Properties

Label 4000.2.d.c.2001.20
Level $4000$
Weight $2$
Character 4000.2001
Analytic conductor $31.940$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(2001,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.20
Character \(\chi\) \(=\) 4000.2001
Dual form 4000.2.d.c.2001.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.513027i q^{3} -1.12889 q^{7} +2.73680 q^{9} +O(q^{10})\) \(q+0.513027i q^{3} -1.12889 q^{7} +2.73680 q^{9} +3.99787i q^{11} +1.12390i q^{13} +2.93982 q^{17} +3.24181i q^{19} -0.579150i q^{21} +5.39053 q^{23} +2.94314i q^{27} +7.35068i q^{29} -7.19613 q^{31} -2.05101 q^{33} -10.6176i q^{37} -0.576592 q^{39} +2.08421 q^{41} -6.26007i q^{43} -2.24328 q^{47} -5.72561 q^{49} +1.50821i q^{51} +1.64494i q^{53} -1.66314 q^{57} +5.55039i q^{59} -6.65010i q^{61} -3.08954 q^{63} +6.79788i q^{67} +2.76549i q^{69} +3.27833 q^{71} +6.97819 q^{73} -4.51314i q^{77} -8.60333 q^{79} +6.70050 q^{81} +13.4761i q^{83} -3.77110 q^{87} -10.9910 q^{89} -1.26876i q^{91} -3.69181i q^{93} +18.6691 q^{97} +10.9414i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 40 q - 24 q^{9} - 48 q^{31} - 8 q^{39} + 44 q^{41} + 12 q^{49} - 96 q^{71} - 96 q^{79} - 56 q^{81} - 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.513027i 0.296196i 0.988973 + 0.148098i \(0.0473152\pi\)
−0.988973 + 0.148098i \(0.952685\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.12889 −0.426679 −0.213340 0.976978i \(-0.568434\pi\)
−0.213340 + 0.976978i \(0.568434\pi\)
\(8\) 0 0
\(9\) 2.73680 0.912268
\(10\) 0 0
\(11\) 3.99787i 1.20540i 0.797967 + 0.602701i \(0.205909\pi\)
−0.797967 + 0.602701i \(0.794091\pi\)
\(12\) 0 0
\(13\) 1.12390i 0.311714i 0.987780 + 0.155857i \(0.0498140\pi\)
−0.987780 + 0.155857i \(0.950186\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.93982 0.713010 0.356505 0.934293i \(-0.383968\pi\)
0.356505 + 0.934293i \(0.383968\pi\)
\(18\) 0 0
\(19\) 3.24181i 0.743723i 0.928288 + 0.371862i \(0.121280\pi\)
−0.928288 + 0.371862i \(0.878720\pi\)
\(20\) 0 0
\(21\) − 0.579150i − 0.126381i
\(22\) 0 0
\(23\) 5.39053 1.12400 0.562002 0.827136i \(-0.310031\pi\)
0.562002 + 0.827136i \(0.310031\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.94314i 0.566407i
\(28\) 0 0
\(29\) 7.35068i 1.36499i 0.730891 + 0.682494i \(0.239105\pi\)
−0.730891 + 0.682494i \(0.760895\pi\)
\(30\) 0 0
\(31\) −7.19613 −1.29246 −0.646232 0.763141i \(-0.723656\pi\)
−0.646232 + 0.763141i \(0.723656\pi\)
\(32\) 0 0
\(33\) −2.05101 −0.357036
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.6176i − 1.74552i −0.488152 0.872759i \(-0.662329\pi\)
0.488152 0.872759i \(-0.337671\pi\)
\(38\) 0 0
\(39\) −0.576592 −0.0923287
\(40\) 0 0
\(41\) 2.08421 0.325498 0.162749 0.986667i \(-0.447964\pi\)
0.162749 + 0.986667i \(0.447964\pi\)
\(42\) 0 0
\(43\) − 6.26007i − 0.954652i −0.878726 0.477326i \(-0.841606\pi\)
0.878726 0.477326i \(-0.158394\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.24328 −0.327216 −0.163608 0.986525i \(-0.552313\pi\)
−0.163608 + 0.986525i \(0.552313\pi\)
\(48\) 0 0
\(49\) −5.72561 −0.817945
\(50\) 0 0
\(51\) 1.50821i 0.211191i
\(52\) 0 0
\(53\) 1.64494i 0.225950i 0.993598 + 0.112975i \(0.0360380\pi\)
−0.993598 + 0.112975i \(0.963962\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.66314 −0.220288
\(58\) 0 0
\(59\) 5.55039i 0.722599i 0.932450 + 0.361299i \(0.117667\pi\)
−0.932450 + 0.361299i \(0.882333\pi\)
\(60\) 0 0
\(61\) − 6.65010i − 0.851458i −0.904851 0.425729i \(-0.860018\pi\)
0.904851 0.425729i \(-0.139982\pi\)
\(62\) 0 0
\(63\) −3.08954 −0.389246
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.79788i 0.830493i 0.909709 + 0.415247i \(0.136305\pi\)
−0.909709 + 0.415247i \(0.863695\pi\)
\(68\) 0 0
\(69\) 2.76549i 0.332926i
\(70\) 0 0
\(71\) 3.27833 0.389066 0.194533 0.980896i \(-0.437681\pi\)
0.194533 + 0.980896i \(0.437681\pi\)
\(72\) 0 0
\(73\) 6.97819 0.816736 0.408368 0.912817i \(-0.366098\pi\)
0.408368 + 0.912817i \(0.366098\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.51314i − 0.514320i
\(78\) 0 0
\(79\) −8.60333 −0.967950 −0.483975 0.875082i \(-0.660807\pi\)
−0.483975 + 0.875082i \(0.660807\pi\)
\(80\) 0 0
\(81\) 6.70050 0.744500
\(82\) 0 0
