Properties

Label 625.2.e.i.374.2
Level $625$
Weight $2$
Character 625.374
Analytic conductor $4.991$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(124,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.58140625.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 4x^{6} - 7x^{5} + 11x^{4} + 5x^{3} - 10x^{2} - 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 374.2
Root \(-0.983224 + 0.644389i\) of defining polynomial
Character \(\chi\) \(=\) 625.374
Dual form 625.2.e.i.249.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22570 + 1.68703i) q^{2} +(2.09089 + 0.679371i) q^{3} +(-0.725700 + 2.23347i) q^{4} +(1.41668 + 4.36010i) q^{6} +0.992398i q^{7} +(-0.690983 + 0.224514i) q^{8} +(1.48322 + 1.07763i) q^{9} +(-1.61803 + 1.17557i) q^{11} +(-3.03472 + 4.17693i) q^{12} +(1.98322 - 2.72967i) q^{13} +(-1.67421 + 1.21638i) q^{14} +(2.57411 + 1.87020i) q^{16} +(-2.75284 + 0.894453i) q^{17} +3.82309i q^{18} +(0.798649 + 2.45799i) q^{19} +(-0.674207 + 2.07500i) q^{21} +(-3.96645 - 1.28878i) q^{22} +(-2.67421 - 3.68073i) q^{23} -1.59730 q^{24} +7.03588 q^{26} +(-1.50757 - 2.07500i) q^{27} +(-2.21650 - 0.720183i) q^{28} +(1.66384 - 5.12077i) q^{29} +(0.0421925 + 0.129855i) q^{31} +8.08800i q^{32} +(-4.18178 + 1.35874i) q^{33} +(-4.88313 - 3.54780i) q^{34} +(-3.48322 + 2.53071i) q^{36} +(-1.26321 + 1.73866i) q^{37} +(-3.16780 + 4.36010i) q^{38} +(6.00116 - 4.36010i) q^{39} +(-6.98439 - 5.07446i) q^{41} +(-4.32696 + 1.40591i) q^{42} -4.64398i q^{43} +(-1.45140 - 4.46695i) q^{44} +(2.93173 - 9.02294i) q^{46} +(9.44047 + 3.06739i) q^{47} +(4.11163 + 5.65917i) q^{48} +6.01515 q^{49} -6.36356 q^{51} +(4.65743 + 6.41040i) q^{52} +(-7.19494 - 2.33778i) q^{53} +(1.65275 - 5.08664i) q^{54} +(-0.222807 - 0.685730i) q^{56} +5.68196i q^{57} +(10.6783 - 3.46958i) q^{58} +(3.97854 + 2.89058i) q^{59} +(2.24075 - 1.62800i) q^{61} +(-0.167354 + 0.230343i) q^{62} +(-1.06943 + 1.47195i) q^{63} +(-8.49648 + 6.17306i) q^{64} +(-7.41785 - 5.38938i) q^{66} +(-2.07879 + 0.675441i) q^{67} -6.79751i q^{68} +(-3.09089 - 9.51278i) q^{69} +(2.97971 - 9.17060i) q^{71} +(-1.26682 - 0.411616i) q^{72} +(0.456080 + 0.627740i) q^{73} -4.48150 q^{74} -6.06943 q^{76} +(-1.16663 - 1.60573i) q^{77} +(14.7113 + 4.77998i) q^{78} +(-4.89818 + 15.0750i) q^{79} +(-3.44210 - 10.5937i) q^{81} -18.0026i q^{82} +(-1.68442 + 0.547301i) q^{83} +(-4.14518 - 3.01165i) q^{84} +(7.83453 - 5.69212i) q^{86} +(6.95781 - 9.57660i) q^{87} +(0.854102 - 1.17557i) q^{88} +(11.7372 - 8.52760i) q^{89} +(2.70892 + 1.96815i) q^{91} +(10.1615 - 3.30167i) q^{92} +0.300177i q^{93} +(6.39639 + 19.6861i) q^{94} +(-5.49476 + 16.9111i) q^{96} +(-16.1956 - 5.26228i) q^{97} +(7.37276 + 10.1477i) q^{98} -3.66673 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{3} + 4 q^{4} + 6 q^{6} - 10 q^{8} + q^{9} - 4 q^{11} - 10 q^{12} + 5 q^{13} - 7 q^{14} - 2 q^{16} - 15 q^{17} + 10 q^{19} + q^{21} - 10 q^{22} - 15 q^{23} - 20 q^{24} + 6 q^{26} + 5 q^{27}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22570 + 1.68703i 0.866701 + 1.19291i 0.979930 + 0.199342i \(0.0638805\pi\)
