Properties

Label 10000.2.a.bj.1.2
Level $10000$
Weight $2$
Character 10000.1
Self dual yes
Analytic conductor $79.850$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10000,2,Mod(1,10000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10000 = 2^{4} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.8504020213\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.14884000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.08529\) of defining polynomial
Character \(\chi\) \(=\) 10000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.19849 q^{3} +0.992398 q^{7} +1.83337 q^{9} -2.00000 q^{11} +3.37406 q^{13} -2.89451 q^{17} +2.58448 q^{19} -2.18178 q^{21} -4.54963 q^{23} +2.56484 q^{27} -5.38430 q^{29} -0.136538 q^{31} +4.39698 q^{33} +2.14910 q^{37} -7.41785 q^{39} +8.63318 q^{41} +4.64398 q^{43} +9.92630 q^{47} -6.01515 q^{49} +6.36356 q^{51} -7.56521 q^{53} -5.68196 q^{57} -4.91775 q^{59} -2.76972 q^{61} +1.81943 q^{63} +2.18577 q^{67} +10.0023 q^{69} -9.64254 q^{71} -0.775929 q^{73} -1.98480 q^{77} -15.8508 q^{79} -11.1389 q^{81} -1.77110 q^{83} +11.8373 q^{87} +14.5080 q^{89} +3.34841 q^{91} +0.300177 q^{93} +17.0291 q^{97} -3.66673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} - 16 q^{11} - 10 q^{19} + 6 q^{21} + 20 q^{29} - 16 q^{31} - 18 q^{39} + 26 q^{41} - 14 q^{49} + 4 q^{51} - 30 q^{59} + 6 q^{61} + 8 q^{69} - 46 q^{71} - 10 q^{79} - 32 q^{81} + 30 q^{89}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.19849 −1.26930 −0.634650 0.772800i \(-0.718856\pi\)
−0.634650 + 0.772800i \(0.718856\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.992398 0.375091 0.187546 0.982256i \(-0.439947\pi\)
0.187546 + 0.982256i \(0.439947\pi\)
\(8\) 0 0
\(9\) 1.83337 0.611122
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 3.37406 0.935796 0.467898 0.883782i \(-0.345011\pi\)
0.467898 + 0.883782i \(0.345011\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.89451 −0.702022 −0.351011 0.936371i \(-0.614162\pi\)
−0.351011 + 0.936371i \(0.614162\pi\)
\(18\) 0 0
\(19\) 2.58448 0.592921 0.296460 0.955045i \(-0.404194\pi\)
0.296460 + 0.955045i \(0.404194\pi\)
\(20\) 0 0
\(21\) −2.18178 −0.476103
\(22\) 0 0
\(23\) −4.54963 −0.948664 −0.474332 0.880346i \(-0.657310\pi\)
−0.474332 + 0.880346i \(0.657310\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.56484 0.493603
\(28\) 0 0
\(29\) −5.38430 −0.999839 −0.499919 0.866072i \(-0.666637\pi\)
−0.499919 + 0.866072i \(0.666637\pi\)
\(30\) 0 0
\(31\) −0.136538 −0.0245229 −0.0122614 0.999925i \(-0.503903\pi\)
−0.0122614 + 0.999925i \(0.503903\pi\)
\(32\) 0 0
\(33\) 4.39698 0.765417
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.14910 0.353311 0.176655 0.984273i \(-0.443472\pi\)
0.176655 + 0.984273i \(0.443472\pi\)
\(38\) 0 0
\(39\) −7.41785 −1.18781
\(40\) 0 0
\(41\) 8.63318 1.34828 0.674138 0.738605i \(-0.264515\pi\)
0.674138 + 0.738605i \(0.264515\pi\)
\(42\) 0 0
\(43\) 4.64398 0.708200 0.354100 0.935208i \(-0.384787\pi\)
0.354100 + 0.935208i \(0.384787\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.92630 1.44790 0.723950 0.689853i \(-0.242325\pi\)
0.723950 + 0.689853i \(0.242325\pi\)
\(48\) 0 0
\(49\) −6.01515 −0.859306
\(50\) 0 0
\(51\) 6.36356 0.891077
\(52\) 0 0
\(53\) −7.56521 −1.03916 −0.519581 0.854421i \(-0.673912\pi\)
−0.519581 + 0.854421i \(0.673912\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.68196 −0.752594
\(58\) 0 0
\(59\) −4.91775 −0.640237 −0.320118 0.947378i \(-0.603723\pi\)
−0.320118 + 0.947378i \(0.603723\pi\)
\(60\) 0 0
\(61\) −2.76972 −0.354626 −0.177313 0.984155i \(-0.556740\pi\)
−0.177313 + 0.984155i \(0.556740\pi\)
\(62\) 0 0
\(63\) 1.81943 0.229227
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.18577 0.267035 0.133517 0.991046i \(-0.457373\pi\)
0.133517 + 0.991046i \(0.457373\pi\)
\(68\) 0 0
\(69\) 10.0023 1.20414
\(70\) 0 0
\(71\) −9.64254 −1.14436 −0.572179 0.820128i \(-0.693902\pi\)
−0.572179 + 0.820128i \(0.693902\pi\)
\(72\) 0 0
\(73\) −0.775929 −0.0908157 −0.0454078 0.998969i \(-0.514459\pi\)
−0.0454078 + 0.998969i \(0.514459\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.98480 −0.226189
\(78\) 0 0
\(79\) −15.8508 −1.78336 −0.891679 0.452667i \(-0.850473\pi\)
−0.891679 + 0.452667i \(0.850473\pi\)