\(83\) 13.4761i 1.47919i 0.673052 + 0.739596i \(0.264983\pi\)
−0.673052 + 0.739596i \(0.735017\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.77110 −0.404304
\(88\) 0 0
\(89\) −10.9910 −1.16504 −0.582521 0.812816i \(-0.697934\pi\)
−0.582521 + 0.812816i \(0.697934\pi\)
\(90\) 0 0
\(91\) − 1.26876i − 0.133002i
\(92\) 0 0
\(93\) − 3.69181i − 0.382823i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 18.6691 1.89556 0.947778 0.318931i \(-0.103324\pi\)
0.947778 + 0.318931i \(0.103324\pi\)
\(98\) 0 0
\(99\) 10.9414i 1.09965i
\(100\) 0 0
\(101\) − 1.76372i − 0.175497i −0.996143 0.0877485i \(-0.972033\pi\)
0.996143 0.0877485i \(-0.0279672\pi\)
\(102\) 0 0
\(103\) −3.89194 −0.383484 −0.191742 0.981445i \(-0.561414\pi\)
−0.191742 + 0.981445i \(0.561414\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0146i 1.54819i 0.633071 + 0.774094i \(0.281794\pi\)
−0.633071 + 0.774094i \(0.718206\pi\)
\(108\) 0 0
\(109\) 15.6094i 1.49511i 0.664199 + 0.747556i \(0.268773\pi\)
−0.664199 + 0.747556i \(0.731227\pi\)
\(110\) 0 0
\(111\) 5.44710 0.517016
\(112\) 0 0
\(113\) 2.97052 0.279443 0.139722 0.990191i \(-0.455379\pi\)
0.139722 + 0.990191i \(0.455379\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.07590i 0.284367i
\(118\) 0 0
\(119\) −3.31872 −0.304227
\(120\) 0 0
\(121\) −4.98293 −0.452994
\(122\) 0 0
\(123\) 1.06925i 0.0964114i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −12.2692 −1.08871 −0.544356 0.838855i \(-0.683226\pi\)
−0.544356 + 0.838855i \(0.683226\pi\)
\(128\) 0 0
\(129\) 3.21158 0.282764
\(130\) 0 0
\(131\) − 13.2639i − 1.15887i −0.815019 0.579434i \(-0.803274\pi\)
0.815019 0.579434i \(-0.196726\pi\)
\(132\) 0 0
\(133\) − 3.65964i − 0.317331i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.3863 −1.14367 −0.571836 0.820368i \(-0.693769\pi\)
−0.571836 + 0.820368i \(0.693769\pi\)
\(138\) 0 0
\(139\) 20.2594i 1.71838i 0.511657 + 0.859190i \(0.329032\pi\)
−0.511657 + 0.859190i \(0.670968\pi\)
\(140\) 0 0
\(141\) − 1.15086i − 0.0969201i
\(142\) 0 0
\(143\) −4.49321 −0.375741
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2.93739i − 0.242272i
\(148\) 0 0
\(149\) 14.8567i 1.21711i 0.793512 + 0.608555i \(0.208251\pi\)
−0.793512 + 0.608555i \(0.791749\pi\)
\(150\) 0 0
\(151\) −10.1436 −0.825477 −0.412739 0.910850i \(-0.635428\pi\)
−0.412739 + 0.910850i \(0.635428\pi\)
\(152\) 0 0
\(153\) 8.04570 0.650456
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 7.49744i − 0.598361i −0.954197 0.299180i \(-0.903287\pi\)
0.954197 0.299180i \(-0.0967132\pi\)
\(158\) 0 0
\(159\) −0.843898 −0.0669255
\(160\) 0 0
\(161\) −6.08530 −0.479589
\(162\) 0 0
\(163\) − 8.95189i − 0.701166i −0.936532 0.350583i \(-0.885983\pi\)
0.936532 0.350583i \(-0.114017\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.49946 0.193414 0.0967070 0.995313i \(-0.469169\pi\)
0.0967070 + 0.995313i \(0.469169\pi\)
\(168\) 0 0
\(169\) 11.7368 0.902834
\(170\) 0 0
\(171\) 8.87221i 0.678475i
\(172\) 0 0
\(173\) − 0.589561i − 0.0448235i −0.999749 0.0224118i \(-0.992866\pi\)
0.999749 0.0224118i \(-0.00713448\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.84750 −0.214031
\(178\) 0 0
\(179\) 10.3029i 0.770077i 0.922901 + 0.385038i \(0.125812\pi\)
−0.922901 + 0.385038i \(0.874188\pi\)
\(180\) 0 0
\(181\) 17.8021i 1.32322i 0.749848 + 0.661610i \(0.230127\pi\)
−0.749848 + 0.661610i \(0.769873\pi\)
\(182\) 0 0
\(183\) 3.41168 0.252199
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 11.7530i 0.859464i
\(188\) 0 0
\(189\) − 3.32247i − 0.241674i
\(190\) 0 0
\(191\) 18.9069 1.36806 0.684029 0.729455i \(-0.260226\pi\)
0.684029 + 0.729455i \(0.260226\pi\)
\(192\) 0 0
\(193\) −10.2705 −0.739288 −0.369644 0.929173i \(-0.620520\pi\)
−0.369644 + 0.929173i \(0.620520\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.207142i 0.0147583i 0.999973 + 0.00737913i \(0.00234887\pi\)
−0.999973 + 0.00737913i \(0.997651\pi\)
\(198\) 0 0
\(199\) 12.2911 0.871295 0.435647 0.900117i \(-0.356519\pi\)
0.435647 + 0.900117i \(0.356519\pi\)
\(200\) 0 0
\(201\) −3.48750 −0.245989
\(202\) 0 0
\(203\) − 8.29809i − 0.582412i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 14.7528 1.02539
\(208\) 0 0
\(209\) −12.9603 −0.896485
