Properties

Label 625.2.d.o.376.4
Level $625$
Weight $2$
Character 625.376
Analytic conductor $4.991$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 376.4
Root \(0.0566033 + 1.17421i\) of defining polynomial
Character \(\chi\) \(=\) 625.376
Dual form 625.2.d.o.251.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68703 + 1.22570i) q^{2} +(-0.679371 - 2.09089i) q^{3} +(0.725700 + 2.23347i) q^{4} +(1.41668 - 4.36010i) q^{6} +0.992398 q^{7} +(-0.224514 + 0.690983i) q^{8} +(-1.48322 + 1.07763i) q^{9} +(-1.61803 - 1.17557i) q^{11} +(4.17693 - 3.03472i) q^{12} +(2.72967 - 1.98322i) q^{13} +(1.67421 + 1.21638i) q^{14} +(2.57411 - 1.87020i) q^{16} +(0.894453 - 2.75284i) q^{17} -3.82309 q^{18} +(-0.798649 + 2.45799i) q^{19} +(-0.674207 - 2.07500i) q^{21} +(-1.28878 - 3.96645i) q^{22} +(3.68073 + 2.67421i) q^{23} +1.59730 q^{24} +7.03588 q^{26} +(-2.07500 - 1.50757i) q^{27} +(0.720183 + 2.21650i) q^{28} +(-1.66384 - 5.12077i) q^{29} +(0.0421925 - 0.129855i) q^{31} +8.08800 q^{32} +(-1.35874 + 4.18178i) q^{33} +(4.88313 - 3.54780i) q^{34} +(-3.48322 - 2.53071i) q^{36} +(1.73866 - 1.26321i) q^{37} +(-4.36010 + 3.16780i) q^{38} +(-6.00116 - 4.36010i) q^{39} +(-6.98439 + 5.07446i) q^{41} +(1.40591 - 4.32696i) q^{42} +4.64398 q^{43} +(1.45140 - 4.46695i) q^{44} +(2.93173 + 9.02294i) q^{46} +(3.06739 + 9.44047i) q^{47} +(-5.65917 - 4.11163i) q^{48} -6.01515 q^{49} -6.36356 q^{51} +(6.41040 + 4.65743i) q^{52} +(2.33778 + 7.19494i) q^{53} +(-1.65275 - 5.08664i) q^{54} +(-0.222807 + 0.685730i) q^{56} +5.68196 q^{57} +(3.46958 - 10.6783i) q^{58} +(-3.97854 + 2.89058i) q^{59} +(2.24075 + 1.62800i) q^{61} +(0.230343 - 0.167354i) q^{62} +(-1.47195 + 1.06943i) q^{63} +(8.49648 + 6.17306i) q^{64} +(-7.41785 + 5.38938i) q^{66} +(0.675441 - 2.07879i) q^{67} +6.79751 q^{68} +(3.09089 - 9.51278i) q^{69} +(2.97971 + 9.17060i) q^{71} +(-0.411616 - 1.26682i) q^{72} +(-0.627740 - 0.456080i) q^{73} +4.48150 q^{74} -6.06943 q^{76} +(-1.60573 - 1.16663i) q^{77} +(-4.77998 - 14.7113i) q^{78} +(4.89818 + 15.0750i) q^{79} +(-3.44210 + 10.5937i) q^{81} -18.0026 q^{82} +(-0.547301 + 1.68442i) q^{83} +(4.14518 - 3.01165i) q^{84} +(7.83453 + 5.69212i) q^{86} +(-9.57660 + 6.95781i) q^{87} +(1.17557 - 0.854102i) q^{88} +(-11.7372 - 8.52760i) q^{89} +(2.70892 - 1.96815i) q^{91} +(-3.30167 + 10.1615i) q^{92} -0.300177 q^{93} +(-6.39639 + 19.6861i) q^{94} +(-5.49476 - 16.9111i) q^{96} +(-5.26228 - 16.1956i) q^{97} +(-10.1477 - 7.37276i) q^{98} +3.66673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 12 q^{6} - 2 q^{9} - 8 q^{11} + 14 q^{14} - 4 q^{16} - 20 q^{19} + 2 q^{21} + 40 q^{24} + 12 q^{26} - 30 q^{29} + 2 q^{31} + 24 q^{34} - 34 q^{36} - 24 q^{39} - 18 q^{41} - 16 q^{44} + 32 q^{46}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.68703 + 1.22570i 1.19291 + 0.866701i 0.993569 0.113229i \(-0.0361195\pi\)
0.199342 + 0.979930i \(0.436119\pi\)
\(3\) −0.679371 2.09089i −0.392235 1.20718i −0.931094 0.364780i \(-0.881144\pi\)
0.538859 0.842396i \(-0.318856\pi\)
\(4\) 0.725700 + 2.23347i 0.362850 + 1.11674i
\(5\) 0 0
\(6\) 1.41668 4.36010i 0.578358 1.78000i
\(7\) 0.992398 0.375091 0.187546 0.982256i \(-0.439947\pi\)
0.187546 + 0.982256i \(0.439947\pi\)
\(8\) −0.224514 + 0.690983i −0.0793777 + 0.244299i
\(9\) −1.48322 + 1.07763i −0.494408 + 0.359208i
\(10\) 0 0
\(11\) −1.61803 1.17557i −0.487856 0.354448i 0.316503 0.948591i \(-0.397491\pi\)
−0.804359 + 0.594144i \(0.797491\pi\)
\(12\) 4.17693 3.03472i 1.20578 0.876047i
\(13\) 2.72967 1.98322i 0.757075 0.550047i −0.140937 0.990019i \(-0.545011\pi\)
0.898012 + 0.439971i \(0.145011\pi\)
\(14\) 1.67421 + 1.21638i 0.447451 + 0.325092i
\(15\) 0 0
\(16\) 2.57411 1.87020i 0.643528 0.467551i
\(17\) 0.894453 2.75284i 0.216937 0.667663i −0.782074 0.623186i \(-0.785838\pi\)
0.999010 0.0444767i \(-0.0141621\pi\)
\(18\) −3.82309 −0.901111
\(19\) −0.798649 + 2.45799i −0.183223 + 0.563901i −0.999913 0.0131746i \(-0.995806\pi\)
0.816691 + 0.577076i \(0.195806\pi\)
\(20\) 0 0
\(21\) −0.674207 2.07500i −0.147124 0.452801i
\(22\) −1.28878 3.96645i −0.274768 0.845650i
\(23\) 3.68073 + 2.67421i 0.767485 + 0.557611i 0.901197 0.433410i \(-0.142690\pi\)
−0.133712 + 0.991020i \(0.542690\pi\)
\(24\) 1.59730 0.326047
\(25\) 0 0
\(26\) 7.03588 1.37985
\(27\) −2.07500 1.50757i −0.399333 0.290132i
\(28\) 0.720183 + 2.21650i 0.136102 + 0.418878i
\(29\) −1.66384 5.12077i −0.308967 0.950903i −0.978167 0.207821i \(-0.933363\pi\)
0.669200 0.743082i \(-0.266637\pi\)
\(30\) 0 0
\(31\) 0.0421925 0.129855i 0.00757799 0.0233227i −0.947196 0.320655i \(-0.896097\pi\)
0.954774 + 0.297332i \(0.0960970\pi\)
\(32\) 8.08800 1.42977
\(33\) −1.35874 + 4.18178i −0.236527 + 0.727954i
\(34\) 4.88313 3.54780i 0.837450 0.608443i
\(35\) 0 0
\(36\) −3.48322 2.53071i −0.580537 0.421785i
\(37\) 1.73866 1.26321i 0.285834 0.207671i −0.435624 0.900129i \(-0.643472\pi\)
0.721458 + 0.692458i \(0.243472\pi\)
\(38\) −4.36010 + 3.16780i −0.707302 + 0.513885i
\(39\) −6.00116 4.36010i −0.960955 0.698175i
\(40\) 0 0
\(41\) −6.98439 + 5.07446i −1.09078 + 0.792497i −0.979530 0.201296i \(-0.935485\pi\)
−0.111248 + 0.993793i \(0.535485\pi\)
\(42\) 1.40591 4.32696i 0.216937 0.667664i
\(43\) 4.64398 0.708200 0.354100 0.935208i \(-0.384787\pi\)
0.354100 + 0.935208i \(0.384787\pi\)
\(44\) 1.45140 4.46695i 0.218807 0.673418i
\(45\) 0 0
\(46\) 2.93173 + 9.02294i 0.432260 + 1.33036i
\(47\) 3.06739 + 9.44047i 0.447425 + 1.37703i 0.879802 + 0.475341i \(0.157675\pi\)
−0.432376 + 0.901693i \(0.642325\pi\)
\(48\) −5.65917 4.11163i −0.816831 0.593462i
\(49\) −6.01515 −0.859306
\(50\) 0 0
\(51\) −6.36356 −0.891077
\(52\) 6.41040 + 4.65743i 0.888963 + 0.645869i
\(53\) 2.33778 + 7.19494i 0.321119 + 0.988301i 0.973162 + 0.230120i \(0.0739119\pi\)
−0.652044 + 0.758181i \(0.726088\pi\)
\(54\) −1.65275 5.08664i −0.224911 0.692205i
\(55\) 0 0
\(56\) −0.222807 + 0.685730i −0.0297739 + 0.0916346i
\(57\) 5.68196 0.752594
\(58\) 3.46958 10.6783i 0.455578 1.40212i
\(59\) −3.97854 + 2.89058i −0.517962 + 0.376322i −0.815836 0.578284i \(-0.803723\pi\)
0.297873 + 0.954605i \(0.403723\pi\)
\(60\) 0 0
\(61\) 2.24075 + 1.62800i 0.286898 + 0.208444i 0.721921 0.691976i \(-0.243260\pi\)
−0.435022 + 0.900420i \(0.643260\pi\)
\(62\) 0.230343 0.167354i 0.0292536 0.0212540i
\(63\) −1.47195 + 1.06943i −0.185448 + 0.134736i
\(64\) 8.49648 + 6.17306i 1.06206 + 0.771632i
\(65\) 0 0
\(66\) −7.41785 + 5.38938i −0.913074 + 0.663387i
\(67\) 0.675441 2.07879i 0.0825183 0.253965i −0.901282 0.433233i \(-0.857373\pi\)
0.983800 + 0.179268i \(0.0573728\pi\)
\(68\) 6.79751 0.824319
\(69\) 3.09089 9.51278i 0.372099 1.14520i
\(70\) 0 0
\(71\) 2.97971 + 9.17060i 0.353626 + 1.08835i 0.956802 + 0.290741i \(0.0939019\pi\)
−0.603175 + 0.797609i \(0.706098\pi\)