−0.113229 + 0.993569i \(0.536119\pi\)
\(3\) 2.09089 + 0.679371i 1.20718 + 0.392235i 0.842396 0.538859i \(-0.181144\pi\)
0.364780 + 0.931094i \(0.381144\pi\)
\(4\) −0.725700 + 2.23347i −0.362850 + 1.11674i
\(5\) 0 0
\(6\) 1.41668 + 4.36010i 0.578358 + 1.78000i
\(7\) 0.992398i 0.375091i 0.982256 + 0.187546i \(0.0600533\pi\)
−0.982256 + 0.187546i \(0.939947\pi\)
\(8\) −0.690983 + 0.224514i −0.244299 + 0.0793777i
\(9\) 1.48322 + 1.07763i 0.494408 + 0.359208i
\(10\) 0 0
\(11\) −1.61803 + 1.17557i −0.487856 + 0.354448i −0.804359 0.594144i \(-0.797491\pi\)
0.316503 + 0.948591i \(0.397491\pi\)
\(12\) −3.03472 + 4.17693i −0.876047 + 1.20578i
\(13\) 1.98322 2.72967i 0.550047 0.757075i −0.439971 0.898012i \(-0.645011\pi\)
0.990019 + 0.140937i \(0.0450114\pi\)
\(14\) −1.67421 + 1.21638i −0.447451 + 0.325092i
\(15\) 0 0
\(16\) 2.57411 + 1.87020i 0.643528 + 0.467551i
\(17\) −2.75284 + 0.894453i −0.667663 + 0.216937i −0.623186 0.782074i \(-0.714162\pi\)
−0.0444767 + 0.999010i \(0.514162\pi\)
\(18\) 3.82309i 0.901111i
\(19\) 0.798649 + 2.45799i 0.183223 + 0.563901i 0.999913 0.0131746i \(-0.00419372\pi\)
−0.816691 + 0.577076i \(0.804194\pi\)
\(20\) 0 0
\(21\) −0.674207 + 2.07500i −0.147124 + 0.452801i
\(22\) −3.96645 1.28878i −0.845650 0.274768i
\(23\) −2.67421 3.68073i −0.557611 0.767485i 0.433410 0.901197i \(-0.357310\pi\)
−0.991020 + 0.133712i \(0.957310\pi\)
\(24\) −1.59730 −0.326047
\(25\) 0 0
\(26\) 7.03588 1.37985
\(27\) −1.50757 2.07500i −0.290132 0.399333i
\(28\) −2.21650 0.720183i −0.418878 0.136102i
\(29\) 1.66384 5.12077i 0.308967 0.950903i −0.669200 0.743082i \(-0.733363\pi\)
0.978167 0.207821i \(-0.0666370\pi\)
\(30\) 0 0
\(31\) 0.0421925 + 0.129855i 0.00757799 + 0.0233227i 0.954774 0.297332i \(-0.0960970\pi\)
−0.947196 + 0.320655i \(0.896097\pi\)
\(32\) 8.08800i 1.42977i
\(33\) −4.18178 + 1.35874i −0.727954 + 0.236527i
\(34\) −4.88313 3.54780i −0.837450 0.608443i
\(35\) 0 0
\(36\) −3.48322 + 2.53071i −0.580537 + 0.421785i
\(37\) −1.26321 + 1.73866i −0.207671 + 0.285834i −0.900129 0.435624i \(-0.856528\pi\)
0.692458 + 0.721458i \(0.256528\pi\)
\(38\) −3.16780 + 4.36010i −0.513885 + 0.707302i
\(39\) 6.00116 4.36010i 0.960955 0.698175i
\(40\) 0 0
\(41\) −6.98439 5.07446i −1.09078 0.792497i −0.111248 0.993793i \(-0.535485\pi\)
−0.979530 + 0.201296i \(0.935485\pi\)