\(210\) 0 0
\(211\) 3.91559i 0.269560i 0.990876 + 0.134780i \(0.0430328\pi\)
−0.990876 + 0.134780i \(0.956967\pi\)
\(212\) 0 0
\(213\) 1.68187i 0.115240i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.12363 0.551468
\(218\) 0 0
\(219\) 3.58000i 0.241914i
\(220\) 0 0
\(221\) 3.30407i 0.222256i
\(222\) 0 0
\(223\) 23.8519 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 24.7012i − 1.63948i −0.572738 0.819738i \(-0.694119\pi\)
0.572738 0.819738i \(-0.305881\pi\)
\(228\) 0 0
\(229\) 22.0732i 1.45864i 0.684175 + 0.729318i \(0.260163\pi\)
−0.684175 + 0.729318i \(0.739837\pi\)
\(230\) 0 0
\(231\) 2.31536 0.152340
\(232\) 0 0
\(233\) −19.6085 −1.28460 −0.642299 0.766454i \(-0.722019\pi\)
−0.642299 + 0.766454i \(0.722019\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4.41374i − 0.286703i
\(238\) 0 0
\(239\) 12.3845 0.801088 0.400544 0.916278i \(-0.368821\pi\)
0.400544 + 0.916278i \(0.368821\pi\)
\(240\) 0 0
\(241\) −20.4095 −1.31469 −0.657347 0.753588i \(-0.728321\pi\)
−0.657347 + 0.753588i \(0.728321\pi\)
\(242\) 0 0
\(243\) 12.2669i 0.786925i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.64348 −0.231829
\(248\) 0 0
\(249\) −6.91359 −0.438131
\(250\) 0 0
\(251\) − 22.2016i − 1.40135i −0.713479 0.700676i \(-0.752882\pi\)
0.713479 0.700676i \(-0.247118\pi\)
\(252\) 0 0
\(253\) 21.5506i 1.35488i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.0592 0.814614 0.407307 0.913291i \(-0.366468\pi\)
0.407307 + 0.913291i \(0.366468\pi\)
\(258\) 0 0
\(259\) 11.9860i 0.744776i
\(260\) 0 0
\(261\) 20.1174i 1.24523i
\(262\) 0 0
\(263\) −29.2389 −1.80295 −0.901473 0.432835i \(-0.857513\pi\)
−0.901473 + 0.432835i \(0.857513\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 5.63867i − 0.345081i
\(268\) 0 0
\(269\) 21.4247i 1.30629i 0.757235 + 0.653143i \(0.226550\pi\)
−0.757235 + 0.653143i \(0.773450\pi\)
\(270\) 0 0
\(271\) −1.15797 −0.0703415 −0.0351708 0.999381i \(-0.511198\pi\)
−0.0351708 + 0.999381i \(0.511198\pi\)
\(272\) 0 0
\(273\) 0.650908 0.0393947
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 16.8055i 1.00975i 0.863194 + 0.504873i \(0.168461\pi\)
−0.863194 + 0.504873i \(0.831539\pi\)
\(278\) 0 0
\(279\) −19.6944 −1.17907
\(280\) 0 0
\(281\) 8.99127 0.536374 0.268187 0.963367i \(-0.413575\pi\)
0.268187 + 0.963367i \(0.413575\pi\)
\(282\) 0 0
\(283\) − 15.4397i − 0.917798i −0.888489 0.458899i \(-0.848244\pi\)
0.888489 0.458899i \(-0.151756\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.35283 −0.138883
\(288\) 0 0
\(289\) −8.35748 −0.491616
\(290\) 0 0
\(291\) 9.57773i 0.561457i
\(292\) 0 0
\(293\) − 1.62062i − 0.0946777i −0.998879 0.0473389i \(-0.984926\pi\)
0.998879 0.0473389i \(-0.0150741\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −11.7663 −0.682748
\(298\) 0 0
\(299\) 6.05843i 0.350368i
\(300\) 0 0
\(301\) 7.06691i 0.407330i
\(302\) 0 0
\(303\) 0.904838 0.0519816
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 13.3243i − 0.760458i −0.924892 0.380229i \(-0.875845\pi\)
0.924892 0.380229i \(-0.124155\pi\)
\(308\) 0 0
\(309\) − 1.99667i − 0.113587i
\(310\) 0 0
\(311\) 3.20457 0.181714 0.0908572 0.995864i \(-0.471039\pi\)
0.0908572 + 0.995864i \(0.471039\pi\)
\(312\) 0 0
\(313\) −24.2715 −1.37190 −0.685952 0.727647i \(-0.740614\pi\)
−0.685952 + 0.727647i \(0.740614\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.79177i 0.212967i 0.994314 + 0.106483i \(0.0339591\pi\)
−0.994314 + 0.106483i \(0.966041\pi\)
\(318\) 0 0
\(319\) −29.3870 −1.64536
\(320\) 0 0
\(321\) −8.21591 −0.458567
\(322\) 0 0
\(323\) 9.53034i 0.530282i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.00806 −0.442847
\(328\) 0 0
\(329\) 2.53241 0.139616
\(330\) 0 0
\(331\) 2.26196i 0.124328i 0.998066 + 0.0621642i \(0.0198002\pi\)
−0.998066 + 0.0621642i \(0.980200\pi\)
\(332\) 0 0
\(333\) − 29.0582i − 1.59238i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −28.6654 −1.56150 −0.780751 0.624843i \(-0.785163\pi\)
−0.780751 + 0.624843i \(0.785163\pi\)
\(338\) 0 0
\(339\) 1.52396i 0.0827701i
\(340\) 0 0
\(341\) − 28.7692i − 1.55794i
\(342\) 0 0
\(343\) 14.3658 0.775679
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.03845i 0.163112i 0.996669 + 0.0815562i \(0.0259890\pi\)
