.08775i 0.402880i
\(404\) −1.77488 3.04839i −0.0883035 0.151663i
\(405\) 0 0
\(406\) −3.05803 11.3298i −0.151767 0.562290i
\(407\) −42.4476 −2.10405
\(408\) 3.03291 + 2.99982i 0.150151 + 0.148513i
\(409\) 15.5149 0.767163 0.383581 0.923507i \(-0.374691\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(410\) 0 0
\(411\) 6.86755i 0.338751i
\(412\) 6.72676 3.91656i 0.331404 0.192955i
\(413\) 6.26576i 0.308318i
\(414\) 20.1428 5.43674i 0.989966 0.267201i
\(415\) 0 0
\(416\) −6.15590 1.58931i −0.301818 0.0779225i
\(417\) −10.3936 −0.508978
\(418\) 17.6955 4.77617i 0.865513 0.233610i
\(419\) 26.9362i 1.31592i 0.753054 + 0.657959i \(0.228580\pi\)
−0.753054 + 0.657959i \(0.771420\pi\)
\(420\) 0 0
\(421\) 6.14641i 0.299557i −0.988720 0.149779i \(-0.952144\pi\)
0.988720 0.149779i \(-0.0478561\pi\)
\(422\) 1.44298 + 5.34616i 0.0702431 + 0.260247i
\(423\) 6.13941 0.298508
\(424\) −3.30787 3.27179i −0.160644 0.158892i
\(425\) 0 0
\(426\) −0.619807 2.29635i −0.0300297 0.111259i
\(427\) 7.50721i 0.363299i
\(428\) −16.1159 27.6793i −0.778990 1.33793i
\(429\) 2.30514i 0.111293i
\(430\) 0 0
\(431\) 36.8901 1.77693 0.888467 0.458940i \(-0.151771\pi\)
0.888467 + 0.458940i \(0.151771\pi\)
\(432\) −10.2381 5.81157i −0.492580 0.279609i
\(433\) −11.5824 −0.556617 −0.278308 0.960492i \(-0.589774\pi\)
−0.278308 + 0.960492i \(0.589774\pi\)
\(434\) −11.0916 + 2.99373i −0.532415 + 0.143704i
\(435\) 0 0
\(436\) 15.7082 + 26.9791i 0.752284 + 1.29206i
\(437\) 17.4751i 0.835948i
\(438\) 1.31931 + 4.88797i 0.0630390 + 0.233556i
\(439\) −4.15174 −0.198152 −0.0990760 0.995080i \(-0.531589\pi\)
−0.0990760 + 0.995080i \(0.531589\pi\)
\(440\) 0 0
\(441\) −15.6699 −0.746185
\(442\) −1.21762 4.51122i −0.0579163 0.214577i
\(443\) 15.7327i 0.747482i −0.927533 0.373741i \(-0.878075\pi\)
0.927533 0.373741i \(-0.121925\pi\)
\(444\) −9.41468 + 5.48155i −0.446801 + 0.260143i
\(445\) 0 0
\(446\) 32.5663 8.78995i 1.54206 0.416216i
\(447\) 7.62190 0.360504
\(448\) −0.0990465 9.03056i −0.00467951 0.426654i
\(449\) −20.6861 −0.976239 −0.488120 0.872777i \(-0.662317\pi\)
−0.488120 + 0.872777i \(0.662317\pi\)
\(450\) 0 0
\(451\) 8.33238i 0.392356i
\(452\) 5.13420 2.98931i 0.241493 0.140605i
\(453\) 5.20396i 0.244503i
\(454\) −9.10293 33.7259i −0.427222 1.58283i
\(455\) 0 0
\(456\) 3.30799 3.34447i 0.154911 0.156619i
\(457\) 28.7187 1.34340 0.671702 0.740821i \(-0.265564\pi\)
0.671702 + 0.740821i \(0.265564\pi\)
\(458\) −8.13444 30.1377i −0.380098 1.40824i
\(459\) 8.65228i 0.403854i
\(460\) 0 0
\(461\) 27.7063i 1.29041i −0.764008 0.645207i \(-0.776771\pi\)
0.764008 0.645207i \(-0.223229\pi\)
\(462\) 3.16129 0.853262i 0.147077 0.0396973i
\(463\) 26.9572 1.25281 0.626404 0.779499i \(-0.284526\pi\)
0.626404 + 0.779499i \(0.284526\pi\)
\(464\) 25.5703 + 14.5148i 1.18707 + 0.673832i
\(465\) 0 0
\(466\) 26.7726 7.22617i 1.24022 0.334746i
\(467\) 31.3052i 1.44863i 0.689468 + 0.724316i \(0.257844\pi\)
−0.689468 + 0.724316i \(0.742156\pi\)
\(468\) 3.09536 + 5.31633i 0.143083 + 0.245748i
\(469\) 7.67404i 0.354354i
\(470\) 0 0
\(471\) −3.84639 −0.177232
\(472\) 11.1615 + 11.0397i 0.513749 + 0.508145i
\(473\) 25.0269 1.15074
\(474\) 1.62656 + 6.02632i 0.0747103 + 0.276798i
\(475\) 0 0
\(476\) 5.73602 3.33971i 0.262910 0.153076i
\(477\) 4.50187i 0.206127i
\(478\) 16.9093 4.56397i 0.773411 0.208751i
\(479\) −32.6888 −1.49359 −0.746794 0.665056i \(-0.768408\pi\)