\(80\) 0 0
\(81\) −11.1389 −1.23765
\(82\) 0 0
\(83\) −1.77110 −0.194404 −0.0972019 0.995265i \(-0.530989\pi\)
−0.0972019 + 0.995265i \(0.530989\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.8373 1.26909
\(88\) 0 0
\(89\) 14.5080 1.53785 0.768923 0.639341i \(-0.220793\pi\)
0.768923 + 0.639341i \(0.220793\pi\)
\(90\) 0 0
\(91\) 3.34841 0.351009
\(92\) 0 0
\(93\) 0.300177 0.0311269
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.0291 1.72904 0.864522 0.502595i \(-0.167621\pi\)
0.864522 + 0.502595i \(0.167621\pi\)
\(98\) 0 0
\(99\) −3.66673 −0.368520
\(100\) 0 0
\(101\) −2.54716 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(102\) 0 0
\(103\) 10.1654 1.00163 0.500815 0.865555i \(-0.333034\pi\)
0.500815 + 0.865555i \(0.333034\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.81720 −0.465697 −0.232848 0.972513i \(-0.574805\pi\)
−0.232848 + 0.972513i \(0.574805\pi\)
\(108\) 0 0
\(109\) 16.2743 1.55879 0.779397 0.626531i \(-0.215526\pi\)
0.779397 + 0.626531i \(0.215526\pi\)
\(110\) 0 0
\(111\) −4.72479 −0.448457
\(112\) 0 0
\(113\) −6.75704 −0.635649 −0.317825 0.948150i \(-0.602952\pi\)
−0.317825 + 0.948150i \(0.602952\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.18589 0.571886
\(118\) 0 0
\(119\) −2.87251 −0.263322
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −18.9800 −1.71137
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.49081 −0.132288 −0.0661441 0.997810i \(-0.521070\pi\)
−0.0661441 + 0.997810i \(0.521070\pi\)
\(128\) 0 0
\(129\) −10.2097 −0.898918
\(130\) 0 0
\(131\) −14.1147 −1.23320 −0.616602 0.787275i \(-0.711491\pi\)
−0.616602 + 0.787275i \(0.711491\pi\)
\(132\) 0 0
\(133\) 2.56484 0.222399
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.689447 0.0589035 0.0294517 0.999566i \(-0.490624\pi\)
0.0294517 + 0.999566i \(0.490624\pi\)
\(138\) 0 0
\(139\) 16.5719 1.40561 0.702803 0.711384i \(-0.251931\pi\)
0.702803 + 0.711384i \(0.251931\pi\)
\(140\) 0 0
\(141\) −21.8229 −1.83782
\(142\) 0 0
\(143\) −6.74812 −0.564307
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 13.2242 1.09072
\(148\) 0 0
\(149\) 3.21156 0.263101 0.131551 0.991309i \(-0.458004\pi\)
0.131551 + 0.991309i \(0.458004\pi\)
\(150\) 0 0
\(151\) −17.6863 −1.43929 −0.719647 0.694340i \(-0.755696\pi\)
−0.719647 + 0.694340i \(0.755696\pi\)
\(152\) 0 0
\(153\) −5.30670 −0.429021
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.65512 −0.132093 −0.0660465 0.997817i \(-0.521039\pi\)
−0.0660465 + 0.997817i \(0.521039\pi\)
\(158\) 0 0
\(159\) 16.6321 1.31901
\(160\) 0 0
\(161\) −4.51505 −0.355836
\(162\) 0 0
\(163\) 0.892934 0.0699400 0.0349700 0.999388i \(-0.488866\pi\)
0.0349700 + 0.999388i \(0.488866\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.19558 0.402046 0.201023 0.979587i \(-0.435573\pi\)
0.201023 + 0.979587i \(0.435573\pi\)
\(168\) 0 0
\(169\) −1.61570 −0.124285
\(170\) 0 0
\(171\) 4.73830 0.362347
\(172\) 0 0
\(173\) 5.76465 0.438278 0.219139 0.975694i \(-0.429675\pi\)
0.219139 + 0.975694i \(0.429675\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.8116 0.812652
\(178\) 0 0
\(179\) −8.66887 −0.647942 −0.323971 0.946067i \(-0.605018\pi\)
−0.323971 + 0.946067i \(0.605018\pi\)
\(180\) 0 0
\(181\) 14.2909 1.06223 0.531116 0.847299i \(-0.321773\pi\)
0.531116 + 0.847299i \(0.321773\pi\)
\(182\) 0 0
\(183\) 6.08920 0.450127
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.78902 0.423335
\(188\) 0 0
\(189\) 2.54534 0.185146
\(190\) 0 0
\(191\) 1.26636 0.0916305 0.0458153 0.998950i \(-0.485411\pi\)
0.0458153 + 0.998950i \(0.485411\pi\)
\(192\) 0 0
\(193\) −21.1730 −1.52406 −0.762031 0.647540i \(-0.775798\pi\)
−0.762031 + 0.647540i \(0.775798\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.2013 0.869308 0.434654 0.900597i \(-0.356871\pi\)
0.434654 + 0.900597i \(0.356871\pi\)
\(198\) 0 0
\(199\) −10.4065 −0.737695 −0.368848 0.929490i \(-0.620248\pi\)
−0.368848 + 0.929490i \(0.620248\pi\)
\(200\) 0 0
\(201\) −4.80540 −0.338947
\(202\) 0 0
\(203\) −5.34337 −0.375031
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.34114 −0.579749
\(208\) 0 0
\(209\) −5.16896 −0.357545
\(210\) 0 0
\(211\) 8.65769 0.596020 0.298010 0.954563i \(-0.403677\pi\)