\(42\) −4.32696 + 1.40591i −0.667664 + 0.216937i
\(43\) 4.64398i 0.708200i −0.935208 0.354100i \(-0.884787\pi\)
0.935208 0.354100i \(-0.115213\pi\)
\(44\) −1.45140 4.46695i −0.218807 0.673418i
\(45\) 0 0
\(46\) 2.93173 9.02294i 0.432260 1.33036i
\(47\) 9.44047 + 3.06739i 1.37703 + 0.447425i 0.901693 0.432376i \(-0.142325\pi\)
0.475341 + 0.879802i \(0.342325\pi\)
\(48\) 4.11163 + 5.65917i 0.593462 + 0.816831i
\(49\) 6.01515 0.859306
\(50\) 0 0
\(51\) −6.36356 −0.891077
\(52\) 4.65743 + 6.41040i 0.645869 + 0.888963i
\(53\) −7.19494 2.33778i −0.988301 0.321119i −0.230120 0.973162i \(-0.573912\pi\)
−0.758181 + 0.652044i \(0.773912\pi\)
\(54\) 1.65275 5.08664i 0.224911 0.692205i
\(55\) 0 0
\(56\) −0.222807 0.685730i −0.0297739 0.0916346i
\(57\) 5.68196i 0.752594i
\(58\) 10.6783 3.46958i 1.40212 0.455578i
\(59\) 3.97854 + 2.89058i 0.517962 + 0.376322i 0.815836 0.578284i \(-0.196277\pi\)
−0.297873 + 0.954605i \(0.596277\pi\)
\(60\) 0 0
\(61\) 2.24075 1.62800i 0.286898 0.208444i −0.435022 0.900420i \(-0.643260\pi\)
0.721921 + 0.691976i \(0.243260\pi\)
\(62\) −0.167354 + 0.230343i −0.0212540 + 0.0292536i
\(63\) −1.06943 + 1.47195i −0.134736 + 0.185448i
\(64\) −8.49648 + 6.17306i −1.06206 + 0.771632i
\(65\) 0 0
\(66\) −7.41785 5.38938i −0.913074 0.663387i
\(67\) −2.07879 + 0.675441i −0.253965 + 0.0825183i −0.433233 0.901282i \(-0.642627\pi\)
0.179268 + 0.983800i \(0.442627\pi\)
\(68\) 6.79751i 0.824319i
\(69\) −3.09089 9.51278i −0.372099 1.14520i
\(70\) 0 0
\(71\) 2.97971 9.17060i 0.353626 1.08835i −0.603175 0.797609i \(-0.706098\pi\)
0.956802 0.290741i \(-0.0939019\pi\)
\(72\) −1.26682 0.411616i −0.149297 0.0485094i
\(73\) 0.456080 + 0.627740i 0.0533801 + 0.0734714i 0.834873 0.550443i \(-0.185541\pi\)
−0.781492 + 0.623915i \(0.785541\pi\)
\(74\) −4.48150 −0.520963
\(75\) 0 0
\(76\) −6.06943 −0.696212
\(77\) −1.16663 1.60573i −0.132950 0.182990i
\(78\) 14.7113 + 4.77998i 1.66572 + 0.541226i
\(79\) −4.89818 + 15.0750i −0.551088 + 1.69608i 0.154968 + 0.987919i \(0.450473\pi\)
−0.706056 + 0.708156i \(0.749527\pi\)
\(80\) 0 0
\(81\) −3.44210 10.5937i −0.382455 1.17708i
\(82\) 18.0026i 1.98806i
\(83\) −1.68442 + 0.547301i −0.184889 + 0.0600740i −0.399998 0.916516i \(-0.630989\pi\)
0.215109 + 0.976590i \(0.430989\pi\)
\(84\) −4.14518 3.01165i −0.452276 0.328598i
\(85\) 0 0
\(86\) 7.83453 5.69212i 0.844819 0.613797i
\(87\) 6.95781 9.57660i 0.745955 1.02672i
\(88\) 0.854102 1.17557i 0.0910476 0.125316i
\(89\) 11.7372 8.52760i 1.24414 0.903924i 0.246277 0.969200i \(-0.420793\pi\)
0.997867 + 0.0652758i \(0.0207927\pi\)
\(90\) 0 0
\(91\) 2.70892 + 1.96815i 0.283972 + 0.206318i
\(92\) 10.1615 3.30167i 1.05941 0.344223i
\(93\) 0.300177i 0.0311269i