−0.746794 + 0.665056i \(0.768408\pi\)
\(480\) 0 0
\(481\) 11.9331 0.544103
\(482\) 27.8662 7.52136i 1.26927 0.342589i
\(483\) 3.12193i 0.142053i
\(484\) −8.61241 + 5.01445i −0.391473 + 0.227929i
\(485\) 0 0
\(486\) 4.52064 + 16.7487i 0.205060 + 0.759738i
\(487\) 17.6043 0.797726 0.398863 0.917011i \(-0.369405\pi\)
0.398863 + 0.917011i \(0.369405\pi\)
\(488\) 13.3729 + 13.2271i 0.605364 + 0.598761i
\(489\) 4.59256 0.207683
\(490\) 0 0
\(491\) 1.31132i 0.0591790i −0.999562 0.0295895i \(-0.990580\pi\)
0.999562 0.0295895i \(-0.00942000\pi\)
\(492\) −1.07602 1.84808i −0.0485106 0.0833179i
\(493\) 21.6097i 0.973250i
\(494\) −4.97465 + 1.34270i −0.223820 + 0.0604111i
\(495\) 0 0
\(496\) 14.2096 25.0327i 0.638031 1.12400i
\(497\) −3.70087 −0.166007
\(498\) 9.43950 2.54781i 0.422994 0.114170i
\(499\) 21.2655i 0.951973i −0.879453 0.475987i \(-0.842091\pi\)
0.879453 0.475987i \(-0.157909\pi\)
\(500\) 0 0
\(501\) 1.28229i 0.0572885i
\(502\) −8.18177 30.3130i −0.365170 1.35294i
\(503\) −34.4786 −1.53733 −0.768663 0.639654i \(-0.779078\pi\)
−0.768663 + 0.639654i \(0.779078\pi\)
\(504\) −6.14511 + 6.21288i −0.273725 + 0.276743i
\(505\) 0 0
\(506\) −7.94188 29.4242i −0.353059 1.30807i
\(507\) 6.02132i 0.267416i
\(508\) 21.2058 12.3468i 0.940855 0.547799i
\(509\) 8.61795i 0.381984i 0.981592 + 0.190992i \(0.0611704\pi\)
−0.981592 + 0.190992i \(0.938830\pi\)
\(510\) 0 0
\(511\) 7.87759 0.348484
\(512\) 16.2610 + 15.7346i 0.718643 + 0.695379i
\(513\) −9.54110 −0.421250
\(514\) −17.8305 + 4.81262i −0.786470 + 0.212275i
\(515\) 0 0
\(516\) 5.55085 3.23190i 0.244363 0.142276i
\(517\) 8.96833i 0.394426i
\(518\) 4.41711 + 16.3652i 0.194077 + 0.719045i
\(519\) −0.302461 −0.0132766
\(520\) 0 0
\(521\) −5.28810 −0.231676 −0.115838 0.993268i \(-0.536955\pi\)
−0.115838 + 0.993268i \(0.536955\pi\)
\(522\) −7.41369 27.4673i −0.324488 1.20221i
\(523\) 18.0301i 0.788400i −0.919025 0.394200i \(-0.871022\pi\)
0.919025 0.394200i \(-0.128978\pi\)
\(524\) 13.3478 + 22.9250i 0.583099 + 1.00148i
\(525\) 0 0
\(526\) −39.9214 + 10.7752i −1.74066 + 0.469819i
\(527\) 21.1553 0.921540
\(528\) −4.04997 + 7.13472i −0.176252 + 0.310499i
\(529\) 6.05785 0.263385
\(530\) 0 0
\(531\) 15.1903i 0.659204i
\(532\) −3.68279 6.32527i −0.159669 0.274235i
\(533\) 2.34244i 0.101463i
\(534\) −2.07797 7.69878i −0.0899227 0.333159i
\(535\) 0 0
\(536\) 13.6701 + 13.5210i 0.590459 + 0.584018i
\(537\) −5.28568 −0.228094
\(538\) −7.89546 29.2523i −0.340397 1.26115i
\(539\) 22.8902i 0.985952i
\(540\) 0 0
\(541\) 2.53085i 0.108810i −0.998519 0.0544050i \(-0.982674\pi\)
0.998519 0.0544050i \(-0.0173262\pi\)
\(542\) −1.58104 + 0.426736i −0.0679113 + 0.0183299i
\(543\) 9.13296 0.391933
\(544\) −4.15720 + 16.1021i −0.178238 + 0.690373i
\(545\) 0 0
\(546\) −0.888720 + 0.239874i −0.0380337 + 0.0102656i
\(547\) 37.9439i 1.62236i 0.584794 + 0.811182i \(0.301175\pi\)
−0.584794 + 0.811182i \(0.698825\pi\)
\(548\) −23.1367 + 13.4710i −0.988352 + 0.575453i
\(549\) 18.2000i 0.776757i
\(550\) 0 0
\(551\) 23.8295 1.01517
\(552\) −5.56123 5.50057i −0.236702 0.234120i
\(553\) 9.71219 0.413004
\(554\) −6.19320 22.9455i −0.263124 0.974860i
\(555\) 0 0
\(556\) −20.3875 35.0160i −0.864624 1.48501i
\(557\) 37.0123i 1.56826i 0.620596 + 0.784130i \(0.286891\pi\)
−0.620596 + 0.784130i \(0.713109\pi\)
\(558\) −26.8898 + 7.25782i −1.13834 + 0.307248i
\(559\) −7.03571 −0.297579
\(560\) 0 0