0.298010 + 0.954563i \(0.403677\pi\)
\(212\) 0 0
\(213\) 21.1990 1.45253
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.135500 −0.00919832
\(218\) 0 0
\(219\) 1.70587 0.115272
\(220\) 0 0
\(221\) −9.76626 −0.656950
\(222\) 0 0
\(223\) 28.3434 1.89801 0.949007 0.315256i \(-0.102091\pi\)
0.949007 + 0.315256i \(0.102091\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.2415 1.47622 0.738109 0.674682i \(-0.235719\pi\)
0.738109 + 0.674682i \(0.235719\pi\)
\(228\) 0 0
\(229\) 2.47559 0.163592 0.0817958 0.996649i \(-0.473934\pi\)
0.0817958 + 0.996649i \(0.473934\pi\)
\(230\) 0 0
\(231\) 4.36356 0.287101
\(232\) 0 0
\(233\) −5.95605 −0.390194 −0.195097 0.980784i \(-0.562502\pi\)
−0.195097 + 0.980784i \(0.562502\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 34.8479 2.26362
\(238\) 0 0
\(239\) 7.03243 0.454890 0.227445 0.973791i \(-0.426963\pi\)
0.227445 + 0.973791i \(0.426963\pi\)
\(240\) 0 0
\(241\) 1.17976 0.0759953 0.0379976 0.999278i \(-0.487902\pi\)
0.0379976 + 0.999278i \(0.487902\pi\)
\(242\) 0 0
\(243\) 16.7942 1.07735
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.72020 0.554853
\(248\) 0 0
\(249\) 3.89375 0.246757
\(250\) 0 0
\(251\) −4.60867 −0.290897 −0.145448 0.989366i \(-0.546462\pi\)
−0.145448 + 0.989366i \(0.546462\pi\)
\(252\) 0 0
\(253\) 9.09927 0.572066
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.75542 0.608526 0.304263 0.952588i \(-0.401590\pi\)
0.304263 + 0.952588i \(0.401590\pi\)
\(258\) 0 0
\(259\) 2.13277 0.132524
\(260\) 0 0
\(261\) −9.87138 −0.611023
\(262\) 0 0
\(263\) 0.995828 0.0614054 0.0307027 0.999529i \(-0.490225\pi\)
0.0307027 + 0.999529i \(0.490225\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −31.8958 −1.95199
\(268\) 0 0
\(269\) −3.28853 −0.200506 −0.100253 0.994962i \(-0.531965\pi\)
−0.100253 + 0.994962i \(0.531965\pi\)
\(270\) 0 0
\(271\) −12.1500 −0.738063 −0.369031 0.929417i \(-0.620311\pi\)
−0.369031 + 0.929417i \(0.620311\pi\)
\(272\) 0 0
\(273\) −7.36146 −0.445536
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.8666 0.712993 0.356496 0.934297i \(-0.383971\pi\)
0.356496 + 0.934297i \(0.383971\pi\)
\(278\) 0 0
\(279\) −0.250324 −0.0149865
\(280\) 0 0
\(281\) −24.6416 −1.47000 −0.734998 0.678070i \(-0.762817\pi\)
−0.734998 + 0.678070i \(0.762817\pi\)
\(282\) 0 0
\(283\) −3.36343 −0.199935 −0.0999675 0.994991i \(-0.531874\pi\)
−0.0999675 + 0.994991i \(0.531874\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.56755 0.505727
\(288\) 0 0
\(289\) −8.62180 −0.507165
\(290\) 0 0
\(291\) −37.4383 −2.19467
\(292\) 0 0
\(293\) 8.96340 0.523647 0.261824 0.965116i \(-0.415676\pi\)
0.261824 + 0.965116i \(0.415676\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.12967 −0.297654
\(298\) 0 0
\(299\) −15.3507 −0.887756
\(300\) 0 0
\(301\) 4.60867 0.265640
\(302\) 0 0
\(303\) 5.59991 0.321706
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.48133 0.541128 0.270564 0.962702i \(-0.412790\pi\)
0.270564 + 0.962702i \(0.412790\pi\)
\(308\) 0 0
\(309\) −22.3486 −1.27137
\(310\) 0 0
\(311\) −29.3320 −1.66327 −0.831633 0.555325i \(-0.812594\pi\)
−0.831633 + 0.555325i \(0.812594\pi\)
\(312\) 0 0
\(313\) −18.8901 −1.06773 −0.533865 0.845570i \(-0.679261\pi\)
−0.533865 + 0.845570i \(0.679261\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.7893 −1.27998 −0.639988 0.768385i \(-0.721061\pi\)
−0.639988 + 0.768385i \(0.721061\pi\)
\(318\) 0 0
\(319\) 10.7686 0.602925
\(320\) 0 0
\(321\) 10.5906 0.591109
\(322\) 0 0
\(323\) −7.48081 −0.416244
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −35.7789 −1.97858
\(328\) 0 0
\(329\) 9.85084 0.543094
\(330\) 0 0
\(331\) −2.96299 −0.162861 −0.0814304 0.996679i \(-0.525949\pi\)
−0.0814304 + 0.996679i \(0.525949\pi\)
\(332\) 0 0
\(333\) 3.94010 0.215916
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.8123 1.02477 0.512385 0.858756i \(-0.328762\pi\)
0.512385 + 0.858756i \(0.328762\pi\)
\(338\) 0 0
\(339\) 14.8553 0.806829
\(340\) 0 0
\(341\) 0.273075 0.0147879
\(342\) 0 0
\(343\) −12.9162 −0.697410
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.7382 −1.22065 −0.610325 0.792151i \(-0.708961\pi\)
−0.610325 + 0.792151i \(0.708961\pi\)
\(348\) 0 0
\(349\) 1.93849 0.103765 0.0518824 0.998653i \(-0.483478\pi\)