\(72\) −0.411616 1.26682i −0.0485094 0.149297i
\(73\) −0.627740 0.456080i −0.0734714 0.0533801i 0.550443 0.834873i \(-0.314459\pi\)
−0.623915 + 0.781492i \(0.714459\pi\)
\(74\) 4.48150 0.520963
\(75\) 0 0
\(76\) −6.06943 −0.696212
\(77\) −1.60573 1.16663i −0.182990 0.132950i
\(78\) −4.77998 14.7113i −0.541226 1.66572i
\(79\) 4.89818 + 15.0750i 0.551088 + 1.69608i 0.706056 + 0.708156i \(0.250473\pi\)
−0.154968 + 0.987919i \(0.549527\pi\)
\(80\) 0 0
\(81\) −3.44210 + 10.5937i −0.382455 + 1.17708i
\(82\) −18.0026 −1.98806
\(83\) −0.547301 + 1.68442i −0.0600740 + 0.184889i −0.976590 0.215109i \(-0.930989\pi\)
0.916516 + 0.399998i \(0.130989\pi\)
\(84\) 4.14518 3.01165i 0.452276 0.328598i
\(85\) 0 0
\(86\) 7.83453 + 5.69212i 0.844819 + 0.613797i
\(87\) −9.57660 + 6.95781i −1.02672 + 0.745955i
\(88\) 1.17557 0.854102i 0.125316 0.0910476i
\(89\) −11.7372 8.52760i −1.24414 0.903924i −0.246277 0.969200i \(-0.579207\pi\)
−0.997867 + 0.0652758i \(0.979207\pi\)
\(90\) 0 0
\(91\) 2.70892 1.96815i 0.283972 0.206318i
\(92\) −3.30167 + 10.1615i −0.344223 + 1.05941i
\(93\) −0.300177 −0.0311269
\(94\) −6.39639 + 19.6861i −0.659737 + 2.03046i
\(95\) 0 0
\(96\) −5.49476 16.9111i −0.560806 1.72598i
\(97\) −5.26228 16.1956i −0.534304 1.64442i −0.745148 0.666899i \(-0.767621\pi\)
0.210844 0.977520i \(-0.432379\pi\)
\(98\) −10.1477 7.37276i −1.02508 0.744761i
\(99\) 3.66673 0.368520
\(100\) 0 0
\(101\) −2.54716 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(102\) −10.7355 7.79981i −1.06298 0.772297i
\(103\) 3.14129 + 9.66790i 0.309520 + 0.952606i 0.977952 + 0.208832i \(0.0669662\pi\)
−0.668431 + 0.743774i \(0.733034\pi\)
\(104\) 0.757524 + 2.33142i 0.0742814 + 0.228615i
\(105\) 0 0
\(106\) −4.87494 + 15.0035i −0.473496 + 1.45727i
\(107\) −4.81720 −0.465697 −0.232848 0.972513i \(-0.574805\pi\)
−0.232848 + 0.972513i \(0.574805\pi\)
\(108\) 1.86130 5.72850i 0.179104 0.551225i
\(109\) −13.1662 + 9.56578i −1.26109 + 0.916236i −0.998811 0.0487563i \(-0.984474\pi\)
−0.262280 + 0.964992i \(0.584474\pi\)
\(110\) 0 0
\(111\) −3.82243 2.77716i −0.362809 0.263596i
\(112\) 2.55455 1.85599i 0.241382 0.175374i
\(113\) −5.46656 + 3.97169i −0.514251 + 0.373625i −0.814434 0.580256i \(-0.802952\pi\)
0.300183 + 0.953882i \(0.402952\pi\)
\(114\) 9.58565 + 6.96438i 0.897778 + 0.652274i
\(115\) 0 0
\(116\) 10.2297 7.43228i 0.949800 0.690070i
\(117\) −1.91155 + 5.88313i −0.176722 + 0.543896i
\(118\) −10.2549 −0.944041
\(119\) 0.887654 2.73192i 0.0813711 0.250435i
\(120\) 0 0
\(121\) −2.16312 6.65740i −0.196647 0.605218i
\(122\) 1.78477 + 5.49297i 0.161586 + 0.497310i
\(123\) 15.3551 + 11.1561i 1.38452 + 1.00592i
\(124\) 0.320647 0.0287950
\(125\) 0 0
\(126\) −3.79403 −0.337999
\(127\) 1.20609 + 0.876278i 0.107023 + 0.0777571i 0.640010 0.768367i \(-0.278930\pi\)
−0.532986 + 0.846124i \(0.678930\pi\)
\(128\) 1.76886 + 5.44398i 0.156346 + 0.481185i
\(129\) −3.15498 9.71004i −0.277781 0.854921i
\(130\) 0 0
\(131\) 4.36167 13.4239i 0.381081 1.17285i −0.558202 0.829705i \(-0.688509\pi\)
0.939283 0.343143i \(-0.111491\pi\)
\(132\) −10.3259 −0.898757
\(133\) −0.792578 + 2.43930i −0.0687252 + 0.211514i
\(134\) 3.68747 2.67910i 0.318549 0.231439i
\(135\) 0 0
\(136\) 1.70135 + 1.23610i 0.145890 + 0.105995i
\(137\) 0.557775 0.405247i 0.0476539 0.0346226i −0.563703 0.825977i \(-0.690624\pi\)
0.611357 + 0.791355i \(0.290624\pi\)
\(138\) 16.8742 12.2599i 1.43643 1.04363i
\(139\) 13.4069 + 9.74070i 1.13716 + 0.826195i 0.986721 0.162424i \(-0.0519313\pi\)
0.150439 + 0.988619i \(0.451931\pi\)
\(140\) 0 0
\(141\) 17.6551 12.8272i 1.48683 1.08024i
\(142\) −6.21354 + 19.1233i −0.521429 + 1.60479i
\(143\) −6.74812 −0.564307
\(144\) −1.80261 + 5.54786i −0.150217 + 0.462322i
\(145\) 0 0
\(146\) −0.500000 1.53884i −0.0413803 0.127355i
\(147\) 4.08652 + 12.5770i 0.337050 + 1.03733i
\(148\) 4.08310 + 2.96655i 0.335629 + 0.243849i
\(149\) 3.21156 0.263101 0.131551 0.991309i \(-0.458004\pi\)
0.131551 + 0.991309i \(0.458004\pi\)
\(150\) 0 0
\(151\) 17.6863 1.43929 0.719647 0.694340i \(-0.244304\pi\)
0.719647 + 0.694340i \(0.244304\pi\)
\(152\) −1.51912 1.10371i −0.123217 0.0895223i
\(153\) 1.63986 + 5.04697i 0.132575 + 0.408023i
\(154\) −1.27898 3.93630i −0.103063 0.317196i
\(155\) 0 0
\(156\) 5.38313 16.5676i 0.430995 1.32647i
\(157\) 1.65512 0.132093 0.0660465 0.997817i \(-0.478961\pi\)
0.0660465 + 0.997817i \(0.478961\pi\)
\(158\) −10.2141 + 31.4358i −0.812590 + 2.50090i
\(159\) 13.4556 9.77608i 1.06710 0.775293i
\(160\) 0 0
\(161\) 3.65275 + 2.65388i 0.287877 + 0.209155i
\(162\) −18.7916 + 13.6529i −1.47641 + 1.07267i
\(163\) −0.722399 + 0.524854i −0.0565827 + 0.0411097i −0.615717 0.787967i \(-0.711134\pi\)
0.559134 + 0.829077i \(0.311134\pi\)
\(164\) −16.4022 11.9169i −1.28080 0.930555i
\(165\) 0 0
\(166\) −2.98790 + 2.17084i −0.231906 + 0.168490i
\(167\) 1.60552 4.94129i 0.124239 0.382368i −0.869523 0.493893i \(-0.835573\pi\)
0.993762 + 0.111525i \(0.0355735\pi\)
\(168\) 1.58516 0.122297
\(169\) −0.499280 + 1.53663i −0.0384062 + 0.118202i
\(170\) 0 0
\(171\) −1.46422 4.50639i −0.111971 0.344612i
\(172\) 3.37013 + 10.3722i 0.256970 + 0.790873i
\(173\) 4.66370 + 3.38837i 0.354574 + 0.257613i 0.750785 0.660546i \(-0.229675\pi\)
−0.396211 + 0.918159i \(0.629675\pi\)
\(174\) −24.6842 −1.87130
\(175\) 0 0
\(176\) −6.36356 −0.479671
\(177\) 8.74680 + 6.35492i 0.657449 + 0.477665i
\(178\) −9.34880 28.7726i −0.700722 2.15660i
\(179\) 2.67883 + 8.24458i 0.200225 + 0.616229i 0.999876 + 0.0157637i \(0.00501795\pi\)
−0.799651 + 0.600465i \(0.794982\pi\)
\(180\) 0 0
\(181\) 4.41612 13.5914i 0.328248 1.01024i −0.641706 0.766951i \(-0.721773\pi\)
0.969953 0.243291i \(-0.0782271\pi\)
\(182\) 6.98240 0.517570
\(183\) 1.88167 5.79117i 0.139097 0.428096i
\(184\) −2.67421 + 1.94293i −0.197145 + 0.143234i
\(185\) 0 0
\(186\) −0.506408 0.367927i −0.0371316 0.0269777i
\(187\) −4.68342 + 3.40270i −0.342485 + 0.248830i
\(188\) −18.8590 + 13.7019i −1.37544 + 0.999313i
\(189\) −2.05922 1.49611i −0.149786 0.108826i
\(190\) 0 0
\(191\) 1.02451 0.744347i 0.0741306 0.0538591i −0.550103 0.835097i \(-0.685411\pi\)
0.624233 + 0.781238i \(0.285411\pi\)
\(192\) 7.13492 21.9590i 0.514918 1.58476i
\(193\) 21.1730 1.52406 0.762031 0.647540i \(-0.224202\pi\)
0.762031 + 0.647540i \(0.224202\pi\)
\(194\) 10.9734 33.7725i 0.787841 2.42473i
\(195\) 0 0
\(196\) −4.36519 13.4347i −0.311799 0.959620i
\(197\) −3.77042 11.6042i −0.268631 0.826761i −0.990835 0.135081i \(-0.956871\pi\)
0.722203 0.691681i \(-0.243129\pi\)
\(198\) 6.18589 + 4.49431i 0.439612 + 0.319397i
\(199\) 10.4065 0.737695 0.368848 0.929490i \(-0.379752\pi\)
0.368848 + 0.929490i \(0.379752\pi\)
\(200\) 0 0
\(201\) −4.80540 −0.338947
\(202\) −4.29714 3.12205i −0.302346 0.219667i
\(203\) −1.65119 5.08184i −0.115891 0.356675i