\(561\) −6.02960 −0.254570
\(562\) −12.2763 + 3.31348i −0.517843 + 0.139771i
\(563\) 14.2506i 0.600590i 0.953846 + 0.300295i \(0.0970852\pi\)
−0.953846 + 0.300295i \(0.902915\pi\)
\(564\) −1.15814 1.98913i −0.0487666 0.0837576i
\(565\) 0 0
\(566\) −5.68988 21.0807i −0.239164 0.886089i
\(567\) 7.56411 0.317663
\(568\) 6.52061 6.59252i 0.273599 0.276616i
\(569\) 25.9576 1.08820 0.544101 0.839020i \(-0.316871\pi\)
0.544101 + 0.839020i \(0.316871\pi\)
\(570\) 0 0
\(571\) 20.3690i 0.852416i −0.904625 0.426208i \(-0.859849\pi\)
0.904625 0.426208i \(-0.140151\pi\)
\(572\) 7.76599 4.52163i 0.324712 0.189059i
\(573\) 9.69977i 0.405214i
\(574\) −3.21245 + 0.867070i −0.134085 + 0.0361908i
\(575\) 0 0
\(576\) −0.240122 21.8931i −0.0100051 0.912213i
\(577\) −44.6310 −1.85801 −0.929007 0.370063i \(-0.879336\pi\)
−0.929007 + 0.370063i \(0.879336\pi\)
\(578\) 11.4109 3.07991i 0.474632 0.128107i
\(579\) 5.26905i 0.218974i
\(580\) 0 0
\(581\) 15.2130i 0.631140i
\(582\) 3.52960 + 13.0770i 0.146307 + 0.542059i
\(583\) 6.57625 0.272360
\(584\) −13.8796 + 14.0327i −0.574344 + 0.580678i
\(585\) 0 0
\(586\) 0.597234 + 2.21272i 0.0246715 + 0.0914067i
\(587\) 18.9398i 0.781729i −0.920448 0.390865i \(-0.872176\pi\)
0.920448 0.390865i \(-0.127824\pi\)
\(588\) 2.95598 + 5.07694i 0.121902 + 0.209370i
\(589\) 23.3285i 0.961236i
\(590\) 0 0
\(591\) 0.106270 0.00437134
\(592\) −36.9346 20.9656i −1.51800 0.861683i
\(593\) 8.22399 0.337719 0.168859 0.985640i \(-0.445992\pi\)
0.168859 + 0.985640i \(0.445992\pi\)
\(594\) 16.0651 4.33612i 0.659160 0.177913i
\(595\) 0 0
\(596\) 14.9507 + 25.6781i 0.612404 + 1.05182i
\(597\) 6.30568i 0.258074i
\(598\) 2.23266 + 8.27191i 0.0913005 + 0.338263i
\(599\) −37.2899 −1.52362 −0.761812 0.647798i \(-0.775690\pi\)
−0.761812 + 0.647798i \(0.775690\pi\)
\(600\) 0 0
\(601\) 23.7882 0.970341 0.485170 0.874420i \(-0.338758\pi\)
0.485170 + 0.874420i \(0.338758\pi\)
\(602\) −2.60431 9.64884i −0.106144 0.393257i
\(603\) 18.6045i 0.757632i
\(604\) 17.5321 10.2078i 0.713370 0.415349i
\(605\) 0 0
\(606\) 1.23542 0.333452i 0.0501857 0.0135456i
\(607\) −32.6940 −1.32701 −0.663505 0.748172i \(-0.730932\pi\)
−0.663505 + 0.748172i \(0.730932\pi\)
\(608\) 17.7562 + 4.58425i 0.720111 + 0.185916i
\(609\) 4.25715 0.172508
\(610\) 0 0
\(611\) 2.52123i 0.101998i
\(612\) 13.9061 8.09659i 0.562119 0.327285i
\(613\) 5.70642i 0.230480i −0.993338 0.115240i \(-0.963236\pi\)
0.993338 0.115240i \(-0.0367637\pi\)
\(614\) −4.91029 18.1924i −0.198163 0.734185i
\(615\) 0 0
\(616\) 9.07564 + 8.97665i 0.365668 + 0.361679i
\(617\) 18.9653 0.763514 0.381757 0.924263i \(-0.375319\pi\)
0.381757 + 0.924263i \(0.375319\pi\)
\(618\) 0.735816 + 2.72616i 0.0295989 + 0.109662i
\(619\) 32.0663i 1.28885i 0.764666 + 0.644427i \(0.222904\pi\)
−0.764666 + 0.644427i \(0.777096\pi\)
\(620\) 0 0
\(621\) 15.8651i 0.636643i
\(622\) 4.37537 1.18095i 0.175436 0.0473519i
\(623\) −12.4076 −0.497099
\(624\) 1.13855 2.00575i 0.0455785 0.0802944i
\(625\) 0 0
\(626\) 33.1391 8.94456i 1.32451 0.357497i
\(627\) 6.64901i 0.265536i
\(628\) −7.54486 12.9585i −0.301073 0.517098i
\(629\) 31.2137i 1.24457i
\(630\) 0 0
\(631\) −11.4737 −0.456762 −0.228381 0.973572i \(-0.573343\pi\)
−0.228381 + 0.973572i \(0.573343\pi\)
\(632\) −17.1120 + 17.3008i −0.680680 + 0.688187i
\(633\) −2.00880 −0.0798427
\(634\) −1.39735 5.17711i −0.0554958 0.205609i
\(635\) 0 0