0.0518824 + 0.998653i \(0.483478\pi\)
\(350\) 0 0
\(351\) 8.65392 0.461912
\(352\) 0 0
\(353\) −5.24945 −0.279400 −0.139700 0.990194i \(-0.544614\pi\)
−0.139700 + 0.990194i \(0.544614\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.31519 0.334235
\(358\) 0 0
\(359\) −22.5937 −1.19245 −0.596226 0.802817i \(-0.703334\pi\)
−0.596226 + 0.802817i \(0.703334\pi\)
\(360\) 0 0
\(361\) −12.3205 −0.648445
\(362\) 0 0
\(363\) 15.3894 0.807736
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.29872 −0.380990 −0.190495 0.981688i \(-0.561009\pi\)
−0.190495 + 0.981688i \(0.561009\pi\)
\(368\) 0 0
\(369\) 15.8278 0.823961
\(370\) 0 0
\(371\) −7.50770 −0.389781
\(372\) 0 0
\(373\) 22.3074 1.15503 0.577516 0.816380i \(-0.304022\pi\)
0.577516 + 0.816380i \(0.304022\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.1669 −0.935645
\(378\) 0 0
\(379\) 32.9466 1.69235 0.846177 0.532903i \(-0.178899\pi\)
0.846177 + 0.532903i \(0.178899\pi\)
\(380\) 0 0
\(381\) 3.27754 0.167913
\(382\) 0 0
\(383\) −20.7002 −1.05773 −0.528865 0.848706i \(-0.677382\pi\)
−0.528865 + 0.848706i \(0.677382\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.51410 0.432796
\(388\) 0 0
\(389\) −1.14446 −0.0580263 −0.0290132 0.999579i \(-0.509236\pi\)
−0.0290132 + 0.999579i \(0.509236\pi\)
\(390\) 0 0
\(391\) 13.1690 0.665983
\(392\) 0 0
\(393\) 31.0310 1.56531
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.68513 0.235140 0.117570 0.993065i \(-0.462490\pi\)
0.117570 + 0.993065i \(0.462490\pi\)
\(398\) 0 0
\(399\) −5.63877 −0.282292
\(400\) 0 0
\(401\) −24.0851 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(402\) 0 0
\(403\) −0.460687 −0.0229484
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.29821 −0.213054
\(408\) 0 0
\(409\) −1.89934 −0.0939165 −0.0469583 0.998897i \(-0.514953\pi\)
−0.0469583 + 0.998897i \(0.514953\pi\)
\(410\) 0 0
\(411\) −1.51574 −0.0747661
\(412\) 0 0
\(413\) −4.88037 −0.240147
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −36.4331 −1.78414
\(418\) 0 0
\(419\) 2.32806 0.113733 0.0568666 0.998382i \(-0.481889\pi\)
0.0568666 + 0.998382i \(0.481889\pi\)
\(420\) 0 0
\(421\) −23.9501 −1.16725 −0.583627 0.812022i \(-0.698367\pi\)
−0.583627 + 0.812022i \(0.698367\pi\)
\(422\) 0 0
\(423\) 18.1985 0.884843
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.74866 −0.133017
\(428\) 0 0
\(429\) 14.8357 0.716274
\(430\) 0 0
\(431\) −1.19227 −0.0574294 −0.0287147 0.999588i \(-0.509141\pi\)
−0.0287147 + 0.999588i \(0.509141\pi\)
\(432\) 0 0
\(433\) −25.6138 −1.23092 −0.615461 0.788167i \(-0.711030\pi\)
−0.615461 + 0.788167i \(0.711030\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.7584 −0.562483
\(438\) 0 0
\(439\) −19.3741 −0.924676 −0.462338 0.886704i \(-0.652989\pi\)
−0.462338 + 0.886704i \(0.652989\pi\)
\(440\) 0 0
\(441\) −11.0280 −0.525141
\(442\) 0 0
\(443\) −2.46263 −0.117003 −0.0585016 0.998287i \(-0.518632\pi\)
−0.0585016 + 0.998287i \(0.518632\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.06059 −0.333955
\(448\) 0 0
\(449\) −14.3585 −0.677618 −0.338809 0.940855i \(-0.610024\pi\)
−0.338809 + 0.940855i \(0.610024\pi\)
\(450\) 0 0
\(451\) −17.2664 −0.813041
\(452\) 0 0
\(453\) 38.8833 1.82690
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.1964 −1.17864 −0.589319 0.807901i \(-0.700604\pi\)
−0.589319 + 0.807901i \(0.700604\pi\)
\(458\) 0 0
\(459\) −7.42395 −0.346520
\(460\) 0 0
\(461\) 28.8255 1.34254 0.671269 0.741214i \(-0.265749\pi\)
0.671269 + 0.741214i \(0.265749\pi\)
\(462\) 0 0
\(463\) −31.8796 −1.48157 −0.740786 0.671742i \(-0.765547\pi\)
−0.740786 + 0.671742i \(0.765547\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −43.0996 −1.99441 −0.997206 0.0747039i \(-0.976199\pi\)
−0.997206 + 0.0747039i \(0.976199\pi\)
\(468\) 0 0
\(469\) 2.16916 0.100162
\(470\) 0 0
\(471\) 3.63877 0.167666
\(472\) 0 0
\(473\) −9.28795 −0.427060
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −13.8698 −0.635054
\(478\) 0 0
\(479\) −21.0263 −0.960717 −0.480359 0.877072i \(-0.659494\pi\)
−0.480359 + 0.877072i \(0.659494\pi\)
\(480\) 0 0
\(481\) 7.25121 0.330627
\(482\) 0 0
\(483\) 9.92630 0.451662
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 27.9190 1.26513 0.632565 0.774507i \(-0.282002\pi\)