\(204\) −4.61803 14.2128i −0.323327 0.995098i
\(205\) 0 0
\(206\) −6.55049 + 20.1603i −0.456394 + 1.40464i
\(207\) −8.34114 −0.579749
\(208\) 3.31746 10.2101i 0.230024 0.707942i
\(209\) 4.18178 3.03824i 0.289260 0.210160i
\(210\) 0 0
\(211\) 7.00421 + 5.08886i 0.482190 + 0.350332i 0.802173 0.597092i \(-0.203677\pi\)
−0.319983 + 0.947423i \(0.603677\pi\)
\(212\) −14.3732 + 10.4427i −0.987155 + 0.717210i
\(213\) 17.1504 12.4605i 1.17513 0.853778i
\(214\) −8.12677 5.90445i −0.555535 0.403620i
\(215\) 0 0
\(216\) 1.50757 1.09532i 0.102577 0.0745268i
\(217\) 0.0418717 0.128868i 0.00284244 0.00874813i
\(218\) −33.9365 −2.29847
\(219\) −0.527144 + 1.62238i −0.0356211 + 0.109630i
\(220\) 0 0
\(221\) −3.01794 9.28827i −0.203009 0.624796i
\(222\) −3.04460 9.37032i −0.204340 0.628894i
\(223\) −22.9303 16.6598i −1.53552 1.11562i −0.953065 0.302764i \(-0.902091\pi\)
−0.582459 0.812860i \(-0.697909\pi\)
\(224\) 8.02652 0.536295
\(225\) 0 0
\(226\) −14.0904 −0.937277
\(227\) −17.9937 13.0732i −1.19429 0.867699i −0.200575 0.979678i \(-0.564281\pi\)
−0.993711 + 0.111979i \(0.964281\pi\)
\(228\) 4.12340 + 12.6905i 0.273079 + 0.840450i
\(229\) 0.765000 + 2.35443i 0.0505526 + 0.155585i 0.973146 0.230189i \(-0.0739345\pi\)
−0.922593 + 0.385774i \(0.873934\pi\)
\(230\) 0 0
\(231\) −1.34841 + 4.14999i −0.0887191 + 0.273049i
\(232\) 3.91192 0.256830
\(233\) 1.84052 5.66454i 0.120576 0.371096i −0.872493 0.488627i \(-0.837498\pi\)
0.993069 + 0.117531i \(0.0374979\pi\)
\(234\) −10.4358 + 7.58204i −0.682209 + 0.495654i
\(235\) 0 0
\(236\) −9.34327 6.78828i −0.608195 0.441879i
\(237\) 28.1926 20.4831i 1.83130 1.33052i
\(238\) 4.84601 3.52083i 0.314120 0.228222i
\(239\) 5.68935 + 4.13356i 0.368014 + 0.267378i 0.756387 0.654125i \(-0.226963\pi\)
−0.388373 + 0.921502i \(0.626963\pi\)
\(240\) 0 0
\(241\) −0.954449 + 0.693448i −0.0614815 + 0.0446689i −0.618102 0.786098i \(-0.712098\pi\)
0.556620 + 0.830767i \(0.312098\pi\)
\(242\) 4.51072 13.8826i 0.289960 0.892405i
\(243\) 16.7942 1.07735
\(244\) −2.00998 + 6.18609i −0.128676 + 0.396024i
\(245\) 0 0
\(246\) 12.2305 + 37.6415i 0.779787 + 2.39994i
\(247\) 2.69469 + 8.29341i 0.171459 + 0.527697i
\(248\) 0.0802548 + 0.0583086i 0.00509619 + 0.00370260i
\(249\) 3.89375 0.246757
\(250\) 0 0
\(251\) 4.60867 0.290897 0.145448 0.989366i \(-0.453538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(252\) −3.45675 2.51147i −0.217755 0.158208i
\(253\) −2.81183 8.65392i −0.176778 0.544067i
\(254\) 0.960663 + 2.95662i 0.0602774 + 0.185515i
\(255\) 0 0
\(256\) 2.80216 8.62417i 0.175135 0.539011i
\(257\) −9.75542 −0.608526 −0.304263 0.952588i \(-0.598410\pi\)
−0.304263 + 0.952588i \(0.598410\pi\)
\(258\) 6.57904 20.2482i 0.409593 1.26060i
\(259\) 1.72545 1.25361i 0.107214 0.0778955i
\(260\) 0 0
\(261\) 7.98612 + 5.80225i 0.494328 + 0.359150i
\(262\) 23.8119 17.3004i 1.47110 1.06882i
\(263\) −0.805641 + 0.585333i −0.0496780 + 0.0360932i −0.612347 0.790589i \(-0.709775\pi\)
0.562669 + 0.826682i \(0.309775\pi\)
\(264\) −2.58448 1.87774i −0.159064 0.115567i
\(265\) 0 0
\(266\) −4.32696 + 3.14372i −0.265303 + 0.192754i
\(267\) −9.85633 + 30.3347i −0.603198 + 1.85645i
\(268\) 5.13310 0.313554
\(269\) −1.01621 + 3.12758i −0.0619596 + 0.190692i −0.977245 0.212114i \(-0.931965\pi\)
0.915285 + 0.402806i \(0.131965\pi\)
\(270\) 0 0
\(271\) 3.75457 + 11.5554i 0.228074 + 0.701940i 0.997965 + 0.0637642i \(0.0203105\pi\)
−0.769891 + 0.638175i \(0.779689\pi\)
\(272\) −2.84595 8.75894i −0.172561 0.531089i
\(273\) −5.95555 4.32696i −0.360446 0.261879i
\(274\) 1.43769 0.0868543
\(275\) 0 0
\(276\) 23.4896 1.41391
\(277\) 9.60025 + 6.97499i 0.576823 + 0.419087i 0.837577 0.546319i \(-0.183971\pi\)
−0.260754 + 0.965405i \(0.583971\pi\)
\(278\) 10.6787 + 32.8657i 0.640467 + 1.97115i
\(279\) 0.0773542 + 0.238072i 0.00463108 + 0.0142530i
\(280\) 0 0
\(281\) −7.61468 + 23.4356i −0.454253 + 1.39805i 0.417756 + 0.908559i \(0.362817\pi\)
−0.872009 + 0.489489i \(0.837183\pi\)
\(282\) 45.5069 2.70990
\(283\) −1.03936 + 3.19881i −0.0617833 + 0.190150i −0.977184 0.212394i \(-0.931874\pi\)
0.915401 + 0.402544i \(0.131874\pi\)
\(284\) −18.3199 + 13.3102i −1.08709 + 0.789815i
\(285\) 0 0
\(286\) −11.3843 8.27117i −0.673168 0.489085i
\(287\) −6.93130 + 5.03588i −0.409141 + 0.297259i
\(288\) −11.9963 + 8.71584i −0.706890 + 0.513586i
\(289\) 6.97519 + 5.06777i 0.410305 + 0.298104i
\(290\) 0 0
\(291\) −30.2883 + 22.0057i −1.77553 + 1.29000i
\(292\) 0.563092 1.73302i 0.0329525 0.101417i
\(293\) −8.96340 −0.523647 −0.261824 0.965116i \(-0.584324\pi\)
−0.261824 + 0.965116i \(0.584324\pi\)
\(294\) −8.52155 + 26.2266i −0.496987 + 1.52957i
\(295\) 0 0
\(296\) 0.482504 + 1.48499i 0.0280450 + 0.0863136i
\(297\) 1.58516 + 4.87861i 0.0919801 + 0.283086i
\(298\) 5.41801 + 3.93641i 0.313857 + 0.228030i
\(299\) 15.3507 0.887756
\(300\) 0 0
\(301\) 4.60867 0.265640
\(302\) 29.8374 + 21.6781i 1.71695 + 1.24744i
\(303\) 1.73047 + 5.32583i 0.0994128 + 0.305961i
\(304\) 2.54112 + 7.82078i 0.145743 + 0.448552i
\(305\) 0 0
\(306\) −3.41958 + 10.5244i −0.195484 + 0.601638i
\(307\) 9.48133 0.541128 0.270564 0.962702i \(-0.412790\pi\)
0.270564 + 0.962702i \(0.412790\pi\)
\(308\) 1.44037 4.43299i 0.0820725 0.252593i
\(309\) 18.0804 13.1362i 1.02856 0.747291i
\(310\) 0 0
\(311\) −23.7301 17.2409i −1.34561 0.977643i −0.999217 0.0395541i \(-0.987406\pi\)
−0.346393 0.938089i \(-0.612594\pi\)
\(312\) 4.36010 3.16780i 0.246842 0.179341i
\(313\) −15.2824 + 11.1033i −0.863811 + 0.627596i −0.928919 0.370283i \(-0.879261\pi\)
0.0651079 + 0.997878i \(0.479261\pi\)
\(314\) 2.79224 + 2.02868i 0.157575 + 0.114485i
\(315\) 0 0
\(316\) −30.1151 + 21.8799i −1.69411 + 1.23084i
\(317\) 7.04229 21.6739i 0.395534 1.21733i −0.533010 0.846109i \(-0.678939\pi\)
0.928545 0.371221i \(-0.121061\pi\)
\(318\) 34.6826 1.94490
\(319\) −3.32768 + 10.2415i −0.186314 + 0.573416i
\(320\) 0 0
\(321\) 3.27267 + 10.0722i 0.182663 + 0.562178i
\(322\) 2.90945 + 8.95435i 0.162137 + 0.499007i
\(323\) 6.05210 + 4.39711i 0.336748 + 0.244662i
\(324\) −26.1587 −1.45326
\(325\) 0 0
\(326\) −1.86202 −0.103128
\(327\) 28.9457 + 21.0303i 1.60070 + 1.16298i
\(328\) −1.93827 5.96538i −0.107023 0.329383i
\(329\) 3.04408 + 9.36871i 0.167825 + 0.516513i
\(330\) 0 0
\(331\) 0.915615 2.81797i 0.0503268 0.154890i −0.922735 0.385436i \(-0.874051\pi\)
0.973061 + 0.230546i \(0.0740512\pi\)
\(332\) −4.15928 −0.228270
\(333\) −1.21756 + 3.74725i −0.0667217 + 0.205348i
\(334\) 8.76510 6.36822i 0.479605 0.348453i
\(335\) 0 0
\(336\) −5.61615 4.08037i −0.306386 0.222603i
\(337\) 15.2195 11.0576i 0.829057 0.602345i −0.0902353 0.995920i \(-0.528762\pi\)
0.919292 + 0.393575i \(0.128762\pi\)
\(338\) −2.72574 + 1.98037i −0.148261 + 0.107718i
\(339\) 12.0182 + 8.73173i 0.652739 + 0.474242i
\(340\) 0 0