\(94\) 6.39639 + 19.6861i 0.659737 + 2.03046i
\(95\) 0 0
\(96\) −5.49476 + 16.9111i −0.560806 + 1.72598i
\(97\) −16.1956 5.26228i −1.64442 0.534304i −0.666899 0.745148i \(-0.732379\pi\)
−0.977520 + 0.210844i \(0.932379\pi\)
\(98\) 7.37276 + 10.1477i 0.744761 + 1.02508i
\(99\) −3.66673 −0.368520
\(100\) 0 0
\(101\) −2.54716 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(102\) −7.79981 10.7355i −0.772297 1.06298i
\(103\) −9.66790 3.14129i −0.952606 0.309520i −0.208832 0.977952i \(-0.566966\pi\)
−0.743774 + 0.668431i \(0.766966\pi\)
\(104\) −0.757524 + 2.33142i −0.0742814 + 0.228615i
\(105\) 0 0
\(106\) −4.87494 15.0035i −0.473496 1.45727i
\(107\) 4.81720i 0.465697i −0.972513 0.232848i \(-0.925195\pi\)
0.972513 0.232848i \(-0.0748046\pi\)
\(108\) 5.72850 1.86130i 0.551225 0.179104i
\(109\) 13.1662 + 9.56578i 1.26109 + 0.916236i 0.998811 0.0487563i \(-0.0155258\pi\)
0.262280 + 0.964992i \(0.415526\pi\)
\(110\) 0 0
\(111\) −3.82243 + 2.77716i −0.362809 + 0.263596i
\(112\) −1.85599 + 2.55455i −0.175374 + 0.241382i
\(113\) −3.97169 + 5.46656i −0.373625 + 0.514251i −0.953882 0.300183i \(-0.902952\pi\)
0.580256 + 0.814434i \(0.302952\pi\)
\(114\) −9.58565 + 6.96438i −0.897778 + 0.652274i
\(115\) 0 0
\(116\) 10.2297 + 7.43228i 0.949800 + 0.690070i
\(117\) 5.88313 1.91155i 0.543896 0.176722i
\(118\) 10.2549i 0.944041i
\(119\) −0.887654 2.73192i −0.0813711 0.250435i
\(120\) 0 0
\(121\) −2.16312 + 6.65740i −0.196647 + 0.605218i
\(122\) 5.49297 + 1.78477i 0.497310 + 0.161586i
\(123\) −11.1561 15.3551i −1.00592 1.38452i
\(124\) −0.320647 −0.0287950
\(125\) 0 0
\(126\) −3.79403 −0.337999
\(127\) 0.876278 + 1.20609i 0.0777571 + 0.107023i 0.846124 0.532986i \(-0.178930\pi\)
−0.768367 + 0.640010i \(0.778930\pi\)
\(128\) −5.44398 1.76886i −0.481185 0.156346i
\(129\) 3.15498 9.71004i 0.277781 0.854921i
\(130\) 0 0
\(131\) 4.36167 + 13.4239i 0.381081 + 1.17285i 0.939283 + 0.343143i \(0.111491\pi\)
−0.558202 + 0.829705i \(0.688509\pi\)
\(132\) 10.3259i 0.898757i
\(133\) −2.43930 + 0.792578i −0.211514 + 0.0687252i
\(134\) −3.68747 2.67910i −0.318549 0.231439i
\(135\) 0 0
\(136\) 1.70135 1.23610i 0.145890 0.105995i
\(137\) −0.405247 + 0.557775i −0.0346226 + 0.0476539i −0.825977 0.563703i \(-0.809376\pi\)
0.791355 + 0.611357i \(0.209376\pi\)
\(138\) 12.2599 16.8742i 1.04363 1.43643i
\(139\) −13.4069 + 9.74070i −1.13716 + 0.826195i −0.986721 0.162424i \(-0.948069\pi\)
−0.150439 + 0.988619i \(0.548069\pi\)
\(140\) 0 0
\(141\) 17.6551 + 12.8272i 1.48683 + 1.08024i
\(142\) 19.1233 6.21354i 1.60479 0.521429i
\(143\) 6.74812i 0.564307i
\(144\) 1.80261 + 5.54786i 0.150217 + 0.462322i
\(145\) 0 0
\(146\) −0.500000 + 1.53884i −0.0413803 + 0.127355i