0.632565 + 0.774507i \(0.282002\pi\)
\(488\) 0 0
\(489\) −1.96311 −0.0887748
\(490\) 0 0
\(491\) −14.9611 −0.675183 −0.337591 0.941293i \(-0.609612\pi\)
−0.337591 + 0.941293i \(0.609612\pi\)
\(492\) 0 0
\(493\) 15.5849 0.701909
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.56924 −0.429239
\(498\) 0 0
\(499\) 44.3253 1.98427 0.992137 0.125160i \(-0.0399443\pi\)
0.992137 + 0.125160i \(0.0399443\pi\)
\(500\) 0 0
\(501\) −11.4224 −0.510316
\(502\) 0 0
\(503\) −23.6212 −1.05322 −0.526609 0.850108i \(-0.676537\pi\)
−0.526609 + 0.850108i \(0.676537\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.55211 0.157755
\(508\) 0 0
\(509\) −26.7154 −1.18414 −0.592070 0.805886i \(-0.701689\pi\)
−0.592070 + 0.805886i \(0.701689\pi\)
\(510\) 0 0
\(511\) −0.770031 −0.0340642
\(512\) 0 0
\(513\) 6.62877 0.292667
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −19.8526 −0.873116
\(518\) 0 0
\(519\) −12.6735 −0.556306
\(520\) 0 0
\(521\) 32.7073 1.43293 0.716466 0.697622i \(-0.245759\pi\)
0.716466 + 0.697622i \(0.245759\pi\)
\(522\) 0 0
\(523\) 0.235966 0.0103181 0.00515904 0.999987i \(-0.498358\pi\)
0.00515904 + 0.999987i \(0.498358\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.395210 0.0172156
\(528\) 0 0
\(529\) −2.30084 −0.100037
\(530\) 0 0
\(531\) −9.01604 −0.391263
\(532\) 0 0
\(533\) 29.1289 1.26171
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 19.0584 0.822432
\(538\) 0 0
\(539\) 12.0303 0.518181
\(540\) 0 0
\(541\) −33.5572 −1.44274 −0.721369 0.692551i \(-0.756487\pi\)
−0.721369 + 0.692551i \(0.756487\pi\)
\(542\) 0 0
\(543\) −31.4183 −1.34829
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.5125 1.64668 0.823338 0.567552i \(-0.192109\pi\)
0.823338 + 0.567552i \(0.192109\pi\)
\(548\) 0 0
\(549\) −5.07790 −0.216720
\(550\) 0 0
\(551\) −13.9156 −0.592825
\(552\) 0 0
\(553\) −15.7303 −0.668922
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.33445 −0.183657 −0.0918283 0.995775i \(-0.529271\pi\)
−0.0918283 + 0.995775i \(0.529271\pi\)
\(558\) 0 0
\(559\) 15.6691 0.662731
\(560\) 0 0
\(561\) −12.7271 −0.537339
\(562\) 0 0
\(563\) −34.9018 −1.47094 −0.735468 0.677559i \(-0.763038\pi\)
−0.735468 + 0.677559i \(0.763038\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −11.0542 −0.464233
\(568\) 0 0
\(569\) −41.9646 −1.75925 −0.879623 0.475671i \(-0.842205\pi\)
−0.879623 + 0.475671i \(0.842205\pi\)
\(570\) 0 0
\(571\) 13.8332 0.578900 0.289450 0.957193i \(-0.406528\pi\)
0.289450 + 0.957193i \(0.406528\pi\)
\(572\) 0 0
\(573\) −2.78408 −0.116307
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −12.7793 −0.532008 −0.266004 0.963972i \(-0.585704\pi\)
−0.266004 + 0.963972i \(0.585704\pi\)
\(578\) 0 0
\(579\) 46.5486 1.93449
\(580\) 0 0
\(581\) −1.75764 −0.0729191
\(582\) 0 0
\(583\) 15.1304 0.626638
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.1870 0.503009 0.251505 0.967856i \(-0.419075\pi\)
0.251505 + 0.967856i \(0.419075\pi\)
\(588\) 0 0
\(589\) −0.352879 −0.0145401
\(590\) 0 0
\(591\) −26.8245 −1.10341
\(592\) 0 0
\(593\) −31.2580 −1.28361 −0.641807 0.766866i \(-0.721815\pi\)
−0.641807 + 0.766866i \(0.721815\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 22.8785 0.936356
\(598\) 0 0
\(599\) 33.3707 1.36349 0.681746 0.731589i \(-0.261221\pi\)
0.681746 + 0.731589i \(0.261221\pi\)
\(600\) 0 0
\(601\) −46.8052 −1.90922 −0.954611 0.297854i \(-0.903729\pi\)
−0.954611 + 0.297854i \(0.903729\pi\)
\(602\) 0 0
\(603\) 4.00732 0.163191
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −30.7401 −1.24770 −0.623851 0.781543i \(-0.714433\pi\)
−0.623851 + 0.781543i \(0.714433\pi\)
\(608\) 0 0
\(609\) 11.7473 0.476027
\(610\) 0 0
\(611\) 33.4919 1.35494
\(612\) 0 0
\(613\) −38.2895 −1.54650 −0.773248 0.634103i \(-0.781369\pi\)
−0.773248 + 0.634103i \(0.781369\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.425306 0.0171222 0.00856109 0.999963i \(-0.497275\pi\)
0.00856109 + 0.999963i \(0.497275\pi\)
\(618\) 0 0
\(619\) −7.51147 −0.301912 −0.150956 0.988541i \(-0.548235\pi\)
−0.150956 + 0.988541i \(0.548235\pi\)
\(620\) 0 0
\(621\) −11.6691 −0.468263
\(622\) 0 0
\(623\) 14.3977 0.576833
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 11.3639 0.453831
\(628\) 0 0