\(341\) −0.220923 + 0.160510i −0.0119636 + 0.00869209i
\(342\) 3.05331 9.39711i 0.165104 0.508138i
\(343\) −12.9162 −0.697410
\(344\) −1.04264 + 3.20891i −0.0562152 + 0.173013i
\(345\) 0 0
\(346\) 3.71467 + 11.4326i 0.199702 + 0.614620i
\(347\) −7.02649 21.6253i −0.377201 1.16091i −0.941981 0.335665i \(-0.891039\pi\)
0.564780 0.825242i \(-0.308961\pi\)
\(348\) −22.4898 16.3398i −1.20558 0.875906i
\(349\) 1.93849 0.103765 0.0518824 0.998653i \(-0.483478\pi\)
0.0518824 + 0.998653i \(0.483478\pi\)
\(350\) 0 0
\(351\) −8.65392 −0.461912
\(352\) −13.0867 9.50802i −0.697522 0.506779i
\(353\) 1.62217 + 4.99252i 0.0863394 + 0.265725i 0.984900 0.173124i \(-0.0553862\pi\)
−0.898561 + 0.438849i \(0.855386\pi\)
\(354\) 6.96689 + 21.4419i 0.370286 + 1.13962i
\(355\) 0 0
\(356\) 10.5285 32.4033i 0.558008 1.71737i
\(357\) −6.31519 −0.334235
\(358\) −5.58612 + 17.1923i −0.295236 + 0.908642i
\(359\) −18.2787 + 13.2803i −0.964713 + 0.700905i −0.954241 0.299040i \(-0.903334\pi\)
−0.0104726 + 0.999945i \(0.503334\pi\)
\(360\) 0 0
\(361\) 9.96746 + 7.24178i 0.524603 + 0.381146i
\(362\) 24.1091 17.5163i 1.26715 0.920637i
\(363\) −12.4503 + 9.04569i −0.653472 + 0.474775i
\(364\) 6.36167 + 4.62203i 0.333442 + 0.242260i
\(365\) 0 0
\(366\) 10.2727 7.46353i 0.536961 0.390125i
\(367\) −2.25543 + 6.94150i −0.117732 + 0.362343i −0.992507 0.122187i \(-0.961009\pi\)
0.874775 + 0.484530i \(0.161009\pi\)
\(368\) 14.4759 0.754610
\(369\) 4.89105 15.0531i 0.254618 0.783634i
\(370\) 0 0
\(371\) 2.32001 + 7.14025i 0.120449 + 0.370703i
\(372\) −0.217838 0.670438i −0.0112944 0.0347606i
\(373\) 18.0470 + 13.1119i 0.934440 + 0.678911i 0.947076 0.321010i \(-0.104022\pi\)
−0.0126358 + 0.999920i \(0.504022\pi\)
\(374\) −12.0718 −0.624216
\(375\) 0 0
\(376\) −7.21188 −0.371924
\(377\) −14.6974 10.6783i −0.756953 0.549959i
\(378\) −1.64019 5.04798i −0.0843621 0.259640i
\(379\) −10.1811 31.3341i −0.522966 1.60952i −0.768303 0.640086i \(-0.778899\pi\)
0.245337 0.969438i \(-0.421101\pi\)
\(380\) 0 0
\(381\) 1.01282 3.11713i 0.0518881 0.159695i
\(382\) 2.64072 0.135111
\(383\) −6.39671 + 19.6871i −0.326857 + 1.00596i 0.643739 + 0.765245i \(0.277382\pi\)
−0.970595 + 0.240716i \(0.922618\pi\)
\(384\) 10.1811 7.39697i 0.519550 0.377475i
\(385\) 0 0
\(386\) 35.7194 + 25.9517i 1.81807 + 1.32091i
\(387\) −6.88806 + 5.00447i −0.350140 + 0.254391i
\(388\) 32.3537 23.5063i 1.64251 1.19335i
\(389\) 0.925886 + 0.672696i 0.0469443 + 0.0341070i 0.611010 0.791623i \(-0.290764\pi\)
−0.564066 + 0.825730i \(0.690764\pi\)
\(390\) 0 0
\(391\) 10.6539 7.74052i 0.538792 0.391455i
\(392\) 1.35048 4.15636i 0.0682098 0.209928i
\(393\) −31.0310 −1.56531
\(394\) 7.86239 24.1980i 0.396102 1.21908i
\(395\) 0 0
\(396\) 2.66095 + 8.18955i 0.133718 + 0.411540i
\(397\) −1.44779 4.45583i −0.0726623 0.223631i 0.908129 0.418690i \(-0.137510\pi\)
−0.980792 + 0.195058i \(0.937510\pi\)
\(398\) 17.5560 + 12.7552i 0.880005 + 0.639361i
\(399\) 5.63877 0.282292
\(400\) 0 0
\(401\) −24.0851 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(402\) −8.10687 5.88998i −0.404334 0.293766i
\(403\) −0.142360 0.438139i −0.00709146 0.0218253i
\(404\) −1.84847 5.68902i −0.0919650 0.283039i
\(405\) 0 0
\(406\) 3.44320 10.5971i 0.170883 0.525925i
\(407\) −4.29821 −0.213054
\(408\) 1.42871 4.39711i 0.0707316 0.217689i
\(409\) 1.53660 1.11641i 0.0759801 0.0552027i −0.549147 0.835726i \(-0.685047\pi\)
0.625127 + 0.780523i \(0.285047\pi\)
\(410\) 0 0
\(411\) −1.22626 0.890932i −0.0604871 0.0439464i
\(412\) −19.3134 + 14.0320i −0.951501 + 0.691306i
\(413\) −3.94830 + 2.86861i −0.194283 + 0.141155i
\(414\) −14.0718 10.2237i −0.691589 0.502469i
\(415\) 0 0
\(416\) 22.0776 16.0403i 1.08244 0.786441i
\(417\) 11.2584 34.6499i 0.551328 1.69681i
\(418\) 10.7788 0.527207
\(419\) −0.719410 + 2.21412i −0.0351455 + 0.108167i −0.967090 0.254434i \(-0.918111\pi\)
0.931945 + 0.362600i \(0.118111\pi\)
\(420\) 0 0
\(421\) −7.40097 22.7779i −0.360701 1.11012i −0.952629 0.304134i \(-0.901633\pi\)
0.591928 0.805991i \(-0.298367\pi\)
\(422\) 5.57891 + 17.1701i 0.271577 + 0.835829i
\(423\) −14.7229 10.6968i −0.715853 0.520098i
\(424\) −5.49645 −0.266931
\(425\) 0 0
\(426\) 44.2060 2.14179
\(427\) 2.22371 + 1.61562i 0.107613 + 0.0781855i
\(428\) −3.49584 10.7591i −0.168978 0.520061i
\(429\) 4.58448 + 14.1096i 0.221341 + 0.681217i
\(430\) 0 0
\(431\) 0.368430 1.13391i 0.0177467 0.0546186i −0.941791 0.336199i \(-0.890859\pi\)
0.959538 + 0.281580i \(0.0908586\pi\)
\(432\) −8.16074 −0.392634
\(433\) 7.91511 24.3602i 0.380376 1.17068i −0.559404 0.828895i \(-0.688970\pi\)
0.939780 0.341781i \(-0.111030\pi\)
\(434\) 0.228592 0.166082i 0.0109728 0.00797219i
\(435\) 0 0
\(436\) −30.9196 22.4644i −1.48078 1.07585i
\(437\) −9.51278 + 6.91144i −0.455058 + 0.330619i
\(438\) −2.87786 + 2.09089i −0.137510 + 0.0999066i
\(439\) −15.6740 11.3878i −0.748079 0.543511i 0.147152 0.989114i \(-0.452989\pi\)
−0.895231 + 0.445603i \(0.852989\pi\)
\(440\) 0 0
\(441\) 8.92181 6.48207i 0.424848 0.308670i
\(442\) 6.29327 19.3687i 0.299340 0.921274i
\(443\) −2.46263 −0.117003 −0.0585016 0.998287i \(-0.518632\pi\)
−0.0585016 + 0.998287i \(0.518632\pi\)
\(444\) 3.42878 10.5527i 0.162723 0.500809i
\(445\) 0 0
\(446\) −18.2641 56.2113i −0.864833 2.66168i
\(447\) −2.18184 6.71502i −0.103198 0.317610i
\(448\) 8.43190 + 6.12613i 0.398370 + 0.289433i
\(449\) −14.3585 −0.677618 −0.338809 0.940855i \(-0.610024\pi\)
−0.338809 + 0.940855i \(0.610024\pi\)
\(450\) 0 0
\(451\) 17.2664 0.813041
\(452\) −12.8378 9.32717i −0.603837 0.438713i
\(453\) −12.0156 36.9802i −0.564542 1.73748i
\(454\) −14.3321 44.1098i −0.672641 2.07018i
\(455\) 0 0
\(456\) −1.27568 + 3.92614i −0.0597392 + 0.183858i
\(457\) 25.1964 1.17864 0.589319 0.807901i \(-0.299396\pi\)
0.589319 + 0.807901i \(0.299396\pi\)
\(458\) −1.59524 + 4.90965i −0.0745408 + 0.229413i
\(459\) −6.00610 + 4.36369i −0.280341 + 0.203679i
\(460\) 0 0
\(461\) −23.3203 16.9432i −1.08614 0.789124i −0.107394 0.994217i \(-0.534251\pi\)
−0.978743 + 0.205092i \(0.934251\pi\)
\(462\) −7.36146 + 5.34841i −0.342486 + 0.248831i
\(463\) 25.7911 18.7384i 1.19862 0.870846i 0.204468 0.978873i \(-0.434453\pi\)
0.994148 + 0.108028i \(0.0344535\pi\)
\(464\) −13.8598 10.0697i −0.643425 0.467475i
\(465\) 0 0
\(466\) 10.0480 7.30033i 0.465466 0.338181i
\(467\) −13.3185 + 40.9902i −0.616307 + 1.89680i −0.237106 + 0.971484i \(0.576199\pi\)
−0.379201 + 0.925314i \(0.623801\pi\)
\(468\) −14.5270 −0.671512
\(469\) 0.670307 2.06299i 0.0309519 0.0952601i
\(470\) 0 0
\(471\) −1.12444 3.46068i −0.0518115 0.159460i
\(472\) −1.10410 3.39808i −0.0508205 0.156409i
\(473\) −7.51411 5.45932i −0.345499 0.251020i
\(474\) 72.6679 3.33775
\(475\) 0 0
\(476\) 6.74584 0.309195
\(477\) −11.2209 8.15246i −0.513770 0.373276i