−0.996669 + 0.0815562i \(0.974011\pi\)
\(348\) 0 0
\(349\) − 26.1606i − 1.40035i −0.713973 0.700173i \(-0.753106\pi\)
0.713973 0.700173i \(-0.246894\pi\)
\(350\) 0 0
\(351\) −3.30780 −0.176557
\(352\) 0 0
\(353\) 29.4943 1.56983 0.784913 0.619606i \(-0.212708\pi\)
0.784913 + 0.619606i \(0.212708\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1.70259i − 0.0901108i
\(358\) 0 0
\(359\) −8.91327 −0.470424 −0.235212 0.971944i \(-0.575578\pi\)
−0.235212 + 0.971944i \(0.575578\pi\)
\(360\) 0 0
\(361\) 8.49064 0.446876
\(362\) 0 0
\(363\) − 2.55638i − 0.134175i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.6852 1.18416 0.592079 0.805880i \(-0.298307\pi\)
0.592079 + 0.805880i \(0.298307\pi\)
\(368\) 0 0
\(369\) 5.70406 0.296942
\(370\) 0 0
\(371\) − 1.85695i − 0.0964081i
\(372\) 0 0
\(373\) 6.46312i 0.334648i 0.985902 + 0.167324i \(0.0535125\pi\)
−0.985902 + 0.167324i \(0.946487\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.26145 −0.425486
\(378\) 0 0
\(379\) − 4.31785i − 0.221793i −0.993832 0.110897i \(-0.964628\pi\)
0.993832 0.110897i \(-0.0353722\pi\)
\(380\) 0 0
\(381\) − 6.29441i − 0.322472i
\(382\) 0 0
\(383\) −11.1049 −0.567432 −0.283716 0.958908i \(-0.591567\pi\)
−0.283716 + 0.958908i \(0.591567\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 17.1326i − 0.870898i
\(388\) 0 0
\(389\) 15.5490i 0.788368i 0.919032 + 0.394184i \(0.128973\pi\)
−0.919032 + 0.394184i \(0.871027\pi\)
\(390\) 0 0
\(391\) 15.8472 0.801426
\(392\) 0 0
\(393\) 6.80472 0.343253
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.9682i 1.35350i 0.736214 + 0.676748i \(0.236611\pi\)
−0.736214 + 0.676748i \(0.763389\pi\)
\(398\) 0 0
\(399\) 1.87750 0.0939924
\(400\) 0 0
\(401\) 36.1092 1.80321 0.901603 0.432565i \(-0.142391\pi\)
0.901603 + 0.432565i \(0.142391\pi\)
\(402\) 0 0
\(403\) − 8.08775i − 0.402880i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 42.4476 2.10405
\(408\) 0 0
\(409\) 15.5149 0.767163 0.383581 0.923507i \(-0.374691\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(410\) 0 0
\(411\) − 6.86755i − 0.338751i
\(412\) 0 0
\(413\) − 6.26576i − 0.308318i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −10.3936 −0.508978
\(418\) 0 0
\(419\) − 26.9362i − 1.31592i −0.753054 0.657959i \(-0.771420\pi\)
0.753054 0.657959i \(-0.228580\pi\)
\(420\) 0 0
\(421\) − 6.14641i − 0.299557i −0.988720 0.149779i \(-0.952144\pi\)
0.988720 0.149779i \(-0.0478561\pi\)
\(422\) 0 0
\(423\) −6.13941 −0.298508
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.50721i 0.363299i
\(428\) 0 0
\(429\) − 2.30514i − 0.111293i
\(430\) 0 0
\(431\) −36.8901 −1.77693 −0.888467 0.458940i \(-0.848229\pi\)
−0.888467 + 0.458940i \(0.848229\pi\)
\(432\) 0 0
\(433\) −11.5824 −0.556617 −0.278308 0.960492i \(-0.589774\pi\)
−0.278308 + 0.960492i \(0.589774\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.4751i 0.835948i
\(438\) 0 0
\(439\) 4.15174 0.198152 0.0990760 0.995080i \(-0.468411\pi\)
0.0990760 + 0.995080i \(0.468411\pi\)
\(440\) 0 0
\(441\) −15.6699 −0.746185
\(442\) 0 0
\(443\) 15.7327i 0.747482i 0.927533 + 0.373741i \(0.121925\pi\)
−0.927533 + 0.373741i \(0.878075\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.62190 −0.360504
\(448\) 0 0
\(449\) −20.6861 −0.976239 −0.488120 0.872777i \(-0.662317\pi\)
−0.488120 + 0.872777i \(0.662317\pi\)
\(450\) 0 0
\(451\) 8.33238i 0.392356i
\(452\) 0 0
\(453\) − 5.20396i − 0.244503i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.7187 1.34340 0.671702 0.740821i \(-0.265564\pi\)
0.671702 + 0.740821i \(0.265564\pi\)
\(458\) 0 0
\(459\) 8.65228i 0.403854i
\(460\) 0 0
\(461\) − 27.7063i − 1.29041i −0.764008 0.645207i \(-0.776771\pi\)
0.764008 0.645207i \(-0.223229\pi\)
\(462\) 0 0
\(463\) −26.9572 −1.25281 −0.626404 0.779499i \(-0.715474\pi\)
−0.626404 + 0.779499i \(0.715474\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 31.3052i − 1.44863i −0.689468 0.724316i \(-0.742156\pi\)
0.689468 0.724316i \(-0.257844\pi\)
\(468\) 0 0
\(469\) − 7.67404i − 0.354354i
\(470\) 0 0
\(471\) 3.84639 0.177232
\(472\) 0 0
\(473\) 25.0269 1.15074
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.50187i 0.206127i
\(478\) 0 0