\(629\) −6.22061 −0.248032
\(630\) 0 0
\(631\) 11.2716 0.448714 0.224357 0.974507i \(-0.427972\pi\)
0.224357 + 0.974507i \(0.427972\pi\)
\(632\) 0 0
\(633\) −19.0338 −0.756528
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −20.2955 −0.804136
\(638\) 0 0
\(639\) −17.6783 −0.699343
\(640\) 0 0
\(641\) 26.0825 1.03020 0.515099 0.857131i \(-0.327755\pi\)
0.515099 + 0.857131i \(0.327755\pi\)
\(642\) 0 0
\(643\) 31.9492 1.25995 0.629977 0.776614i \(-0.283064\pi\)
0.629977 + 0.776614i \(0.283064\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.39433 0.290701 0.145351 0.989380i \(-0.453569\pi\)
0.145351 + 0.989380i \(0.453569\pi\)
\(648\) 0 0
\(649\) 9.83550 0.386077
\(650\) 0 0
\(651\) 0.297895 0.0116754
\(652\) 0 0
\(653\) 18.6853 0.731212 0.365606 0.930770i \(-0.380862\pi\)
0.365606 + 0.930770i \(0.380862\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.42256 −0.0554994
\(658\) 0 0
\(659\) −9.80157 −0.381815 −0.190907 0.981608i \(-0.561143\pi\)
−0.190907 + 0.981608i \(0.561143\pi\)
\(660\) 0 0
\(661\) −28.1585 −1.09524 −0.547619 0.836728i \(-0.684466\pi\)
−0.547619 + 0.836728i \(0.684466\pi\)
\(662\) 0 0
\(663\) 21.4710 0.833866
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.4966 0.948511
\(668\) 0 0
\(669\) −62.3127 −2.40915
\(670\) 0 0
\(671\) 5.53943 0.213847
\(672\) 0 0
\(673\) −39.0253 −1.50432 −0.752158 0.658983i \(-0.770987\pi\)
−0.752158 + 0.658983i \(0.770987\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.03533 0.193523 0.0967617 0.995308i \(-0.469152\pi\)
0.0967617 + 0.995308i \(0.469152\pi\)
\(678\) 0 0
\(679\) 16.8997 0.648549
\(680\) 0 0
\(681\) −48.8977 −1.87376
\(682\) 0 0
\(683\) 30.3312 1.16059 0.580295 0.814406i \(-0.302937\pi\)
0.580295 + 0.814406i \(0.302937\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −5.44257 −0.207647
\(688\) 0 0
\(689\) −25.5255 −0.972444
\(690\) 0 0
\(691\) 21.2329 0.807739 0.403869 0.914817i \(-0.367665\pi\)
0.403869 + 0.914817i \(0.367665\pi\)
\(692\) 0 0
\(693\) −3.63886 −0.138229
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −24.9888 −0.946520
\(698\) 0 0
\(699\) 13.0943 0.495273
\(700\) 0 0
\(701\) 32.7698 1.23770 0.618849 0.785510i \(-0.287599\pi\)
0.618849 + 0.785510i \(0.287599\pi\)
\(702\) 0 0
\(703\) 5.55432 0.209485
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.52780 −0.0950676
\(708\) 0 0
\(709\) 19.8459 0.745330 0.372665 0.927966i \(-0.378444\pi\)
0.372665 + 0.927966i \(0.378444\pi\)
\(710\) 0 0
\(711\) −29.0604 −1.08985
\(712\) 0 0
\(713\) 0.621196 0.0232640
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −15.4607 −0.577392
\(718\) 0 0
\(719\) −24.2201 −0.903258 −0.451629 0.892206i \(-0.649157\pi\)
−0.451629 + 0.892206i \(0.649157\pi\)
\(720\) 0 0
\(721\) 10.0882 0.375703
\(722\) 0 0
\(723\) −2.59370 −0.0964608
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 5.86510 0.217524 0.108762 0.994068i \(-0.465311\pi\)
0.108762 + 0.994068i \(0.465311\pi\)
\(728\) 0 0
\(729\) −3.50531 −0.129826
\(730\) 0 0
\(731\) −13.4420 −0.497172
\(732\) 0 0
\(733\) −34.5015 −1.27434 −0.637171 0.770723i \(-0.719895\pi\)
−0.637171 + 0.770723i \(0.719895\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.37155 −0.161028
\(738\) 0 0
\(739\) −39.5712 −1.45565 −0.727826 0.685762i \(-0.759469\pi\)
−0.727826 + 0.685762i \(0.759469\pi\)
\(740\) 0 0
\(741\) −19.1713 −0.704275
\(742\) 0 0
\(743\) −29.7058 −1.08980 −0.544900 0.838501i \(-0.683433\pi\)
−0.544900 + 0.838501i \(0.683433\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.24708 −0.118804
\(748\) 0 0
\(749\) −4.78058 −0.174679
\(750\) 0 0
\(751\) −26.8870 −0.981122 −0.490561 0.871407i \(-0.663208\pi\)
−0.490561 + 0.871407i \(0.663208\pi\)
\(752\) 0 0
\(753\) 10.1321 0.369235
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −44.6792 −1.62389 −0.811947 0.583731i \(-0.801592\pi\)
−0.811947 + 0.583731i \(0.801592\pi\)
\(758\) 0 0
\(759\) −20.0047 −0.726123
\(760\) 0 0
\(761\) 20.3080 0.736163 0.368081 0.929794i \(-0.380015\pi\)
0.368081 + 0.929794i \(0.380015\pi\)
\(762\) 0 0
\(763\) 16.1506 0.584690
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.5928 −0.599131
\(768\) 0 0
\(769\) 26.0577 0.939665 0.469832 0.882756i \(-0.344314\pi\)
0.469832 + 0.882756i \(0.344314\pi\)