\(478\) 4.53161 + 13.9469i 0.207271 + 0.637915i
\(479\) 6.49749 + 19.9972i 0.296878 + 0.913697i 0.982584 + 0.185818i \(0.0594935\pi\)
−0.685706 + 0.727878i \(0.740506\pi\)
\(480\) 0 0
\(481\) 2.24075 6.89631i 0.102169 0.314445i
\(482\) −2.46014 −0.112057
\(483\) 3.06739 9.44047i 0.139571 0.429556i
\(484\) 13.2993 9.66254i 0.604516 0.439206i
\(485\) 0 0
\(486\) 28.3323 + 20.5846i 1.28518 + 0.933739i
\(487\) −22.5869 + 16.4104i −1.02351 + 0.743625i −0.967000 0.254777i \(-0.917998\pi\)
−0.0565121 + 0.998402i \(0.517998\pi\)
\(488\) −1.62800 + 1.18281i −0.0736960 + 0.0535433i
\(489\) 1.58819 + 1.15389i 0.0718204 + 0.0521805i
\(490\) 0 0
\(491\) −12.1037 + 8.79389i −0.546234 + 0.396862i −0.826395 0.563091i \(-0.809612\pi\)
0.280161 + 0.959953i \(0.409612\pi\)
\(492\) −13.7738 + 42.3913i −0.620969 + 1.91115i
\(493\) −15.5849 −0.701909
\(494\) −5.61920 + 17.2941i −0.252820 + 0.778099i
\(495\) 0 0
\(496\) −0.134247 0.413170i −0.00602787 0.0185519i
\(497\) 2.95706 + 9.10089i 0.132642 + 0.408231i
\(498\) 6.56888 + 4.77257i 0.294359 + 0.213864i
\(499\) −44.3253 −1.98427 −0.992137 0.125160i \(-0.960056\pi\)
−0.992137 + 0.125160i \(0.960056\pi\)
\(500\) 0 0
\(501\) −11.4224 −0.510316
\(502\) 7.77498 + 5.64885i 0.347014 + 0.252121i
\(503\) −7.29936 22.4651i −0.325462 1.00167i −0.971232 0.238137i \(-0.923463\pi\)
0.645769 0.763532i \(-0.276537\pi\)
\(504\) −0.408487 1.25719i −0.0181955 0.0559999i
\(505\) 0 0
\(506\) 5.86346 18.0459i 0.260663 0.802237i
\(507\) 3.55211 0.157755
\(508\) −1.08188 + 3.32969i −0.0480008 + 0.147731i
\(509\) 21.6132 15.7029i 0.957990 0.696020i 0.00530682 0.999986i \(-0.498311\pi\)
0.952683 + 0.303966i \(0.0983108\pi\)
\(510\) 0 0
\(511\) −0.622968 0.452613i −0.0275585 0.0200224i
\(512\) 24.5598 17.8438i 1.08540 0.788591i
\(513\) 5.36279 3.89629i 0.236773 0.172026i
\(514\) −16.4577 11.9572i −0.725918 0.527410i
\(515\) 0 0
\(516\) 19.3976 14.0931i 0.853930 0.620416i
\(517\) 6.13479 18.8809i 0.269808 0.830383i
\(518\) 4.44743 0.195409
\(519\) 3.91633 12.0532i 0.171908 0.529078i
\(520\) 0 0
\(521\) 10.1071 + 31.1065i 0.442800 + 1.36280i 0.884878 + 0.465822i \(0.154241\pi\)
−0.442078 + 0.896977i \(0.645759\pi\)
\(522\) 6.36101 + 19.5772i 0.278414 + 0.856869i
\(523\) −0.190901 0.138697i −0.00834750 0.00606481i 0.583604 0.812039i \(-0.301642\pi\)
−0.591951 + 0.805974i \(0.701642\pi\)
\(524\) 33.1471 1.44804
\(525\) 0 0
\(526\) −2.07658 −0.0905434
\(527\) −0.319732 0.232299i −0.0139277 0.0101191i
\(528\) 4.32322 + 13.3055i 0.188144 + 0.579048i
\(529\) −0.710999 2.18823i −0.0309130 0.0951405i
\(530\) 0 0
\(531\) 2.78611 8.57476i 0.120907 0.372113i
\(532\) −6.02330 −0.261143
\(533\) −9.00132 + 27.7032i −0.389890 + 1.19996i
\(534\) −53.8091 + 39.0946i −2.32855 + 1.69179i
\(535\) 0 0
\(536\) 1.28477 + 0.933437i 0.0554934 + 0.0403183i
\(537\) 15.4186 11.2023i 0.665361 0.483413i
\(538\) −5.54786 + 4.03076i −0.239185 + 0.173778i
\(539\) 9.73271 + 7.07123i 0.419217 + 0.304579i
\(540\) 0 0
\(541\) 27.1484 19.7244i 1.16720 0.848020i 0.176528 0.984296i \(-0.443513\pi\)
0.990671 + 0.136276i \(0.0435133\pi\)
\(542\) −7.82935 + 24.0963i −0.336299 + 1.03502i
\(543\) −31.4183 −1.34829
\(544\) 7.23434 22.2650i 0.310170 0.954604i
\(545\) 0 0
\(546\) −4.74364 14.5994i −0.203009 0.624798i
\(547\) 11.9010 + 36.6276i 0.508851 + 1.56608i 0.794199 + 0.607658i \(0.207891\pi\)
−0.285348 + 0.958424i \(0.592109\pi\)
\(548\) 1.30989 + 0.951688i 0.0559555 + 0.0406541i
\(549\) −5.07790 −0.216720
\(550\) 0 0
\(551\) 13.9156 0.592825
\(552\) 5.87922 + 4.27150i 0.250236 + 0.181807i
\(553\) 4.86095 + 14.9605i 0.206708 + 0.636183i
\(554\) 7.64668 + 23.5341i 0.324876 + 0.999866i
\(555\) 0 0
\(556\) −12.0262 + 37.0128i −0.510024 + 1.56969i
\(557\) 4.33445 0.183657 0.0918283 0.995775i \(-0.470729\pi\)
0.0918283 + 0.995775i \(0.470729\pi\)
\(558\) −0.161306 + 0.496448i −0.00682861 + 0.0210163i
\(559\) 12.6765 9.21004i 0.536160 0.389543i
\(560\) 0 0
\(561\) 10.2965 + 7.48081i 0.434717 + 0.315840i
\(562\) −41.5712 + 30.2032i −1.75357 + 1.27405i
\(563\) 28.2362 20.5148i 1.19001 0.864595i 0.196747 0.980454i \(-0.436962\pi\)
0.993266 + 0.115860i \(0.0369623\pi\)
\(564\) 41.4614 + 30.1235i 1.74584 + 1.26843i
\(565\) 0 0
\(566\) −5.67421 + 4.12255i −0.238505 + 0.173284i
\(567\) −3.41593 + 10.5132i −0.143456 + 0.441511i
\(568\) −7.00572 −0.293953
\(569\) −12.9678 + 39.9107i −0.543637 + 1.67314i 0.180571 + 0.983562i \(0.442205\pi\)
−0.724208 + 0.689581i \(0.757795\pi\)
\(570\) 0 0
\(571\) −4.27469 13.1561i −0.178890 0.550567i 0.820900 0.571072i \(-0.193472\pi\)
−0.999790 + 0.0205055i \(0.993472\pi\)
\(572\) −4.89711 15.0718i −0.204759 0.630182i
\(573\) −2.25237 1.63644i −0.0940940 0.0683633i
\(574\) −17.8658 −0.745704
\(575\) 0 0
\(576\) −19.2544 −0.802268
\(577\) −10.3387 7.51147i −0.430404 0.312707i 0.351407 0.936223i \(-0.385704\pi\)
−0.781810 + 0.623516i \(0.785704\pi\)
\(578\) 5.55579 + 17.0990i 0.231090 + 0.711223i
\(579\) −14.3843 44.2703i −0.597791 1.83981i
\(580\) 0 0
\(581\) −0.543140 + 1.67161i −0.0225333 + 0.0693502i
\(582\) −78.0696 −3.23609
\(583\) 4.67556 14.3899i 0.193642 0.595968i
\(584\) 0.456080 0.331361i 0.0188727 0.0137118i
\(585\) 0 0
\(586\) −15.1215 10.9864i −0.624665 0.453845i
\(587\) −9.85945 + 7.16331i −0.406943 + 0.295661i −0.772363 0.635181i \(-0.780925\pi\)
0.365420 + 0.930843i \(0.380925\pi\)
\(588\) −25.1248 + 18.2543i −1.03613 + 0.752793i
\(589\) 0.285485 + 0.207417i 0.0117632 + 0.00854648i
\(590\) 0 0
\(591\) −21.7015 + 15.7671i −0.892680 + 0.648570i
\(592\) 2.11305 6.50330i 0.0868459 0.267284i
\(593\) 31.2580 1.28361 0.641807 0.766866i \(-0.278185\pi\)
0.641807 + 0.766866i \(0.278185\pi\)
\(594\) −3.30550 + 10.1733i −0.135626 + 0.417415i
\(595\) 0 0
\(596\) 2.33063 + 7.17294i 0.0954663 + 0.293815i
\(597\) −7.06986 21.7588i −0.289350 0.890528i
\(598\) 25.8972 + 18.8154i 1.05901 + 0.769419i
\(599\) −33.3707 −1.36349 −0.681746 0.731589i \(-0.738779\pi\)
−0.681746 + 0.731589i \(0.738779\pi\)
\(600\) 0 0
\(601\) −46.8052 −1.90922 −0.954611 0.297854i \(-0.903729\pi\)
−0.954611 + 0.297854i \(0.903729\pi\)
\(602\) 7.77498 + 5.64885i 0.316884 + 0.230230i
\(603\) 1.23833 + 3.81119i 0.0504287 + 0.155204i
\(604\) 12.8350 + 39.5020i 0.522248 + 1.60731i
\(605\) 0 0
\(606\) −3.60852 + 11.1059i −0.146586 + 0.451145i
\(607\) −30.7401 −1.24770 −0.623851 0.781543i \(-0.714433\pi\)
−0.623851 + 0.781543i \(0.714433\pi\)
\(608\) −6.45947 + 19.8802i −0.261966 + 0.806249i
\(609\) −9.50380 + 6.90492i −0.385114 + 0.279801i
\(610\) 0 0
\(611\) 27.0955 + 19.6861i 1.09617 + 0.796413i
\(612\) −10.0822 + 7.32517i −0.407550 + 0.296102i
\(613\) −30.9768 + 22.5060i −1.25114 + 0.909008i −0.998288 0.0584964i \(-0.981369\pi\)
−0.252854 + 0.967504i \(0.581369\pi\)
\(614\) 15.9953 + 11.6213i 0.645518 + 0.468996i
\(615\) 0 0