\(636\) 1.45858 0.849236i 0.0578365 0.0336744i
\(637\) 6.43503i 0.254965i
\(638\) −40.1237 + 10.8298i −1.58851 + 0.428754i
\(639\) −8.97215 −0.354933
\(640\) 0 0
\(641\) −0.258289 −0.0102018 −0.00510089 0.999987i \(-0.501624\pi\)
−0.00510089 + 0.999987i \(0.501624\pi\)
\(642\) 11.2176 3.02774i 0.442724 0.119495i
\(643\) 31.8119i 1.25454i 0.778802 + 0.627269i \(0.215827\pi\)
−0.778802 + 0.627269i \(0.784173\pi\)
\(644\) −10.5177 + 6.12380i −0.414457 + 0.241311i
\(645\) 0 0
\(646\) 3.51214 + 13.0123i 0.138183 + 0.511962i
\(647\) −24.3294 −0.956486 −0.478243 0.878228i \(-0.658726\pi\)
−0.478243 + 0.878228i \(0.658726\pi\)
\(648\) −13.3273 + 13.4743i −0.523546 + 0.529320i
\(649\) −22.1897 −0.871022
\(650\) 0 0
\(651\) 4.16764i 0.163343i
\(652\) 9.00851 + 15.4723i 0.352801 + 0.605942i
\(653\) 39.3785i 1.54100i −0.637440 0.770500i \(-0.720007\pi\)
0.637440 0.770500i \(-0.279993\pi\)
\(654\) −10.9338 + 2.95114i −0.427547 + 0.115399i
\(655\) 0 0
\(656\) 4.11551 7.25019i 0.160684 0.283072i
\(657\) 19.0979 0.745082
\(658\) −3.45763 + 0.933248i −0.134793 + 0.0363818i
\(659\) 33.7063i 1.31301i 0.754321 + 0.656506i \(0.227966\pi\)
−0.754321 + 0.656506i \(0.772034\pi\)
\(660\) 0 0
\(661\) 32.9163i 1.28029i 0.768252 + 0.640147i \(0.221127\pi\)
−0.768252 + 0.640147i \(0.778873\pi\)
\(662\) 0.833580 + 3.08837i 0.0323980 + 0.120033i
\(663\) 1.69508 0.0658313
\(664\) 27.0995 + 26.8039i 1.05167 + 1.04019i
\(665\) 0 0
\(666\) 10.7086 + 39.6747i 0.414949 + 1.53736i
\(667\) 39.6241i 1.53425i
\(668\) −4.32003 + 2.51527i −0.167147 + 0.0973187i
\(669\) 12.2367i 0.473097i
\(670\) 0 0
\(671\) −26.5862 −1.02635
\(672\) 3.17215 + 0.818977i 0.122368 + 0.0315927i
\(673\) 2.87683 0.110894 0.0554468 0.998462i \(-0.482342\pi\)
0.0554468 + 0.998462i \(0.482342\pi\)
\(674\) 39.1384 10.5638i 1.50755 0.406903i
\(675\) 0 0
\(676\) 20.2858 11.8111i 0.780222 0.454272i
\(677\) 28.6415i 1.10078i −0.834907 0.550391i \(-0.814479\pi\)
0.834907 0.550391i \(-0.185521\pi\)
\(678\) 0.561612 + 2.08074i 0.0215686 + 0.0799105i
\(679\) 21.0753 0.808794
\(680\) 0 0
\(681\) 12.6724 0.485607
\(682\) 10.6021 + 39.2801i 0.405974 + 1.50411i
\(683\) 18.3147i 0.700792i −0.936602 0.350396i \(-0.886047\pi\)
0.936602 0.350396i \(-0.113953\pi\)
\(684\) −8.92833 15.3346i −0.341383 0.586332i
\(685\) 0 0
\(686\) 19.6144 5.29410i 0.748881 0.202130i
\(687\) 11.3241 0.432043
\(688\) 21.7765 + 12.3612i 0.830220 + 0.471268i
\(689\) −1.84875 −0.0704318
\(690\) 0 0
\(691\) 14.4710i 0.550502i −0.961372 0.275251i \(-0.911239\pi\)
0.961372 0.275251i \(-0.0887610\pi\)
\(692\) −0.593291 1.01899i −0.0225535 0.0387361i
\(693\) 12.3516i 0.469198i
\(694\) 1.11973 + 4.14856i 0.0425045 + 0.157477i
\(695\) 0 0
\(696\) −7.50073 + 7.58344i −0.284314 + 0.287450i
\(697\) 6.12718 0.232084
\(698\) 9.64076 + 35.7185i 0.364908 + 1.35197i
\(699\) 10.0597i 0.380493i
\(700\) 0 0
\(701\) 18.5603i 0.701013i 0.936560 + 0.350506i \(0.113991\pi\)
−0.936560 + 0.350506i \(0.886009\pi\)
\(702\) −4.51631 + 1.21900i −0.170457 + 0.0460080i
\(703\) −34.4202 −1.29818
\(704\) −31.9810 + 0.350765i −1.20533 + 0.0132200i
\(705\) 0 0
\(706\) −40.2702 + 10.8693i −1.51559 + 0.409072i
\(707\) 1.99104i 0.0748809i
\(708\) −4.92157 + 2.86551i −0.184964 + 0.107692i
\(709\) 43.3934i 1.62967i −0.579690 0.814837i \(-0.696826\pi\)
0.579690 0.814837i \(-0.303174\pi\)
\(710\) 0 0
\(711\) 23.5456 0.883029
\(712\) 21.8611 22.1022i 0.819279 0.828314i