\(770\) 0 0
\(771\) −21.4472 −0.772402
\(772\) 0 0
\(773\) −13.7305 −0.493851 −0.246926 0.969034i \(-0.579420\pi\)
−0.246926 + 0.969034i \(0.579420\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.68887 −0.168212
\(778\) 0 0
\(779\) 22.3123 0.799421
\(780\) 0 0
\(781\) 19.2851 0.690074
\(782\) 0 0
\(783\) −13.8098 −0.493523
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −19.6660 −0.701018 −0.350509 0.936559i \(-0.613991\pi\)
−0.350509 + 0.936559i \(0.613991\pi\)
\(788\) 0 0
\(789\) −2.18932 −0.0779418
\(790\) 0 0
\(791\) −6.70568 −0.238427
\(792\) 0 0
\(793\) −9.34520 −0.331858
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.9441 −0.387660 −0.193830 0.981035i \(-0.562091\pi\)
−0.193830 + 0.981035i \(0.562091\pi\)
\(798\) 0 0
\(799\) −28.7318 −1.01646
\(800\) 0 0
\(801\) 26.5985 0.939812
\(802\) 0 0
\(803\) 1.55186 0.0547639
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.22982 0.254502
\(808\) 0 0
\(809\) 16.4427 0.578096 0.289048 0.957315i \(-0.406661\pi\)
0.289048 + 0.957315i \(0.406661\pi\)
\(810\) 0 0
\(811\) −22.6473 −0.795253 −0.397627 0.917547i \(-0.630166\pi\)
−0.397627 + 0.917547i \(0.630166\pi\)
\(812\) 0 0
\(813\) 26.7118 0.936823
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.0023 0.419906
\(818\) 0 0
\(819\) 6.13887 0.214509
\(820\) 0 0
\(821\) −39.7792 −1.38830 −0.694151 0.719829i \(-0.744220\pi\)
−0.694151 + 0.719829i \(0.744220\pi\)
\(822\) 0 0
\(823\) 16.5602 0.577252 0.288626 0.957442i \(-0.406802\pi\)
0.288626 + 0.957442i \(0.406802\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.0361 −0.905365 −0.452683 0.891672i \(-0.649533\pi\)
−0.452683 + 0.891672i \(0.649533\pi\)
\(828\) 0 0
\(829\) 5.14357 0.178644 0.0893218 0.996003i \(-0.471530\pi\)
0.0893218 + 0.996003i \(0.471530\pi\)
\(830\) 0 0
\(831\) −26.0885 −0.905002
\(832\) 0 0
\(833\) 17.4109 0.603252
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.350197 −0.0121046
\(838\) 0 0
\(839\) −38.5664 −1.33146 −0.665730 0.746193i \(-0.731880\pi\)
−0.665730 + 0.746193i \(0.731880\pi\)
\(840\) 0 0
\(841\) −0.00936035 −0.000322771 0
\(842\) 0 0
\(843\) 54.1744 1.86586
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.94679 −0.238694
\(848\) 0 0
\(849\) 7.39447 0.253777
\(850\) 0 0
\(851\) −9.77764 −0.335173
\(852\) 0 0
\(853\) −9.14763 −0.313209 −0.156604 0.987661i \(-0.550055\pi\)
−0.156604 + 0.987661i \(0.550055\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.6712 0.466998 0.233499 0.972357i \(-0.424982\pi\)
0.233499 + 0.972357i \(0.424982\pi\)
\(858\) 0 0
\(859\) 35.6556 1.21655 0.608277 0.793725i \(-0.291861\pi\)
0.608277 + 0.793725i \(0.291861\pi\)
\(860\) 0 0
\(861\) −18.8357 −0.641919
\(862\) 0 0
\(863\) 33.9333 1.15510 0.577552 0.816354i \(-0.304008\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 18.9550 0.643744
\(868\) 0 0
\(869\) 31.7017 1.07541
\(870\) 0 0
\(871\) 7.37494 0.249890
\(872\) 0 0
\(873\) 31.2206 1.05666
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −28.6991 −0.969099 −0.484550 0.874764i \(-0.661017\pi\)
−0.484550 + 0.874764i \(0.661017\pi\)
\(878\) 0 0
\(879\) −19.7060 −0.664665
\(880\) 0 0
\(881\) 8.33039 0.280658 0.140329 0.990105i \(-0.455184\pi\)
0.140329 + 0.990105i \(0.455184\pi\)
\(882\) 0 0
\(883\) −50.3165 −1.69329 −0.846643 0.532161i \(-0.821380\pi\)
−0.846643 + 0.532161i \(0.821380\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.1186 0.406903 0.203452 0.979085i \(-0.434784\pi\)
0.203452 + 0.979085i \(0.434784\pi\)
\(888\) 0 0
\(889\) −1.47948 −0.0496202
\(890\) 0 0
\(891\) 22.2777 0.746332
\(892\) 0 0
\(893\) 25.6543 0.858490
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 33.7485 1.12683
\(898\) 0 0
\(899\) 0.735159 0.0245189
\(900\) 0 0
\(901\) 21.8976 0.729514
\(902\) 0 0
\(903\) −10.1321 −0.337176
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.9105 −1.05957 −0.529786 0.848132i \(-0.677728\pi\)
−0.529786 + 0.848132i \(0.677728\pi\)
\(908\) 0 0
\(909\) −4.66988 −0.154890
\(910\) 0 0
\(911\) 24.6880 0.817949 0.408975 0.912546i \(-0.365886\pi\)
0.408975 + 0.912546i \(0.365886\pi\)
\(912\) 0 0
\(913\) 3.54220 0.117230
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.0074 −0.462565
\(918\) 0 0
\(919\) 19.4850 0.642752 0.321376 0.946952i \(-0.395855\pi\)