\(147\) 12.5770 + 4.08652i 1.03733 + 0.337050i
\(148\) −2.96655 4.08310i −0.243849 0.335629i
\(149\) −3.21156 −0.263101 −0.131551 0.991309i \(-0.541996\pi\)
−0.131551 + 0.991309i \(0.541996\pi\)
\(150\) 0 0
\(151\) 17.6863 1.43929 0.719647 0.694340i \(-0.244304\pi\)
0.719647 + 0.694340i \(0.244304\pi\)
\(152\) −1.10371 1.51912i −0.0895223 0.123217i
\(153\) −5.04697 1.63986i −0.408023 0.132575i
\(154\) 1.27898 3.93630i 0.103063 0.317196i
\(155\) 0 0
\(156\) 5.38313 + 16.5676i 0.430995 + 1.32647i
\(157\) 1.65512i 0.132093i 0.997817 + 0.0660465i \(0.0210386\pi\)
−0.997817 + 0.0660465i \(0.978961\pi\)
\(158\) −31.4358 + 10.2141i −2.50090 + 0.812590i
\(159\) −13.4556 9.77608i −1.06710 0.775293i
\(160\) 0 0
\(161\) 3.65275 2.65388i 0.287877 0.209155i
\(162\) 13.6529 18.7916i 1.07267 1.47641i
\(163\) −0.524854 + 0.722399i −0.0411097 + 0.0565827i −0.829077 0.559134i \(-0.811134\pi\)
0.787967 + 0.615717i \(0.211134\pi\)
\(164\) 16.4022 11.9169i 1.28080 0.930555i
\(165\) 0 0
\(166\) −2.98790 2.17084i −0.231906 0.168490i
\(167\) −4.94129 + 1.60552i −0.382368 + 0.124239i −0.493893 0.869523i \(-0.664427\pi\)
0.111525 + 0.993762i \(0.464427\pi\)
\(168\) 1.58516i 0.122297i
\(169\) 0.499280 + 1.53663i 0.0384062 + 0.118202i
\(170\) 0 0
\(171\) −1.46422 + 4.50639i −0.111971 + 0.344612i
\(172\) 10.3722 + 3.37013i 0.790873 + 0.256970i
\(173\) −3.38837 4.66370i −0.257613 0.354574i 0.660546 0.750785i \(-0.270325\pi\)
−0.918159 + 0.396211i \(0.870325\pi\)
\(174\) 24.6842 1.87130
\(175\) 0 0
\(176\) −6.36356 −0.479671
\(177\) 6.35492 + 8.74680i 0.477665 + 0.657449i
\(178\) 28.7726 + 9.34880i 2.15660 + 0.700722i
\(179\) −2.67883 + 8.24458i −0.200225 + 0.616229i 0.799651 + 0.600465i \(0.205018\pi\)
−0.999876 + 0.0157637i \(0.994982\pi\)
\(180\) 0 0
\(181\) 4.41612 + 13.5914i 0.328248 + 1.01024i 0.969953 + 0.243291i \(0.0782271\pi\)
−0.641706 + 0.766951i \(0.721773\pi\)
\(182\) 6.98240i 0.517570i
\(183\) 5.79117 1.88167i 0.428096 0.139097i
\(184\) 2.67421 + 1.94293i 0.197145 + 0.143234i
\(185\) 0 0
\(186\) −0.506408 + 0.367927i −0.0371316 + 0.0269777i
\(187\) 3.40270 4.68342i 0.248830 0.342485i
\(188\) −13.7019 + 18.8590i −0.999313 + 1.37544i
\(189\) 2.05922 1.49611i 0.149786 0.108826i
\(190\) 0 0
\(191\) 1.02451 + 0.744347i 0.0741306 + 0.0538591i 0.624233 0.781238i \(-0.285411\pi\)
−0.550103 + 0.835097i \(0.685411\pi\)
\(192\) −21.9590 + 7.13492i −1.58476 + 0.514918i
\(193\) 21.1730i 1.52406i −0.647540 0.762031i \(-0.724202\pi\)
0.647540 0.762031i \(-0.275798\pi\)
\(194\) −10.9734 33.7725i −0.787841 2.42473i
\(195\) 0 0
\(196\) −4.36519 + 13.4347i −0.311799 + 0.959620i
\(197\) −11.6042 3.77042i −0.826761 0.268631i −0.135081 0.990835i \(-0.543129\pi\)