\(713\) −38.7910 −1.45273
\(714\) 0.627443 + 2.32464i 0.0234815 + 0.0869976i
\(715\) 0 0
\(716\) −10.3681 17.8074i −0.387474 0.665494i
\(717\) 6.35359i 0.237279i
\(718\) −12.1698 + 3.28473i −0.454172 + 0.122585i
\(719\) 14.8496 0.553797 0.276899 0.960899i \(-0.410693\pi\)
0.276899 + 0.960899i \(0.410693\pi\)
\(720\) 0 0
\(721\) 4.39356 0.163625
\(722\) −11.5927 + 3.12899i −0.431437 + 0.116449i
\(723\) 10.4706i 0.389408i
\(724\) 17.9147 + 30.7689i 0.665795 + 1.14352i
\(725\) 0 0
\(726\) −0.942081 3.49036i −0.0349639 0.129539i
\(727\) 6.22824 0.230993 0.115496 0.993308i \(-0.463154\pi\)
0.115496 + 0.993308i \(0.463154\pi\)
\(728\) −2.55140 2.52357i −0.0945610 0.0935296i
\(729\) 13.8082 0.511416
\(730\) 0 0
\(731\) 18.4035i 0.680676i
\(732\) −5.89669 + 3.43326i −0.217948 + 0.126897i
\(733\) 43.2406i 1.59713i 0.601910 + 0.798564i \(0.294407\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(734\) 30.9733 8.35999i 1.14325 0.308573i
\(735\) 0 0
\(736\) 7.62276 29.5253i 0.280979 1.08832i
\(737\) −27.1770 −1.00108
\(738\) −7.78806 + 2.10207i −0.286683 + 0.0773783i
\(739\) 10.0469i 0.369582i 0.982778 + 0.184791i \(0.0591608\pi\)
−0.982778 + 0.184791i \(0.940839\pi\)
\(740\) 0 0
\(741\) 1.86921i 0.0686670i
\(742\) −0.684327 2.53540i −0.0251224 0.0930773i
\(743\) 5.85860 0.214931 0.107466 0.994209i \(-0.465726\pi\)
0.107466 + 0.994209i \(0.465726\pi\)
\(744\) 7.42400 + 7.34302i 0.272177 + 0.269208i
\(745\) 0 0
\(746\) −2.38180 8.82445i −0.0872039 0.323086i
\(747\) 36.8814i 1.34942i
\(748\) −11.8273 20.3137i −0.432450 0.742742i
\(749\) 18.0786i 0.660579i
\(750\) 0 0
\(751\) −16.0419 −0.585377 −0.292688 0.956208i \(-0.594550\pi\)
−0.292688 + 0.956208i \(0.594550\pi\)
\(752\) 4.42962 7.80354i 0.161532 0.284566i
\(753\) 11.3900 0.415075
\(754\) 11.2798 3.04452i 0.410786 0.110875i
\(755\) 0 0
\(756\) −3.34348 5.74250i −0.121601 0.208853i
\(757\) 15.5665i 0.565773i 0.959153 + 0.282886i \(0.0912919\pi\)
−0.959153 + 0.282886i \(0.908708\pi\)
\(758\) −1.59122 5.89540i −0.0577958 0.214130i
\(759\) 11.0561 0.401309
\(760\) 0 0
\(761\) −26.9097 −0.975477 −0.487739 0.872990i \(-0.662178\pi\)
−0.487739 + 0.872990i \(0.662178\pi\)
\(762\) 2.31963 + 8.59410i 0.0840312 + 0.311331i
\(763\) 17.6213i 0.637933i
\(764\) −32.6784 + 19.0265i −1.18226 + 0.688356i
\(765\) 0 0
\(766\) −15.1621 + 4.09238i −0.547828 + 0.147864i
\(767\) 6.23810 0.225245
\(768\) −7.04794 + 4.20773i −0.254321 + 0.151833i
\(769\) 17.0952 0.616470 0.308235 0.951310i \(-0.400262\pi\)
0.308235 + 0.951310i \(0.400262\pi\)
\(770\) 0 0
\(771\) 6.69975i 0.241286i
\(772\) −17.7514 + 10.3355i −0.638886 + 0.371982i
\(773\) 6.32624i 0.227539i 0.993507 + 0.113770i \(0.0362926\pi\)
−0.993507 + 0.113770i \(0.963707\pi\)
\(774\) −6.31373 23.3920i −0.226942 0.840809i
\(775\) 0 0
\(776\) −37.1328 + 37.5423i −1.33299 + 1.34769i
\(777\) −6.14916 −0.220600
\(778\) −5.73016 21.2300i −0.205436 0.761131i
\(779\) 6.75661i 0.242081i
\(780\) 0 0
\(781\) 13.1063i 0.468981i
\(782\) 21.6370 5.84003i 0.773738 0.208839i
\(783\) 21.6341 0.773138
\(784\) −11.3059 + 19.9173i −0.403782 + 0.711332i
\(785\) 0 0
\(786\) −9.29085 + 2.50769i −0.331394 + 0.0894462i
\(787\) 53.5766i 1.90980i 0.296929 + 0.954899i \(0.404037\pi\)
−0.296929 + 0.954899i \(0.595963\pi\)
\(788\) 0.208452 + 0.358021i 0.00742581 + 0.0127540i
\(789\) 15.0003i 0.534026i
\(790\) 0 0
\(791\) 3.35339 0.119233