\(479\) 32.6888 1.49359 0.746794 0.665056i \(-0.231592\pi\)
0.746794 + 0.665056i \(0.231592\pi\)
\(480\) 0 0
\(481\) 11.9331 0.544103
\(482\) 0 0
\(483\) − 3.12193i − 0.142053i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −17.6043 −0.797726 −0.398863 0.917011i \(-0.630595\pi\)
−0.398863 + 0.917011i \(0.630595\pi\)
\(488\) 0 0
\(489\) 4.59256 0.207683
\(490\) 0 0
\(491\) 1.31132i 0.0591790i 0.999562 + 0.0295895i \(0.00942000\pi\)
−0.999562 + 0.0295895i \(0.990580\pi\)
\(492\) 0 0
\(493\) 21.6097i 0.973250i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.70087 −0.166007
\(498\) 0 0
\(499\) 21.2655i 0.951973i 0.879453 + 0.475987i \(0.157909\pi\)
−0.879453 + 0.475987i \(0.842091\pi\)
\(500\) 0 0
\(501\) 1.28229i 0.0572885i
\(502\) 0 0
\(503\) 34.4786 1.53733 0.768663 0.639654i \(-0.220922\pi\)
0.768663 + 0.639654i \(0.220922\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.02132i 0.267416i
\(508\) 0 0
\(509\) 8.61795i 0.381984i 0.981592 + 0.190992i \(0.0611704\pi\)
−0.981592 + 0.190992i \(0.938830\pi\)
\(510\) 0 0
\(511\) −7.87759 −0.348484
\(512\) 0 0
\(513\) −9.54110 −0.421250
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 8.96833i − 0.394426i
\(518\) 0 0
\(519\) 0.302461 0.0132766
\(520\) 0 0
\(521\) −5.28810 −0.231676 −0.115838 0.993268i \(-0.536955\pi\)
−0.115838 + 0.993268i \(0.536955\pi\)
\(522\) 0 0
\(523\) 18.0301i 0.788400i 0.919025 + 0.394200i \(0.128978\pi\)
−0.919025 + 0.394200i \(0.871022\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.1553 −0.921540
\(528\) 0 0
\(529\) 6.05785 0.263385
\(530\) 0 0
\(531\) 15.1903i 0.659204i
\(532\) 0 0
\(533\) 2.34244i 0.101463i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.28568 −0.228094
\(538\) 0 0
\(539\) − 22.8902i − 0.985952i
\(540\) 0 0
\(541\) − 2.53085i − 0.108810i −0.998519 0.0544050i \(-0.982674\pi\)
0.998519 0.0544050i \(-0.0173262\pi\)
\(542\) 0 0
\(543\) −9.13296 −0.391933
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 37.9439i − 1.62236i −0.584794 0.811182i \(-0.698825\pi\)
0.584794 0.811182i \(-0.301175\pi\)
\(548\) 0 0
\(549\) − 18.2000i − 0.776757i
\(550\) 0 0
\(551\) −23.8295 −1.01517
\(552\) 0 0
\(553\) 9.71219 0.413004
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 37.0123i 1.56826i 0.620596 + 0.784130i \(0.286891\pi\)
−0.620596 + 0.784130i \(0.713109\pi\)
\(558\) 0 0
\(559\) 7.03571 0.297579
\(560\) 0 0
\(561\) −6.02960 −0.254570
\(562\) 0 0
\(563\) − 14.2506i − 0.600590i −0.953846 0.300295i \(-0.902915\pi\)
0.953846 0.300295i \(-0.0970852\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −7.56411 −0.317663
\(568\) 0 0
\(569\) 25.9576 1.08820 0.544101 0.839020i \(-0.316871\pi\)
0.544101 + 0.839020i \(0.316871\pi\)
\(570\) 0 0
\(571\) 20.3690i 0.852416i 0.904625 + 0.426208i \(0.140151\pi\)
−0.904625 + 0.426208i \(0.859849\pi\)
\(572\) 0 0
\(573\) 9.69977i 0.405214i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −44.6310 −1.85801 −0.929007 0.370063i \(-0.879336\pi\)
−0.929007 + 0.370063i \(0.879336\pi\)
\(578\) 0 0
\(579\) − 5.26905i − 0.218974i
\(580\) 0 0
\(581\) − 15.2130i − 0.631140i
\(582\) 0 0
\(583\) −6.57625 −0.272360
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.9398i 0.781729i 0.920448 + 0.390865i \(0.127824\pi\)
−0.920448 + 0.390865i \(0.872176\pi\)
\(588\) 0 0
\(589\) − 23.3285i − 0.961236i
\(590\) 0 0
\(591\) −0.106270 −0.00437134
\(592\) 0 0
\(593\) 8.22399 0.337719 0.168859 0.985640i \(-0.445992\pi\)
0.168859 + 0.985640i \(0.445992\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.30568i 0.258074i
\(598\) 0 0
\(599\) 37.2899 1.52362 0.761812 0.647798i \(-0.224310\pi\)
0.761812 + 0.647798i \(0.224310\pi\)
\(600\) 0 0
\(601\) 23.7882 0.970341 0.485170 0.874420i \(-0.338758\pi\)
0.485170 + 0.874420i \(0.338758\pi\)
\(602\) 0 0
\(603\) 18.6045i 0.757632i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.6940 1.32701 0.663505 0.748172i \(-0.269068\pi\)
0.663505 + 0.748172i \(0.269068\pi\)
\(608\) 0 0
\(609\) 4.25715 0.172508
\(610\) 0 0
\(611\) − 2.52123i − 0.101998i
\(612\) 0 0
\(613\) − 5.70642i − 0.230480i −0.993338 0.115240i \(-0.963236\pi\)
0.993338 0.115240i \(-0.0367637\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.9653 0.763514 0.381757 0.924263i \(-0.375319\pi\)