\(616\) 1.16663 0.847609i 0.0470050 0.0341512i
\(617\) −0.131427 + 0.404490i −0.00529104 + 0.0162842i −0.953667 0.300864i \(-0.902725\pi\)
0.948376 + 0.317148i \(0.102725\pi\)
\(618\) 46.6032 1.87466
\(619\) 2.32117 7.14384i 0.0932958 0.287135i −0.893510 0.449043i \(-0.851765\pi\)
0.986806 + 0.161908i \(0.0517649\pi\)
\(620\) 0 0
\(621\) −3.60594 11.0979i −0.144701 0.445345i
\(622\) −18.9012 58.1720i −0.757870 2.33248i
\(623\) −11.6480 8.46278i −0.466668 0.339054i
\(624\) −23.6020 −0.944834
\(625\) 0 0
\(626\) −39.3912 −1.57439
\(627\) −9.19361 6.67955i −0.367157 0.266755i
\(628\) 1.20112 + 3.69667i 0.0479300 + 0.147513i
\(629\) −1.92227 5.91615i −0.0766461 0.235892i
\(630\) 0 0
\(631\) −3.48311 + 10.7199i −0.138660 + 0.426752i −0.996141 0.0877630i \(-0.972028\pi\)
0.857481 + 0.514515i \(0.172028\pi\)
\(632\) −11.5163 −0.458094
\(633\) 5.88178 18.1023i 0.233780 0.719500i
\(634\) 38.4463 27.9329i 1.52690 1.10936i
\(635\) 0 0
\(636\) 31.5994 + 22.9583i 1.25300 + 0.910355i
\(637\) −16.4194 + 11.9294i −0.650560 + 0.472659i
\(638\) −18.1669 + 13.1991i −0.719236 + 0.522556i
\(639\) −14.3020 10.3910i −0.565780 0.411063i
\(640\) 0 0
\(641\) −21.1012 + 15.3309i −0.833447 + 0.605535i −0.920533 0.390666i \(-0.872245\pi\)
0.0870851 + 0.996201i \(0.472245\pi\)
\(642\) −6.82445 + 21.0035i −0.269340 + 0.828942i
\(643\) 31.9492 1.25995 0.629977 0.776614i \(-0.283064\pi\)
0.629977 + 0.776614i \(0.283064\pi\)
\(644\) −3.27657 + 10.0842i −0.129115 + 0.397375i
\(645\) 0 0
\(646\) 4.82055 + 14.8361i 0.189662 + 0.583720i
\(647\) 2.28497 + 7.03243i 0.0898316 + 0.276473i 0.985872 0.167499i \(-0.0535690\pi\)
−0.896041 + 0.443972i \(0.853569\pi\)
\(648\) −6.54726 4.75686i −0.257201 0.186867i
\(649\) 9.83550 0.386077
\(650\) 0 0
\(651\) −0.297895 −0.0116754
\(652\) −1.69649 1.23257i −0.0664398 0.0482713i
\(653\) −5.77407 17.7708i −0.225957 0.695424i −0.998193 0.0600882i \(-0.980862\pi\)
0.772236 0.635336i \(-0.219138\pi\)
\(654\) 23.0555 + 70.9575i 0.901541 + 2.77466i
\(655\) 0 0
\(656\) −8.48835 + 26.1245i −0.331414 + 1.01999i
\(657\) 1.42256 0.0554994
\(658\) −6.34777 + 19.5364i −0.247462 + 0.761609i
\(659\) −7.92963 + 5.76122i −0.308895 + 0.224425i −0.731422 0.681925i \(-0.761143\pi\)
0.422527 + 0.906350i \(0.361143\pi\)
\(660\) 0 0
\(661\) 22.7807 + 16.5511i 0.886066 + 0.643765i 0.934849 0.355045i \(-0.115534\pi\)
−0.0487833 + 0.998809i \(0.515534\pi\)
\(662\) 4.99866 3.63174i 0.194278 0.141152i
\(663\) −17.3704 + 12.6204i −0.674612 + 0.490134i
\(664\) −1.04103 0.756351i −0.0403997 0.0293521i
\(665\) 0 0
\(666\) −6.64706 + 4.82937i −0.257568 + 0.187134i
\(667\) 7.56986 23.2976i 0.293106 0.902087i
\(668\) 12.2014 0.472085
\(669\) −19.2557 + 59.2629i −0.744468 + 2.29124i
\(670\) 0 0
\(671\) −1.71178 5.26831i −0.0660825 0.203381i
\(672\) −5.45299 16.7826i −0.210354 0.647402i
\(673\) −31.5721 22.9385i −1.21702 0.884214i −0.221168 0.975236i \(-0.570987\pi\)
−0.995849 + 0.0910215i \(0.970987\pi\)
\(674\) 39.2290 1.51104
\(675\) 0 0
\(676\) −3.79434 −0.145936
\(677\) 4.07367 + 2.95969i 0.156564 + 0.113750i 0.663309 0.748346i \(-0.269152\pi\)
−0.506745 + 0.862096i \(0.669152\pi\)
\(678\) 9.57259 + 29.4614i 0.367633 + 1.13146i
\(679\) −5.22228 16.0725i −0.200413 0.616807i
\(680\) 0 0
\(681\) −15.1102 + 46.5044i −0.579025 + 1.78205i
\(682\) −0.569440 −0.0218050
\(683\) 9.37285 28.8467i 0.358642 1.10379i −0.595225 0.803559i \(-0.702937\pi\)
0.953867 0.300228i \(-0.0970628\pi\)
\(684\) 9.00233 6.54058i 0.344213 0.250085i
\(685\) 0 0
\(686\) −21.7900 15.8314i −0.831948 0.604446i
\(687\) 4.40313 3.19906i 0.167990 0.122052i
\(688\) 11.9541 8.68518i 0.455747 0.331119i
\(689\) 20.6506 + 15.0035i 0.786724 + 0.571588i
\(690\) 0 0
\(691\) 17.1778 12.4804i 0.653474 0.474777i −0.210979 0.977491i \(-0.567665\pi\)
0.864453 + 0.502714i \(0.167665\pi\)
\(692\) −4.18340 + 12.8752i −0.159029 + 0.489441i
\(693\) 3.63886 0.138229
\(694\) 14.6522 45.0949i 0.556191 1.71178i
\(695\) 0 0
\(696\) −2.65765 8.17939i −0.100738 0.310039i
\(697\) 7.72198 + 23.7658i 0.292491 + 0.900194i
\(698\) 3.27029 + 2.37600i 0.123782 + 0.0899330i
\(699\) −13.0943 −0.495273
\(700\) 0 0
\(701\) 32.7698 1.23770 0.618849 0.785510i \(-0.287599\pi\)
0.618849 + 0.785510i \(0.287599\pi\)
\(702\) −14.5994 10.6071i −0.551020 0.400339i
\(703\) 1.71638 + 5.28247i 0.0647345 + 0.199232i
\(704\) −6.49074 19.9764i −0.244629 0.752890i
\(705\) 0 0
\(706\) −3.38269 + 10.4108i −0.127309 + 0.391817i
\(707\) −2.52780 −0.0950676
\(708\) −7.84600 + 24.1475i −0.294871 + 0.907519i
\(709\) −16.0557 + 11.6652i −0.602985 + 0.438094i −0.846937 0.531693i \(-0.821556\pi\)
0.243952 + 0.969787i \(0.421556\pi\)
\(710\) 0 0
\(711\) −23.5103 17.0813i −0.881707 0.640598i
\(712\) 8.52760 6.19566i 0.319585 0.232192i
\(713\) 0.502558 0.365130i 0.0188210 0.0136742i
\(714\) −10.6539 7.74052i −0.398713 0.289682i
\(715\) 0 0
\(716\) −16.4700 + 11.9662i −0.615514 + 0.447197i
\(717\) 4.77763 14.7040i 0.178424 0.549132i
\(718\) −47.1144 −1.75829
\(719\) 7.48443 23.0347i 0.279122 0.859049i −0.708977 0.705231i \(-0.750843\pi\)
0.988099 0.153818i \(-0.0491569\pi\)
\(720\) 0 0
\(721\) 3.11741 + 9.59440i 0.116098 + 0.357314i
\(722\) 7.93916 + 24.4342i 0.295465 + 0.909347i
\(723\) 2.09835 + 1.52454i 0.0780384 + 0.0566982i
\(724\) 33.5609 1.24728
\(725\) 0 0
\(726\) −32.0914 −1.19102
\(727\) −4.74496 3.44742i −0.175981 0.127858i 0.496308 0.868147i \(-0.334689\pi\)
−0.672289 + 0.740289i \(0.734689\pi\)
\(728\) 0.751766 + 2.31370i 0.0278623 + 0.0857513i
\(729\) −1.08320 3.33374i −0.0401185 0.123472i
\(730\) 0 0
\(731\) 4.15382 12.7841i 0.153635 0.472838i
\(732\) 14.3000 0.528542
\(733\) 10.6615 32.8129i 0.393793 1.21197i −0.536104 0.844152i \(-0.680105\pi\)
0.929897 0.367819i \(-0.119895\pi\)
\(734\) −12.3132 + 8.94604i −0.454487 + 0.330204i
\(735\) 0 0
\(736\) 29.7698 + 21.6290i 1.09733 + 0.797255i
\(737\) −3.53666 + 2.56953i −0.130274 + 0.0946499i
\(738\) 26.7019 19.4001i 0.982912 0.714128i
\(739\) −32.0138 23.2594i −1.17765 0.855611i −0.185743 0.982598i \(-0.559469\pi\)
−0.991904 + 0.126988i \(0.959469\pi\)
\(740\) 0 0
\(741\) 15.5099 11.2686i 0.569770 0.413962i
\(742\) −4.83788 + 14.8895i −0.177604 + 0.546609i
\(743\) −29.7058 −1.08980 −0.544900 0.838501i \(-0.683433\pi\)
−0.544900 + 0.838501i \(0.683433\pi\)
\(744\) 0.0673939 0.207417i 0.00247078 0.00760428i
\(745\) 0 0
\(746\) 14.3746 + 44.2405i 0.526292 + 1.61976i
\(747\) −1.00340 3.08815i −0.0367126 0.112990i
\(748\) −10.9986 7.99095i −0.402149 0.292178i
\(749\) −4.78058 −0.174679
\(750\) 0 0
\(751\) 26.8870 0.981122 0.490561 0.871407i \(-0.336792\pi\)
0.490561 + 0.871407i \(0.336792\pi\)
\(752\) 25.5514 + 18.5642i 0.931764 + 0.676966i
\(753\) −3.13100 9.63623i −0.114100 0.351164i
\(754\) −11.7066 36.0291i −0.426328 1.31210i
\(755\) 0 0