\(792\) 22.0024 + 21.7624i 0.781822 + 0.773294i
\(793\) 7.47406 0.265412
\(794\) −9.93838 36.8212i −0.352700 1.30673i
\(795\) 0 0
\(796\) −21.2438 + 12.3689i −0.752966 + 0.438403i
\(797\) 41.6834i 1.47650i −0.674527 0.738251i \(-0.735652\pi\)
0.674527 0.738251i \(-0.264348\pi\)
\(798\) 2.56345 0.691898i 0.0907450 0.0244929i
\(799\) 6.59483 0.233308
\(800\) 0 0
\(801\) −30.0802 −1.06283
\(802\) −49.3018 + 13.3070i −1.74091 + 0.469887i
\(803\) 27.8979i 0.984495i
\(804\) −6.02773 + 3.50956i −0.212582 + 0.123772i
\(805\) 0 0
\(806\) −2.98051 11.0426i −0.104984 0.388961i
\(807\) 10.9914 0.386917
\(808\) 3.54674 + 3.50805i 0.124774 + 0.123413i
\(809\) −26.9010 −0.945788 −0.472894 0.881119i \(-0.656791\pi\)
−0.472894 + 0.881119i \(0.656791\pi\)
\(810\) 0 0
\(811\) 5.88980i 0.206819i −0.994639 0.103409i \(-0.967025\pi\)
0.994639 0.103409i \(-0.0329752\pi\)
\(812\) 8.35058 + 14.3423i 0.293048 + 0.503315i
\(813\) 0.594069i 0.0208349i
\(814\) 57.9560 15.6429i 2.03136 0.548282i
\(815\) 0 0
\(816\) −5.24649 2.97813i −0.183664 0.104255i
\(817\) 20.2940 0.709997
\(818\) −21.1833 + 5.71758i −0.740658 + 0.199911i
\(819\) 3.47234i 0.121334i
\(820\) 0 0
\(821\) 48.2445i 1.68374i −0.539677 0.841872i \(-0.681454\pi\)
0.539677 0.841872i \(-0.318546\pi\)
\(822\) −2.53084 9.37664i −0.0882733 0.327048i
\(823\) −51.9289 −1.81013 −0.905063 0.425277i \(-0.860177\pi\)
−0.905063 + 0.425277i \(0.860177\pi\)
\(824\) −7.74107 + 7.82644i −0.269673 + 0.272647i
\(825\) 0 0
\(826\) 2.30907 + 8.55498i 0.0803428 + 0.297666i
\(827\) 28.2849i 0.983562i −0.870719 0.491781i \(-0.836346\pi\)
0.870719 0.491781i \(-0.163654\pi\)
\(828\) −25.4985 + 14.8461i −0.886136 + 0.515939i
\(829\) 14.2294i 0.494209i −0.968989 0.247104i \(-0.920521\pi\)
0.968989 0.247104i \(-0.0794790\pi\)
\(830\) 0 0
\(831\) 8.62168 0.299083
\(832\) 8.99068 0.0986092i 0.311696 0.00341866i
\(833\) −16.8323 −0.583203
\(834\) 14.1910 3.83027i 0.491393 0.132632i
\(835\) 0 0
\(836\) −22.4004 + 13.0423i −0.774735 + 0.451078i
\(837\) 21.1792i 0.732060i
\(838\) −9.92656 36.7774i −0.342907 1.27045i
\(839\) 5.04346 0.174120 0.0870598 0.996203i \(-0.472253\pi\)
0.0870598 + 0.996203i \(0.472253\pi\)
\(840\) 0 0
\(841\) −25.0325 −0.863191
\(842\) 2.26508 + 8.39202i 0.0780600 + 0.289208i
\(843\) 4.61277i 0.158872i
\(844\) −3.94035 6.76763i −0.135633 0.232952i
\(845\) 0 0
\(846\) −8.38247 + 2.26251i −0.288195 + 0.0777866i
\(847\) −5.62517 −0.193283
\(848\) 5.72214 + 3.24813i 0.196499 + 0.111541i
\(849\) 7.92101 0.271848
\(850\) 0 0
\(851\) 57.2343i 1.96197i
\(852\) 1.69251 + 2.90692i 0.0579845 + 0.0995895i
\(853\) 46.2026i 1.58195i 0.611850 + 0.790974i \(0.290426\pi\)
−0.611850 + 0.790974i \(0.709574\pi\)
\(854\) 2.76657 + 10.2500i 0.0946701 + 0.350748i
\(855\) 0 0
\(856\) 32.2043 + 31.8530i 1.10072 + 1.08871i
\(857\) 41.5405 1.41900 0.709499 0.704707i \(-0.248921\pi\)
0.709499 + 0.704707i \(0.248921\pi\)
\(858\) 0.849494 + 3.14733i 0.0290012 + 0.107448i
\(859\) 37.9644i 1.29533i 0.761925 + 0.647665i \(0.224254\pi\)
−0.761925 + 0.647665i \(0.775746\pi\)
\(860\) 0 0
\(861\) 1.20707i 0.0411368i
\(862\) −50.3681 + 13.5948i −1.71554 + 0.463041i
\(863\) −2.89022 −0.0983843 −0.0491922 0.998789i \(-0.515665\pi\)
−0.0491922 + 0.998789i \(0.515665\pi\)
\(864\) 16.1203 + 4.16189i 0.548424 + 0.141590i
\(865\) 0 0
\(866\) 15.8141 4.26838i 0.537386 0.145046i
\(867\) 4.28761i 0.145615i
\(868\) 14.0407 8.17501i 0.476574 0.277478i