0.381757 + 0.924263i \(0.375319\pi\)
\(618\) 0 0
\(619\) − 32.0663i − 1.28885i −0.764666 0.644427i \(-0.777096\pi\)
0.764666 0.644427i \(-0.222904\pi\)
\(620\) 0 0
\(621\) 15.8651i 0.636643i
\(622\) 0 0
\(623\) 12.4076 0.497099
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 6.64901i − 0.265536i
\(628\) 0 0
\(629\) − 31.2137i − 1.24457i
\(630\) 0 0
\(631\) 11.4737 0.456762 0.228381 0.973572i \(-0.426657\pi\)
0.228381 + 0.973572i \(0.426657\pi\)
\(632\) 0 0
\(633\) −2.00880 −0.0798427
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 6.43503i − 0.254965i
\(638\) 0 0
\(639\) 8.97215 0.354933
\(640\) 0 0
\(641\) −0.258289 −0.0102018 −0.00510089 0.999987i \(-0.501624\pi\)
−0.00510089 + 0.999987i \(0.501624\pi\)
\(642\) 0 0
\(643\) − 31.8119i − 1.25454i −0.778802 0.627269i \(-0.784173\pi\)
0.778802 0.627269i \(-0.215827\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.3294 0.956486 0.478243 0.878228i \(-0.341274\pi\)
0.478243 + 0.878228i \(0.341274\pi\)
\(648\) 0 0
\(649\) −22.1897 −0.871022
\(650\) 0 0
\(651\) 4.16764i 0.163343i
\(652\) 0 0
\(653\) − 39.3785i − 1.54100i −0.637440 0.770500i \(-0.720007\pi\)
0.637440 0.770500i \(-0.279993\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 19.0979 0.745082
\(658\) 0 0
\(659\) − 33.7063i − 1.31301i −0.754321 0.656506i \(-0.772034\pi\)
0.754321 0.656506i \(-0.227966\pi\)
\(660\) 0 0
\(661\) 32.9163i 1.28029i 0.768252 + 0.640147i \(0.221127\pi\)
−0.768252 + 0.640147i \(0.778873\pi\)
\(662\) 0 0
\(663\) −1.69508 −0.0658313
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 39.6241i 1.53425i
\(668\) 0 0
\(669\) 12.2367i 0.473097i
\(670\) 0 0
\(671\) 26.5862 1.02635
\(672\) 0 0
\(673\) 2.87683 0.110894 0.0554468 0.998462i \(-0.482342\pi\)
0.0554468 + 0.998462i \(0.482342\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 28.6415i − 1.10078i −0.834907 0.550391i \(-0.814479\pi\)
0.834907 0.550391i \(-0.185521\pi\)
\(678\) 0 0
\(679\) −21.0753 −0.808794
\(680\) 0 0
\(681\) 12.6724 0.485607
\(682\) 0 0
\(683\) 18.3147i 0.700792i 0.936602 + 0.350396i \(0.113953\pi\)
−0.936602 + 0.350396i \(0.886047\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.3241 −0.432043
\(688\) 0 0
\(689\) −1.84875 −0.0704318
\(690\) 0 0
\(691\) 14.4710i 0.550502i 0.961372 + 0.275251i \(0.0887610\pi\)
−0.961372 + 0.275251i \(0.911239\pi\)
\(692\) 0 0
\(693\) − 12.3516i − 0.469198i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.12718 0.232084
\(698\) 0 0
\(699\) − 10.0597i − 0.380493i
\(700\) 0 0
\(701\) 18.5603i 0.701013i 0.936560 + 0.350506i \(0.113991\pi\)
−0.936560 + 0.350506i \(0.886009\pi\)
\(702\) 0 0
\(703\) 34.4202 1.29818
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.99104i 0.0748809i
\(708\) 0 0
\(709\) − 43.3934i − 1.62967i −0.579690 0.814837i \(-0.696826\pi\)
0.579690 0.814837i \(-0.303174\pi\)
\(710\) 0 0
\(711\) −23.5456 −0.883029
\(712\) 0 0
\(713\) −38.7910 −1.45273
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.35359i 0.237279i
\(718\) 0 0
\(719\) −14.8496 −0.553797 −0.276899 0.960899i \(-0.589307\pi\)
−0.276899 + 0.960899i \(0.589307\pi\)
\(720\) 0 0
\(721\) 4.39356 0.163625
\(722\) 0 0
\(723\) − 10.4706i − 0.389408i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6.22824 −0.230993 −0.115496 0.993308i \(-0.536846\pi\)
−0.115496 + 0.993308i \(0.536846\pi\)
\(728\) 0 0
\(729\) 13.8082 0.511416
\(730\) 0 0
\(731\) − 18.4035i − 0.680676i
\(732\) 0 0
\(733\) 43.2406i 1.59713i 0.601910 + 0.798564i \(0.294407\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27.1770 −1.00108
\(738\) 0 0
\(739\) − 10.0469i − 0.369582i −0.982778 0.184791i \(-0.940839\pi\)
0.982778 0.184791i \(-0.0591608\pi\)
\(740\) 0 0
\(741\) − 1.86921i − 0.0686670i
\(742\) 0 0
\(743\) −5.85860 −0.214931 −0.107466 0.994209i \(-0.534274\pi\)
−0.107466 + 0.994209i \(0.534274\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 36.8814i 1.34942i
\(748\) 0 0
\(749\) − 18.0786i − 0.660579i
\(750\) 0 0
\(751\) 16.0419 0.585377 0.292688 0.956208i \(-0.405450\pi\)
0.292688 + 0.956208i \(0.405450\pi\)
\(752\) 0 0
\(753\) 11.3900 0.415075
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.5665i 0.565773i 0.959153 + 0.282886i \(0.0912919\pi\)