\(756\) 1.84715 5.68495i 0.0671803 0.206760i
\(757\) 44.6792 1.62389 0.811947 0.583731i \(-0.198408\pi\)
0.811947 + 0.583731i \(0.198408\pi\)
\(758\) 21.2304 65.3405i 0.771123 2.37327i
\(759\) −16.1841 + 11.7584i −0.587446 + 0.426804i
\(760\) 0 0
\(761\) −16.4295 11.9367i −0.595568 0.432706i 0.248735 0.968572i \(-0.419985\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(762\) 5.52931 4.01728i 0.200306 0.145531i
\(763\) −13.0661 + 9.49307i −0.473024 + 0.343672i
\(764\) 2.40596 + 1.74803i 0.0870447 + 0.0632417i
\(765\) 0 0
\(766\) −34.9219 + 25.3722i −1.26178 + 0.916736i
\(767\) −5.12746 + 15.7807i −0.185142 + 0.569808i
\(768\) −19.9359 −0.719375
\(769\) 8.05227 24.7823i 0.290372 0.893674i −0.694364 0.719624i \(-0.744314\pi\)
0.984737 0.174051i \(-0.0556856\pi\)
\(770\) 0 0
\(771\) 6.62755 + 20.3975i 0.238685 + 0.734598i
\(772\) 15.3652 + 47.2892i 0.553006 + 1.70198i
\(773\) −11.1082 8.07058i −0.399534 0.290278i 0.369817 0.929105i \(-0.379420\pi\)
−0.769351 + 0.638826i \(0.779420\pi\)
\(774\) −17.7543 −0.638166
\(775\) 0 0
\(776\) 12.3724 0.444142
\(777\) −3.79338 2.75605i −0.136087 0.0988728i
\(778\) 0.737476 + 2.26972i 0.0264398 + 0.0813733i
\(779\) −6.89488 21.2203i −0.247035 0.760295i
\(780\) 0 0
\(781\) 5.95942 18.3412i 0.213245 0.656300i
\(782\) 27.4610 0.982005
\(783\) −4.26747 + 13.1339i −0.152507 + 0.469368i
\(784\) −15.4837 + 11.2495i −0.552988 + 0.401769i
\(785\) 0 0
\(786\) −52.3503 38.0347i −1.86727 1.35665i
\(787\) 15.9101 11.5594i 0.567136 0.412048i −0.266928 0.963716i \(-0.586009\pi\)
0.834064 + 0.551668i \(0.186009\pi\)
\(788\) 23.1814 16.8423i 0.825803 0.599981i
\(789\) 1.77120 + 1.28685i 0.0630562 + 0.0458130i
\(790\) 0 0
\(791\) −5.42501 + 3.94150i −0.192891 + 0.140144i
\(792\) −0.823232 + 2.53365i −0.0292523 + 0.0900293i
\(793\) 9.34520 0.331858
\(794\) 3.01905 9.29167i 0.107142 0.329749i
\(795\) 0 0
\(796\) 7.55197 + 23.2426i 0.267673 + 0.823812i
\(797\) 3.38191 + 10.4085i 0.119793 + 0.368686i 0.992917 0.118813i \(-0.0379090\pi\)
−0.873123 + 0.487500i \(0.837909\pi\)
\(798\) 9.51278 + 6.91144i 0.336749 + 0.244662i
\(799\) 28.7318 1.01646
\(800\) 0 0
\(801\) 26.5985 0.939812
\(802\) −40.6323 29.5211i −1.43478 1.04243i
\(803\) 0.479551 + 1.47591i 0.0169230 + 0.0520836i
\(804\) −3.48728 10.7327i −0.122987 0.378515i
\(805\) 0 0
\(806\) 0.296861 0.913645i 0.0104565 0.0321818i
\(807\) 7.22982 0.254502
\(808\) 0.571873 1.76004i 0.0201184 0.0619182i
\(809\) −13.3025 + 9.66480i −0.467689 + 0.339796i −0.796540 0.604586i \(-0.793339\pi\)
0.328851 + 0.944382i \(0.393339\pi\)
\(810\) 0 0
\(811\) −18.3220 13.3117i −0.643373 0.467438i 0.217634 0.976030i \(-0.430166\pi\)
−0.861007 + 0.508592i \(0.830166\pi\)
\(812\) 10.1519 7.37579i 0.356262 0.258839i
\(813\) 21.6103 15.7008i 0.757906 0.550651i
\(814\) −7.25121 5.26831i −0.254155 0.184654i
\(815\) 0 0
\(816\) −16.3805 + 11.9011i −0.573433 + 0.416624i
\(817\) −3.70891 + 11.4148i −0.129758 + 0.399355i
\(818\) 3.96067 0.138482
\(819\) −1.89701 + 5.83841i −0.0662870 + 0.204011i
\(820\) 0 0
\(821\) −12.2924 37.8322i −0.429009 1.32035i −0.899103 0.437737i \(-0.855780\pi\)
0.470094 0.882616i \(-0.344220\pi\)
\(822\) −0.976728 3.00606i −0.0340673 0.104848i
\(823\) −13.3975 9.73384i −0.467007 0.339300i 0.329267 0.944237i \(-0.393198\pi\)
−0.796274 + 0.604937i \(0.793198\pi\)
\(824\) −7.38562 −0.257290
\(825\) 0 0
\(826\) −10.1770 −0.354102
\(827\) 21.0637 + 15.3037i 0.732456 + 0.532160i 0.890339 0.455297i \(-0.150467\pi\)
−0.157884 + 0.987458i \(0.550467\pi\)
\(828\) −6.05316 18.6297i −0.210362 0.647428i
\(829\) 1.58945 + 4.89182i 0.0552039 + 0.169900i 0.974857 0.222832i \(-0.0715301\pi\)
−0.919653 + 0.392732i \(0.871530\pi\)
\(830\) 0 0
\(831\) 8.06180 24.8117i 0.279661 0.860708i
\(832\) 35.4352 1.22849
\(833\) −5.38027 + 16.5588i −0.186415 + 0.573727i
\(834\) 61.4638 44.6560i 2.12832 1.54631i
\(835\) 0 0
\(836\) 9.82055 + 7.13505i 0.339651 + 0.246771i
\(837\) −0.283315 + 0.205840i −0.00979280 + 0.00711489i
\(838\) −3.92751 + 2.85350i −0.135674 + 0.0985726i
\(839\) −31.2009 22.6688i −1.07717 0.782612i −0.0999856 0.994989i \(-0.531880\pi\)
−0.977188 + 0.212377i \(0.931880\pi\)
\(840\) 0 0
\(841\) 0.00757268 0.00550188i 0.000261127 0.000189720i
\(842\) 15.4331 47.4983i 0.531861 1.63690i
\(843\) 54.1744 1.86586
\(844\) −6.28288 + 19.3367i −0.216266 + 0.665597i
\(845\) 0 0
\(846\) −11.7269 36.0918i −0.403180 1.24086i
\(847\) −2.14668 6.60679i −0.0737607 0.227012i
\(848\) 19.4737 + 14.1485i 0.668730 + 0.485861i
\(849\) 7.39447 0.253777
\(850\) 0 0
\(851\) 9.77764 0.335173
\(852\) 40.2762 + 29.2624i 1.37984 + 1.00251i
\(853\) 2.82677 + 8.69991i 0.0967868 + 0.297879i 0.987715 0.156265i \(-0.0499452\pi\)
−0.890928 + 0.454144i \(0.849945\pi\)
\(854\) 1.77121 + 5.45121i 0.0606094 + 0.186537i
\(855\) 0 0
\(856\) 1.08153 3.32861i 0.0369659 0.113769i
\(857\) −13.6712 −0.466998 −0.233499 0.972357i \(-0.575018\pi\)
−0.233499 + 0.972357i \(0.575018\pi\)
\(858\) −9.55995 + 29.4225i −0.326371 + 1.00447i
\(859\) 28.8460 20.9579i 0.984213 0.715073i 0.0255669 0.999673i \(-0.491861\pi\)
0.958646 + 0.284600i \(0.0918609\pi\)
\(860\) 0 0
\(861\) 15.2384 + 11.0713i 0.519323 + 0.377310i
\(862\) 2.01139 1.46136i 0.0685082 0.0497741i
\(863\) −27.4526 + 19.9455i −0.934498 + 0.678953i −0.947090 0.320968i \(-0.895992\pi\)
0.0125918 + 0.999921i \(0.495992\pi\)
\(864\) −16.7826 12.1933i −0.570955 0.414823i
\(865\) 0 0
\(866\) 43.2113 31.3949i 1.46838 1.06684i
\(867\) 5.85741 18.0272i 0.198928 0.612237i
\(868\) 0.318210 0.0108007
\(869\) 9.79636 30.1501i 0.332319 1.02277i
\(870\) 0 0
\(871\) −2.27898 7.01398i −0.0772203 0.237660i
\(872\) −3.65380 11.2453i −0.123733 0.380812i
\(873\) 25.2580 + 18.3510i 0.854853 + 0.621087i
\(874\) −24.5197 −0.829391
\(875\) 0 0
\(876\) −4.00610 −0.135354
\(877\) −23.2181 16.8689i −0.784018 0.569622i 0.122164 0.992510i \(-0.461017\pi\)
−0.906182 + 0.422888i \(0.861017\pi\)
\(878\) −12.4845 38.4232i −0.421330 1.29672i
\(879\) 6.08947 + 18.7415i 0.205393 + 0.632134i
\(880\) 0 0
\(881\) 2.57423 7.92267i 0.0867281 0.266922i −0.898282 0.439420i \(-0.855184\pi\)
0.985010 + 0.172498i \(0.0551840\pi\)
\(882\) 22.9964 0.774331
\(883\) −15.5487 + 47.8539i −0.523254 + 1.61041i 0.244488 + 0.969652i \(0.421380\pi\)
−0.767742 + 0.640759i \(0.778620\pi\)
\(884\) 18.5550 13.4810i 0.624072 0.453415i
\(885\) 0 0
\(886\) −4.15454 3.01845i −0.139574 0.101407i
\(887\) −9.80417 + 7.12315i −0.329192 + 0.239172i −0.740088 0.672510i \(-0.765216\pi\)
0.410896 + 0.911682i \(0.365216\pi\)
\(888\) 2.77716 2.01773i 0.0931954 0.0677104i
\(889\) 1.19693 + 0.869617i 0.0401436 + 0.0291660i
\(890\) 0 0
\(891\) 18.0231 13.0945i 0.603795 0.438683i
\(892\) 20.5688 63.3042i 0.688694 2.11958i
\(893\) −25.6543 −0.858490
\(894\) 4.54977 14.0027i 0.152167 0.468322i
\(895\) 0 0