\(869\) 34.3949i 1.16677i
\(870\) 0 0
\(871\) 7.64015 0.258877
\(872\) −31.3896 31.0472i −1.06299 1.05139i
\(873\) 51.0935 1.72925
\(874\) −6.43996 23.8597i −0.217835 0.807067i
\(875\) 0 0
\(876\) −3.60265 6.18762i −0.121722 0.209060i
\(877\) 43.0916i 1.45510i −0.686055 0.727550i \(-0.740659\pi\)
0.686055 0.727550i \(-0.259341\pi\)
\(878\) 5.66860 1.53001i 0.191306 0.0516353i
\(879\) −0.831423 −0.0280432
\(880\) 0 0
\(881\) −2.06410 −0.0695414 −0.0347707 0.999395i \(-0.511070\pi\)
−0.0347707 + 0.999395i \(0.511070\pi\)
\(882\) 21.3949 5.77469i 0.720405 0.194444i
\(883\) 51.4835i 1.73256i 0.499562 + 0.866278i \(0.333494\pi\)
−0.499562 + 0.866278i \(0.666506\pi\)
\(884\) 3.32497 + 5.71070i 0.111831 + 0.192071i
\(885\) 0 0
\(886\) 5.79783 + 21.4807i 0.194782 + 0.721657i
\(887\) 55.5749 1.86602 0.933012 0.359845i \(-0.117171\pi\)
0.933012 + 0.359845i \(0.117171\pi\)
\(888\) 10.8343 10.9538i 0.363575 0.367585i
\(889\) 13.8505 0.464531
\(890\) 0 0
\(891\) 26.7877i 0.897422i
\(892\) −41.2252 + 24.0028i −1.38032 + 0.803672i
\(893\) 7.27229i 0.243358i
\(894\) −10.4066 + 2.80884i −0.348049 + 0.0939415i
\(895\) 0 0
\(896\) 3.46319 + 12.2934i 0.115697 + 0.410694i
\(897\) −3.10814 −0.103778
\(898\) 28.2439 7.62329i 0.942511 0.254393i
\(899\) 52.8965i 1.76420i
\(900\) 0 0
\(901\) 4.83582i 0.161105i
\(902\) 3.07066 + 11.3766i 0.102242 + 0.378801i
\(903\) 3.62552 0.120650
\(904\) −5.90838 + 5.97354i −0.196510 + 0.198677i
\(905\) 0 0
\(906\) 1.91777 + 7.10525i 0.0637137 + 0.236056i
\(907\) 15.8669i 0.526852i −0.964680 0.263426i \(-0.915147\pi\)
0.964680 0.263426i \(-0.0848526\pi\)
\(908\) 24.8574 + 42.6931i 0.824923 + 1.41682i
\(909\) 4.82696i 0.160100i
\(910\) 0 0
\(911\) −30.4293 −1.00817 −0.504084 0.863655i \(-0.668170\pi\)
−0.504084 + 0.863655i \(0.668170\pi\)
\(912\) −3.28406 + 5.78545i −0.108746 + 0.191575i
\(913\) −53.8755 −1.78302
\(914\) −39.2112 + 10.5835i −1.29699 + 0.350070i
\(915\) 0 0
\(916\) 22.2128 + 38.1509i 0.733931 + 1.26054i
\(917\) 14.9734i 0.494465i
\(918\) 3.18855 + 11.8134i 0.105238 + 0.389901i
\(919\) −15.1819 −0.500803 −0.250402 0.968142i \(-0.580563\pi\)
−0.250402 + 0.968142i \(0.580563\pi\)
\(920\) 0 0
\(921\) 6.83572 0.225245
\(922\) 10.2104 + 37.8290i 0.336261 + 1.24583i
\(923\) 3.68452i 0.121278i
\(924\) −4.00183 + 2.33001i −0.131651 + 0.0766517i
\(925\) 0 0
\(926\) −36.8061 + 9.93432i −1.20952 + 0.326462i
\(927\) 10.6515 0.349840
\(928\) −40.2616 10.3946i −1.32165 0.341220i
\(929\) −8.00028 −0.262481 −0.131240 0.991351i \(-0.541896\pi\)
−0.131240 + 0.991351i \(0.541896\pi\)
\(930\) 0 0
\(931\) 18.5614i 0.608325i
\(932\) −33.8911 + 19.7326i −1.11014 + 0.646362i
\(933\) 1.64403i 0.0538231i
\(934\) −11.5367 42.7427i −0.377491 1.39858i
\(935\) 0 0
\(936\) −6.18544 6.11797i −0.202178 0.199972i
\(937\) 10.0303 0.327676 0.163838 0.986487i \(-0.447613\pi\)
0.163838 + 0.986487i \(0.447613\pi\)
\(938\) 2.82805 + 10.4778i 0.0923391 + 0.342112i
\(939\) 12.4519i 0.406353i
\(940\) 0 0
\(941\) 4.23635i 0.138101i −0.997613 0.0690506i \(-0.978003\pi\)
0.997613 0.0690506i \(-0.0219970\pi\)
\(942\) 5.25168 1.41748i 0.171109 0.0461839i
\(943\) −11.2350 −0.365861
\(944\) −19.3078 10.9599i −0.628414 0.356714i
\(945\) 0 0
\(946\) −34.1706 + 9.22296i −1.11098 + 0.299864i
\(947\) 3.33715i 0.108443i 0.998529 + 0.0542213i \(0.0172677\pi\)
−0.998529 + 0.0542213i \(0.982732\pi\)