−0.959153 + 0.282886i \(0.908708\pi\)
\(758\) 0 0
\(759\) −11.0561 −0.401309
\(760\) 0 0
\(761\) −26.9097 −0.975477 −0.487739 0.872990i \(-0.662178\pi\)
−0.487739 + 0.872990i \(0.662178\pi\)
\(762\) 0 0
\(763\) − 17.6213i − 0.637933i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.23810 −0.225245
\(768\) 0 0
\(769\) 17.0952 0.616470 0.308235 0.951310i \(-0.400262\pi\)
0.308235 + 0.951310i \(0.400262\pi\)
\(770\) 0 0
\(771\) 6.69975i 0.241286i
\(772\) 0 0
\(773\) 6.32624i 0.227539i 0.993507 + 0.113770i \(0.0362926\pi\)
−0.993507 + 0.113770i \(0.963707\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.14916 −0.220600
\(778\) 0 0
\(779\) 6.75661i 0.242081i
\(780\) 0 0
\(781\) 13.1063i 0.468981i
\(782\) 0 0
\(783\) −21.6341 −0.773138
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 53.5766i − 1.90980i −0.296929 0.954899i \(-0.595963\pi\)
0.296929 0.954899i \(-0.404037\pi\)
\(788\) 0 0
\(789\) − 15.0003i − 0.534026i
\(790\) 0 0
\(791\) −3.35339 −0.119233
\(792\) 0 0
\(793\) 7.47406 0.265412
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 41.6834i − 1.47650i −0.674527 0.738251i \(-0.735652\pi\)
0.674527 0.738251i \(-0.264348\pi\)
\(798\) 0 0
\(799\) −6.59483 −0.233308
\(800\) 0 0
\(801\) −30.0802 −1.06283
\(802\) 0 0
\(803\) 27.8979i 0.984495i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.9914 −0.386917
\(808\) 0 0
\(809\) −26.9010 −0.945788 −0.472894 0.881119i \(-0.656791\pi\)
−0.472894 + 0.881119i \(0.656791\pi\)
\(810\) 0 0
\(811\) 5.88980i 0.206819i 0.994639 + 0.103409i \(0.0329752\pi\)
−0.994639 + 0.103409i \(0.967025\pi\)
\(812\) 0 0
\(813\) − 0.594069i − 0.0208349i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.2940 0.709997
\(818\) 0 0
\(819\) − 3.47234i − 0.121334i
\(820\) 0 0
\(821\) − 48.2445i − 1.68374i −0.539677 0.841872i \(-0.681454\pi\)
0.539677 0.841872i \(-0.318546\pi\)
\(822\) 0 0
\(823\) 51.9289 1.81013 0.905063 0.425277i \(-0.139823\pi\)
0.905063 + 0.425277i \(0.139823\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.2849i 0.983562i 0.870719 + 0.491781i \(0.163654\pi\)
−0.870719 + 0.491781i \(0.836346\pi\)
\(828\) 0 0
\(829\) − 14.2294i − 0.494209i −0.968989 0.247104i \(-0.920521\pi\)
0.968989 0.247104i \(-0.0794790\pi\)
\(830\) 0 0
\(831\) −8.62168 −0.299083
\(832\) 0 0
\(833\) −16.8323 −0.583203
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 21.1792i − 0.732060i
\(838\) 0 0
\(839\) −5.04346 −0.174120 −0.0870598 0.996203i \(-0.527747\pi\)
−0.0870598 + 0.996203i \(0.527747\pi\)
\(840\) 0 0
\(841\) −25.0325 −0.863191
\(842\) 0 0
\(843\) 4.61277i 0.158872i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.62517 0.193283
\(848\) 0 0
\(849\) 7.92101 0.271848
\(850\) 0 0
\(851\) − 57.2343i − 1.96197i
\(852\) 0 0
\(853\) 46.2026i 1.58195i 0.611850 + 0.790974i \(0.290426\pi\)
−0.611850 + 0.790974i \(0.709574\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.5405 1.41900 0.709499 0.704707i \(-0.248921\pi\)
0.709499 + 0.704707i \(0.248921\pi\)
\(858\) 0 0
\(859\) − 37.9644i − 1.29533i −0.761925 0.647665i \(-0.775746\pi\)
0.761925 0.647665i \(-0.224254\pi\)
\(860\) 0 0
\(861\) − 1.20707i − 0.0411368i
\(862\) 0 0
\(863\) 2.89022 0.0983843 0.0491922 0.998789i \(-0.484335\pi\)
0.0491922 + 0.998789i \(0.484335\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 4.28761i − 0.145615i
\(868\) 0 0
\(869\) − 34.3949i − 1.16677i
\(870\) 0 0
\(871\) −7.64015 −0.258877
\(872\) 0 0
\(873\) 51.0935 1.72925
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 43.0916i − 1.45510i −0.686055 0.727550i \(-0.740659\pi\)
0.686055 0.727550i \(-0.259341\pi\)
\(878\) 0 0
\(879\) 0.831423 0.0280432
\(880\) 0 0
\(881\) −2.06410 −0.0695414 −0.0347707 0.999395i \(-0.511070\pi\)
−0.0347707 + 0.999395i \(0.511070\pi\)
\(882\) 0 0
\(883\) − 51.4835i − 1.73256i −0.499562 0.866278i \(-0.666506\pi\)
0.499562 0.866278i \(-0.333494\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −55.5749 −1.86602 −0.933012 0.359845i \(-0.882829\pi\)
−0.933012 + 0.359845i \(0.882829\pi\)
\(888\) 0 0
\(889\) 13.8505 0.464531
\(890\) 0 0
\(891\) 26.7877i 0.897422i
\(892\) 0 0
\(893\) − 7.27229i − 0.243358i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.10814 −0.103778