\(896\) 1.75541 + 5.40260i 0.0586442 + 0.180488i
\(897\) −10.4289 32.0967i −0.348209 1.07168i
\(898\) −24.2232 17.5992i −0.808338 0.587292i
\(899\) −0.735159 −0.0245189
\(900\) 0 0
\(901\) 21.8976 0.729514
\(902\) 29.1289 + 21.1634i 0.969886 + 0.704663i
\(903\) −3.13100 9.63623i −0.104193 0.320674i
\(904\) −1.51705 4.66900i −0.0504564 0.155289i
\(905\) 0 0
\(906\) 25.0559 77.1142i 0.832428 2.56195i
\(907\) −31.9105 −1.05957 −0.529786 0.848132i \(-0.677728\pi\)
−0.529786 + 0.848132i \(0.677728\pi\)
\(908\) 16.1406 49.6757i 0.535645 1.64855i
\(909\) 3.77801 2.74488i 0.125309 0.0910421i
\(910\) 0 0
\(911\) 19.9730 + 14.5112i 0.661735 + 0.480778i 0.867248 0.497876i \(-0.165886\pi\)
−0.205514 + 0.978654i \(0.565886\pi\)
\(912\) 14.6260 10.6264i 0.484316 0.351876i
\(913\) 2.86570 2.08206i 0.0948409 0.0689060i
\(914\) 42.5071 + 30.8832i 1.40601 + 1.02153i
\(915\) 0 0
\(916\) −4.70339 + 3.41721i −0.155404 + 0.112908i
\(917\) 4.32852 13.3218i 0.142940 0.439925i
\(918\) −15.4810 −0.510951
\(919\) −6.02121 + 18.5314i −0.198621 + 0.611293i 0.801294 + 0.598271i \(0.204145\pi\)
−0.999915 + 0.0130225i \(0.995855\pi\)
\(920\) 0 0
\(921\) −6.44134 19.8244i −0.212249 0.653237i
\(922\) −18.5748 57.1675i −0.611730 1.88271i
\(923\) 26.3210 + 19.1233i 0.866366 + 0.629452i
\(924\) −10.2474 −0.337116
\(925\) 0 0
\(926\) 66.4781 2.18461
\(927\) −15.0776 10.9545i −0.495214 0.359794i
\(928\) −13.4571 41.4168i −0.441752 1.35957i
\(929\) 3.63535 + 11.1885i 0.119272 + 0.367082i 0.992814 0.119667i \(-0.0381827\pi\)
−0.873542 + 0.486749i \(0.838183\pi\)
\(930\) 0 0
\(931\) 4.80399 14.7852i 0.157444 0.484564i
\(932\) 13.9873 0.458168
\(933\) −19.9273 + 61.3300i −0.652392 + 2.00786i
\(934\) −72.7104 + 52.8272i −2.37916 + 1.72856i
\(935\) 0 0
\(936\) −3.63597 2.64169i −0.118846 0.0863463i
\(937\) 17.0446 12.3836i 0.556823 0.404556i −0.273472 0.961880i \(-0.588172\pi\)
0.830295 + 0.557324i \(0.188172\pi\)
\(938\) 3.65944 2.65874i 0.119485 0.0868108i
\(939\) 33.5982 + 24.4105i 1.09644 + 0.796607i
\(940\) 0 0
\(941\) 1.81791 1.32079i 0.0592622 0.0430565i −0.557760 0.830002i \(-0.688339\pi\)
0.617022 + 0.786946i \(0.288339\pi\)
\(942\) 2.34478 7.21650i 0.0763971 0.235126i
\(943\) −39.2778 −1.27906
\(944\) −4.83525 + 14.8814i −0.157374 + 0.484347i
\(945\) 0 0
\(946\) −5.98505 18.4201i −0.194591 0.598889i
\(947\) −2.08780 6.42557i −0.0678442 0.208803i 0.911387 0.411551i \(-0.135013\pi\)
−0.979231 + 0.202748i \(0.935013\pi\)
\(948\) 66.2078 + 48.1028i 2.15033 + 1.56231i
\(949\) −2.61803 −0.0849850
\(950\) 0 0
\(951\) −50.1021 −1.62467
\(952\) 1.68842 + 1.22671i 0.0547219 + 0.0397578i
\(953\) 18.5266 + 57.0190i 0.600136 + 1.84703i 0.527292 + 0.849684i \(0.323207\pi\)
0.0728437 + 0.997343i \(0.476793\pi\)
\(954\) −8.93754 27.5069i −0.289364 0.890569i
\(955\) 0 0
\(956\) −5.10343 + 15.7067i −0.165057 + 0.507992i
\(957\) 23.6747 0.765293
\(958\) −13.5491 + 41.6999i −0.437752 + 1.34726i
\(959\) 0.553535 0.402166i 0.0178746 0.0129866i
\(960\) 0 0
\(961\) 25.0644 + 18.2104i 0.808530 + 0.587432i
\(962\) 12.2330 8.88781i 0.394408 0.286555i
\(963\) 7.14499 5.19114i 0.230244 0.167282i
\(964\) −2.24144 1.62850i −0.0721920 0.0524505i
\(965\) 0 0
\(966\) 16.7460 12.1667i 0.538793 0.391456i
\(967\) −2.79845 + 8.61276i −0.0899922 + 0.276968i −0.985916 0.167240i \(-0.946515\pi\)
0.895924 + 0.444207i \(0.146515\pi\)
\(968\) 5.08580 0.163464
\(969\) 5.08225 15.6416i 0.163265 0.502479i
\(970\) 0 0
\(971\) 14.6322 + 45.0333i 0.469570 + 1.44519i 0.853143 + 0.521677i \(0.174693\pi\)
−0.383573 + 0.923511i \(0.625307\pi\)
\(972\) 12.1875 + 37.5094i 0.390916 + 1.20312i
\(973\) 13.3050 + 9.66665i 0.426539 + 0.309899i
\(974\) −58.2191 −1.86546
\(975\) 0 0
\(976\) 8.81263 0.282085
\(977\) 3.83852 + 2.78885i 0.122805 + 0.0892231i 0.647492 0.762072i \(-0.275818\pi\)
−0.524687 + 0.851295i \(0.675818\pi\)
\(978\) 1.26500 + 3.89328i 0.0404504 + 0.124493i
\(979\) 8.96645 + 27.5959i 0.286569 + 0.881968i
\(980\) 0 0
\(981\) 9.22005 28.3764i 0.294374 0.905988i
\(982\) −31.1981 −0.995570
\(983\) 5.73708 17.6569i 0.182984 0.563168i −0.816924 0.576746i \(-0.804322\pi\)
0.999908 + 0.0135783i \(0.00432224\pi\)
\(984\) −11.1561 + 8.10542i −0.355645 + 0.258391i
\(985\) 0 0
\(986\) −26.2922 19.1024i −0.837315 0.608345i
\(987\) 17.5209 12.7297i 0.557696 0.405190i
\(988\) −16.5676 + 12.0370i −0.527085 + 0.382949i
\(989\) 17.0932 + 12.4190i 0.543533 + 0.394900i
\(990\) 0 0
\(991\) 32.1340 23.3467i 1.02077 0.741634i 0.0543304 0.998523i \(-0.482698\pi\)
0.966441 + 0.256889i \(0.0826976\pi\)
\(992\) 0.341253 1.05027i 0.0108348 0.0333460i
\(993\) −6.51411 −0.206719
\(994\) −6.16631 + 18.9779i −0.195583 + 0.601944i
\(995\) 0 0
\(996\) 2.82570 + 8.69660i 0.0895356 + 0.275562i
\(997\) 9.36056 + 28.8088i 0.296452 + 0.912385i 0.982730 + 0.185046i \(0.0592433\pi\)
−0.686278 + 0.727339i \(0.740757\pi\)
\(998\) −74.7782 54.3295i −2.36706 1.71977i
\(999\) −5.51210 −0.174395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.o.376.4 16
5.2 odd 4 625.2.e.a.249.1 8
5.3 odd 4 625.2.e.i.249.2 8
5.4 even 2 inner 625.2.d.o.376.1 16
25.2 odd 20 625.2.e.i.374.2 8
25.3 odd 20 25.2.e.a.19.1 yes 8
25.4 even 10 125.2.d.b.26.4 16
25.6 even 5 625.2.a.f.1.2 8
25.8 odd 20 625.2.b.c.624.7 8
25.9 even 10 125.2.d.b.101.4 16
25.11 even 5 inner 625.2.d.o.251.4 16
25.12 odd 20 25.2.e.a.4.1 8
25.13 odd 20 125.2.e.b.24.2 8
25.14 even 10 inner 625.2.d.o.251.1 16
25.16 even 5 125.2.d.b.101.1 16
25.17 odd 20 625.2.b.c.624.2 8
25.19 even 10 625.2.a.f.1.7 8
25.21 even 5 125.2.d.b.26.1 16
25.22 odd 20 125.2.e.b.99.2 8
25.23 odd 20 625.2.e.a.374.1 8
75.44 odd 10 5625.2.a.x.1.2 8
75.53 even 20 225.2.m.a.19.2 8
75.56 odd 10 5625.2.a.x.1.7 8
75.62 even 20 225.2.m.a.154.2 8
100.3 even 20 400.2.y.c.369.1 8
100.19 odd 10 10000.2.a.bj.1.2 8
100.31 odd 10 10000.2.a.bj.1.7 8
100.87 even 20 400.2.y.c.129.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 25.12 odd 20
25.2.e.a.19.1 yes 8 25.3 odd 20
125.2.d.b.26.1 16 25.21 even 5
125.2.d.b.26.4 16 25.4 even 10
125.2.d.b.101.1 16 25.16 even 5
125.2.d.b.101.4 16 25.9 even 10
125.2.e.b.24.2 8 25.13 odd 20
125.2.e.b.99.2 8 25.22 odd 20
225.2.m.a.19.2 8 75.53 even 20
225.2.m.a.154.2 8 75.62 even 20
400.2.y.c.129.1 8 100.87 even 20
400.2.y.c.369.1 8 100.3 even 20
625.2.a.f.1.2 8 25.6 even 5
625.2.a.f.1.7 8 25.19 even 10
625.2.b.c.624.2 8 25.17 odd 20
625.2.b.c.624.7 8 25.8 odd 20
625.2.d.o.251.1 16 25.14 even 10 inner
625.2.d.o.251.4 16 25.11 even 5 inner
625.2.d.o.376.1 16 5.4 even 2 inner
625.2.d.o.376.4 16 1.1 even 1 trivial
625.2.e.a.249.1 8 5.2 odd 4
625.2.e.a.374.1 8 25.23 odd 20
625.2.e.i.249.2 8 5.3 odd 4
625.2.e.i.374.2 8 25.2 odd 20
5625.2.a.x.1.2 8 75.44 odd 10
5625.2.a.x.1.7 8 75.56 odd 10
10000.2.a.bj.1.2 8 100.19 odd 10
10000.2.a.bj.1.7 8 100.31 odd 10