0.321376 + 0.946952i \(0.395855\pi\)
\(920\) 0 0
\(921\) −20.8446 −0.686854
\(922\) 0 0
\(923\) −32.5345 −1.07089
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.6369 0.612118
\(928\) 0 0
\(929\) 11.7642 0.385972 0.192986 0.981201i \(-0.438183\pi\)
0.192986 + 0.981201i \(0.438183\pi\)
\(930\) 0 0
\(931\) −15.5460 −0.509501
\(932\) 0 0
\(933\) 64.4862 2.11118
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.0683 0.688271 0.344136 0.938920i \(-0.388172\pi\)
0.344136 + 0.938920i \(0.388172\pi\)
\(938\) 0 0
\(939\) 41.5296 1.35527
\(940\) 0 0
\(941\) −2.24706 −0.0732521 −0.0366261 0.999329i \(-0.511661\pi\)
−0.0366261 + 0.999329i \(0.511661\pi\)
\(942\) 0 0
\(943\) −39.2778 −1.27906
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.75625 −0.219549 −0.109774 0.993957i \(-0.535013\pi\)
−0.109774 + 0.993957i \(0.535013\pi\)
\(948\) 0 0
\(949\) −2.61803 −0.0849850
\(950\) 0 0
\(951\) 50.1021 1.62467
\(952\) 0 0
\(953\) −59.9534 −1.94208 −0.971040 0.238918i \(-0.923207\pi\)
−0.971040 + 0.238918i \(0.923207\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −23.6747 −0.765293
\(958\) 0 0
\(959\) 0.684206 0.0220942
\(960\) 0 0
\(961\) −30.9814 −0.999399
\(962\) 0 0
\(963\) −8.83169 −0.284597
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −9.05599 −0.291221 −0.145610 0.989342i \(-0.546515\pi\)
−0.145610 + 0.989342i \(0.546515\pi\)
\(968\) 0 0
\(969\) 16.4465 0.528338
\(970\) 0 0
\(971\) −47.3508 −1.51956 −0.759780 0.650180i \(-0.774693\pi\)
−0.759780 + 0.650180i \(0.774693\pi\)
\(972\) 0 0
\(973\) 16.4459 0.527231
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.74467 0.151795 0.0758977 0.997116i \(-0.475818\pi\)
0.0758977 + 0.997116i \(0.475818\pi\)
\(978\) 0 0
\(979\) −29.0160 −0.927357
\(980\) 0 0
\(981\) 29.8367 0.952613
\(982\) 0 0
\(983\) 18.5656 0.592150 0.296075 0.955165i \(-0.404322\pi\)
0.296075 + 0.955165i \(0.404322\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −21.6570 −0.689350
\(988\) 0 0
\(989\) −21.1284 −0.671843
\(990\) 0 0
\(991\) 39.7199 1.26174 0.630871 0.775887i \(-0.282698\pi\)
0.630871 + 0.775887i \(0.282698\pi\)
\(992\) 0 0
\(993\) 6.51411 0.206719
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −30.2914 −0.959338 −0.479669 0.877449i \(-0.659243\pi\)
−0.479669 + 0.877449i \(0.659243\pi\)
\(998\) 0 0
\(999\) 5.51210 0.174395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10000.2.a.bj.1.2 8
4.3 odd 2 625.2.a.f.1.7 8
5.4 even 2 inner 10000.2.a.bj.1.7 8
12.11 even 2 5625.2.a.x.1.2 8
20.3 even 4 625.2.b.c.624.2 8
20.7 even 4 625.2.b.c.624.7 8
20.19 odd 2 625.2.a.f.1.2 8
25.12 odd 20 400.2.y.c.369.1 8
25.23 odd 20 400.2.y.c.129.1 8
60.59 even 2 5625.2.a.x.1.7 8
100.3 even 20 625.2.e.a.249.1 8
100.11 odd 10 125.2.d.b.101.4 16
100.19 odd 10 625.2.d.o.251.4 16
100.23 even 20 25.2.e.a.4.1 8
100.27 even 20 125.2.e.b.24.2 8
100.31 odd 10 625.2.d.o.251.1 16
100.39 odd 10 125.2.d.b.101.1 16
100.47 even 20 625.2.e.i.249.2 8
100.59 odd 10 125.2.d.b.26.1 16
100.63 even 20 125.2.e.b.99.2 8
100.67 even 20 625.2.e.a.374.1 8
100.71 odd 10 625.2.d.o.376.1 16
100.79 odd 10 625.2.d.o.376.4 16
100.83 even 20 625.2.e.i.374.2 8
100.87 even 20 25.2.e.a.19.1 yes 8
100.91 odd 10 125.2.d.b.26.4 16
300.23 odd 20 225.2.m.a.154.2 8
300.287 odd 20 225.2.m.a.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 100.23 even 20
25.2.e.a.19.1 yes 8 100.87 even 20
125.2.d.b.26.1 16 100.59 odd 10
125.2.d.b.26.4 16 100.91 odd 10
125.2.d.b.101.1 16 100.39 odd 10
125.2.d.b.101.4 16 100.11 odd 10
125.2.e.b.24.2 8 100.27 even 20
125.2.e.b.99.2 8 100.63 even 20
225.2.m.a.19.2 8 300.287 odd 20
225.2.m.a.154.2 8 300.23 odd 20
400.2.y.c.129.1 8 25.23 odd 20
400.2.y.c.369.1 8 25.12 odd 20
625.2.a.f.1.2 8 20.19 odd 2
625.2.a.f.1.7 8 4.3 odd 2
625.2.b.c.624.2 8 20.3 even 4
625.2.b.c.624.7 8 20.7 even 4
625.2.d.o.251.1 16 100.31 odd 10
625.2.d.o.251.4 16 100.19 odd 10
625.2.d.o.376.1 16 100.71 odd 10
625.2.d.o.376.4 16 100.79 odd 10
625.2.e.a.249.1 8 100.3 even 20
625.2.e.a.374.1 8 100.67 even 20
625.2.e.i.249.2 8 100.47 even 20
625.2.e.i.374.2 8 100.83 even 20
5625.2.a.x.1.2 8 12.11 even 2
5625.2.a.x.1.7 8 60.59 even 2
10000.2.a.bj.1.2 8 1.1 even 1 trivial
10000.2.a.bj.1.7 8 5.4 even 2 inner