\(898\) 0 0
\(899\) − 52.8965i − 1.76420i
\(900\) 0 0
\(901\) 4.83582i 0.161105i
\(902\) 0 0
\(903\) −3.62552 −0.120650
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 15.8669i 0.526852i 0.964680 + 0.263426i \(0.0848526\pi\)
−0.964680 + 0.263426i \(0.915147\pi\)
\(908\) 0 0
\(909\) − 4.82696i − 0.160100i
\(910\) 0 0
\(911\) 30.4293 1.00817 0.504084 0.863655i \(-0.331830\pi\)
0.504084 + 0.863655i \(0.331830\pi\)
\(912\) 0 0
\(913\) −53.8755 −1.78302
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.9734i 0.494465i
\(918\) 0 0
\(919\) 15.1819 0.500803 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(920\) 0 0
\(921\) 6.83572 0.225245
\(922\) 0 0
\(923\) 3.68452i 0.121278i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10.6515 −0.349840
\(928\) 0 0
\(929\) −8.00028 −0.262481 −0.131240 0.991351i \(-0.541896\pi\)
−0.131240 + 0.991351i \(0.541896\pi\)
\(930\) 0 0
\(931\) − 18.5614i − 0.608325i
\(932\) 0 0
\(933\) 1.64403i 0.0538231i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.0303 0.327676 0.163838 0.986487i \(-0.447613\pi\)
0.163838 + 0.986487i \(0.447613\pi\)
\(938\) 0 0
\(939\) − 12.4519i − 0.406353i
\(940\) 0 0
\(941\) − 4.23635i − 0.138101i −0.997613 0.0690506i \(-0.978003\pi\)
0.997613 0.0690506i \(-0.0219970\pi\)
\(942\) 0 0
\(943\) 11.2350 0.365861
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 3.33715i − 0.108443i −0.998529 0.0542213i \(-0.982732\pi\)
0.998529 0.0542213i \(-0.0172677\pi\)
\(948\) 0 0
\(949\) 7.84281i 0.254588i
\(950\) 0 0
\(951\) −1.94528 −0.0630800
\(952\) 0 0
\(953\) −10.9309 −0.354086 −0.177043 0.984203i \(-0.556653\pi\)
−0.177043 + 0.984203i \(0.556653\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 15.0763i − 0.487349i
\(958\) 0 0
\(959\) 15.1117 0.487981
\(960\) 0 0
\(961\) 20.7844 0.670463
\(962\) 0 0
\(963\) 43.8287i 1.41236i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.7599 1.31075 0.655375 0.755304i \(-0.272511\pi\)
0.655375 + 0.755304i \(0.272511\pi\)
\(968\) 0 0
\(969\) −4.88932 −0.157068
\(970\) 0 0
\(971\) − 56.9328i − 1.82706i −0.406772 0.913530i \(-0.633346\pi\)
0.406772 0.913530i \(-0.366654\pi\)
\(972\) 0 0
\(973\) − 22.8706i − 0.733197i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.1254 0.547892 0.273946 0.961745i \(-0.411671\pi\)
0.273946 + 0.961745i \(0.411671\pi\)
\(978\) 0 0
\(979\) − 43.9405i − 1.40434i
\(980\) 0 0
\(981\) 42.7199i 1.36394i
\(982\) 0 0
\(983\) −51.3738 −1.63857 −0.819284 0.573388i \(-0.805629\pi\)
−0.819284 + 0.573388i \(0.805629\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.29919i 0.0413538i
\(988\) 0 0
\(989\) − 33.7451i − 1.07303i
\(990\) 0 0
\(991\) 23.9933 0.762171 0.381085 0.924540i \(-0.375550\pi\)
0.381085 + 0.924540i \(0.375550\pi\)
\(992\) 0 0
\(993\) −1.16045 −0.0368256
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 7.90228i − 0.250268i −0.992140 0.125134i \(-0.960064\pi\)
0.992140 0.125134i \(-0.0399361\pi\)
\(998\) 0 0
\(999\) 31.2489 0.988673
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.d.c.2001.20 40
4.3 odd 2 1000.2.d.c.501.6 yes 40
5.2 odd 4 4000.2.f.c.3249.13 20
5.3 odd 4 4000.2.f.d.3249.8 20
5.4 even 2 inner 4000.2.d.c.2001.21 40
8.3 odd 2 1000.2.d.c.501.5 40
8.5 even 2 inner 4000.2.d.c.2001.19 40
20.3 even 4 1000.2.f.d.749.12 20
20.7 even 4 1000.2.f.c.749.9 20
20.19 odd 2 1000.2.d.c.501.35 yes 40
40.3 even 4 1000.2.f.c.749.10 20
40.13 odd 4 4000.2.f.c.3249.14 20
40.19 odd 2 1000.2.d.c.501.36 yes 40
40.27 even 4 1000.2.f.d.749.11 20
40.29 even 2 inner 4000.2.d.c.2001.22 40
40.37 odd 4 4000.2.f.d.3249.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.5 40 8.3 odd 2
1000.2.d.c.501.6 yes 40 4.3 odd 2
1000.2.d.c.501.35 yes 40 20.19 odd 2
1000.2.d.c.501.36 yes 40 40.19 odd 2
1000.2.f.c.749.9 20 20.7 even 4
1000.2.f.c.749.10 20 40.3 even 4
1000.2.f.d.749.11 20 40.27 even 4
1000.2.f.d.749.12 20 20.3 even 4
4000.2.d.c.2001.19 40 8.5 even 2 inner
4000.2.d.c.2001.20 40 1.1 even 1 trivial
4000.2.d.c.2001.21 40 5.4 even 2 inner
4000.2.d.c.2001.22 40 40.29 even 2 inner
4000.2.f.c.3249.13 20 5.2 odd 4
4000.2.f.c.3249.14 20 40.13 odd 4
4000.2.f.d.3249.7 20 40.37 odd 4
4000.2.f.d.3249.8 20 5.3 odd 4