\(948\) −4.44166 7.62863i −0.144258 0.247767i
\(949\) 7.84281i 0.254588i
\(950\) 0 0
\(951\) 1.94528 0.0630800
\(952\) −6.60095 + 6.67374i −0.213938 + 0.216297i
\(953\) −10.9309 −0.354086 −0.177043 0.984203i \(-0.556653\pi\)
−0.177043 + 0.984203i \(0.556653\pi\)
\(954\) −1.65904 6.14665i −0.0537134 0.199005i
\(955\) 0 0
\(956\) −21.4052 + 12.4629i −0.692294 + 0.403078i
\(957\) 15.0763i 0.487349i
\(958\) 44.6317 12.0465i 1.44199 0.389205i
\(959\) −15.1117 −0.487981
\(960\) 0 0
\(961\) 20.7844 0.670463
\(962\) −16.2929 + 4.39761i −0.525305 + 0.141785i
\(963\) 43.8287i 1.41236i
\(964\) −35.2755 + 20.5386i −1.13615 + 0.661505i
\(965\) 0 0
\(966\) −1.15050 4.26253i −0.0370167 0.137145i
\(967\) −40.7599 −1.31075 −0.655375 0.755304i \(-0.727489\pi\)
−0.655375 + 0.755304i \(0.727489\pi\)
\(968\) 9.91106 10.0204i 0.318553 0.322067i
\(969\) −4.88932 −0.157068
\(970\) 0 0
\(971\) 56.9328i 1.82706i 0.406772 + 0.913530i \(0.366654\pi\)
−0.406772 + 0.913530i \(0.633346\pi\)
\(972\) −12.3445 21.2020i −0.395951 0.680054i
\(973\) 22.8706i 0.733197i
\(974\) −24.0361 + 6.48756i −0.770165 + 0.207875i
\(975\) 0 0
\(976\) −23.1332 13.1314i −0.740477 0.420326i
\(977\) 17.1254 0.547892 0.273946 0.961745i \(-0.411671\pi\)
0.273946 + 0.961745i \(0.411671\pi\)
\(978\) −6.27047 + 1.69246i −0.200508 + 0.0541189i
\(979\) 43.9405i 1.40434i
\(980\) 0 0
\(981\) 42.7199i 1.36394i
\(982\) 0.483250 + 1.79041i 0.0154211 + 0.0571344i
\(983\) 51.3738 1.63857 0.819284 0.573388i \(-0.194371\pi\)
0.819284 + 0.573388i \(0.194371\pi\)
\(984\) 2.15020 + 2.12675i 0.0685460 + 0.0677983i
\(985\) 0 0
\(986\) −7.96363 29.5048i −0.253614 0.939625i
\(987\) 1.29919i 0.0413538i
\(988\) 6.29734 3.66653i 0.200345 0.116648i
\(989\) 33.7451i 1.07303i
\(990\) 0 0
\(991\) −23.9933 −0.762171 −0.381085 0.924540i \(-0.624450\pi\)
−0.381085 + 0.924540i \(0.624450\pi\)
\(992\) −10.1761 + 39.4151i −0.323090 + 1.25143i
\(993\) −1.16045 −0.0368256
\(994\) 5.05299 1.36385i 0.160271 0.0432587i
\(995\) 0 0
\(996\) −11.9493 + 6.95732i −0.378629 + 0.220451i
\(997\) 7.90228i 0.250268i −0.992140 0.125134i \(-0.960064\pi\)
0.992140 0.125134i \(-0.0399361\pi\)
\(998\) 7.83679 + 29.0349i 0.248069 + 0.919084i
\(999\) −31.2489 −0.988673
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.d.c.501.6 yes 40
4.3 odd 2 4000.2.d.c.2001.20 40
5.2 odd 4 1000.2.f.c.749.9 20
5.3 odd 4 1000.2.f.d.749.12 20
5.4 even 2 inner 1000.2.d.c.501.35 yes 40
8.3 odd 2 4000.2.d.c.2001.19 40
8.5 even 2 inner 1000.2.d.c.501.5 40
20.3 even 4 4000.2.f.d.3249.8 20
20.7 even 4 4000.2.f.c.3249.13 20
20.19 odd 2 4000.2.d.c.2001.21 40
40.3 even 4 4000.2.f.c.3249.14 20
40.13 odd 4 1000.2.f.c.749.10 20
40.19 odd 2 4000.2.d.c.2001.22 40
40.27 even 4 4000.2.f.d.3249.7 20
40.29 even 2 inner 1000.2.d.c.501.36 yes 40
40.37 odd 4 1000.2.f.d.749.11 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.5 40 8.5 even 2 inner
1000.2.d.c.501.6 yes 40 1.1 even 1 trivial
1000.2.d.c.501.35 yes 40 5.4 even 2 inner
1000.2.d.c.501.36 yes 40 40.29 even 2 inner
1000.2.f.c.749.9 20 5.2 odd 4
1000.2.f.c.749.10 20 40.13 odd 4
1000.2.f.d.749.11 20 40.37 odd 4
1000.2.f.d.749.12 20 5.3 odd 4
4000.2.d.c.2001.19 40 8.3 odd 2
4000.2.d.c.2001.20 40 4.3 odd 2
4000.2.d.c.2001.21 40 20.19 odd 2
4000.2.d.c.2001.22 40 40.19 odd 2
4000.2.f.c.3249.13 20 20.7 even 4
4000.2.f.c.3249.14 20 40.3 even 4
4000.2.f.d.3249.7 20 40.27 even 4
4000.2.f.d.3249.8 20 20.3 even 4