−0.691681 + 0.722203i \(0.743129\pi\)
\(198\) −4.49431 6.18589i −0.319397 0.439612i
\(199\) −10.4065 −0.737695 −0.368848 0.929490i \(-0.620248\pi\)
−0.368848 + 0.929490i \(0.620248\pi\)
\(200\) 0 0
\(201\) −4.80540 −0.338947
\(202\) −3.12205 4.29714i −0.219667 0.302346i
\(203\) 5.08184 + 1.65119i 0.356675 + 0.115891i
\(204\) 4.61803 14.2128i 0.323327 0.995098i
\(205\) 0 0
\(206\) −6.55049 20.1603i −0.456394 1.40464i
\(207\) 8.34114i 0.579749i
\(208\) 10.2101 3.31746i 0.707942 0.230024i
\(209\) −4.18178 3.03824i −0.289260 0.210160i
\(210\) 0 0
\(211\) 7.00421 5.08886i 0.482190 0.350332i −0.319983 0.947423i \(-0.603677\pi\)
0.802173 + 0.597092i \(0.203677\pi\)
\(212\) 10.4427 14.3732i 0.717210 0.987155i
\(213\) 12.4605 17.1504i 0.853778 1.17513i
\(214\) 8.12677 5.90445i 0.555535 0.403620i
\(215\) 0 0
\(216\) 1.50757 + 1.09532i 0.102577 + 0.0745268i
\(217\) −0.128868 + 0.0418717i −0.00874813 + 0.00284244i
\(218\) 33.9365i 2.29847i
\(219\) 0.527144 + 1.62238i 0.0356211 + 0.109630i
\(220\) 0 0
\(221\) −3.01794 + 9.28827i −0.203009 + 0.624796i
\(222\) −9.37032 3.04460i −0.628894 0.204340i
\(223\) 16.6598 + 22.9303i 1.11562 + 1.53552i 0.812860 + 0.582459i \(0.197909\pi\)
0.302764 + 0.953065i \(0.402091\pi\)
\(224\) −8.02652 −0.536295
\(225\) 0 0
\(226\) −14.0904 −0.937277
\(227\) −13.0732 17.9937i −0.867699 1.19429i −0.979678 0.200575i \(-0.935719\pi\)
0.111979 0.993711i \(-0.464281\pi\)
\(228\) −12.6905 4.12340i −0.840450 0.273079i
\(229\) −0.765000 + 2.35443i −0.0505526 + 0.155585i −0.973146 0.230189i \(-0.926066\pi\)
0.922593 + 0.385774i \(0.126066\pi\)
\(230\) 0 0
\(231\) −1.34841 4.14999i −0.0887191 0.273049i
\(232\) 3.91192i 0.256830i
\(233\) 5.66454 1.84052i 0.371096 0.120576i −0.117531 0.993069i \(-0.537498\pi\)
0.488627 + 0.872493i \(0.337498\pi\)
\(234\) 10.4358 + 7.58204i 0.682209 + 0.495654i
\(235\) 0 0
\(236\) −9.34327 + 6.78828i −0.608195 + 0.441879i
\(237\) −20.4831 + 28.1926i −1.33052 + 1.83130i
\(238\) 3.52083 4.84601i 0.228222 0.314120i
\(239\) −5.68935 + 4.13356i −0.368014 + 0.267378i −0.756387 0.654125i \(-0.773037\pi\)
0.388373 + 0.921502i \(0.373037\pi\)
\(240\) 0 0
\(241\) −0.954449 0.693448i −0.0614815 0.0446689i 0.556620 0.830767i \(-0.312098\pi\)
−0.618102 + 0.786098i \(0.712098\pi\)
\(242\) −13.8826 + 4.51072i −0.892405 + 0.289960i
\(243\) 16.7942i 1.07735i
\(244\) 2.00998 + 6.18609i 0.128676 + 0.396024i
\(245\) 0 0
\(246\) 12.2305 37.6415i 0.779787 2.39994i
\(247\) 8.29341 + 2.69469i 0.527697 + 0.171459i
\(248\) −0.0583086 0.0802548i −0.00370260 0.00509619i
\(249\) −3.89375 −0.246757
\(250\) 0 0
\(251\) 4.60867 0.290897 0.145448 0.989366i \(-0.453538\pi\)
0.145448 + 0.989366i \(0.453538\pi\)
\(252\) −2.51147 3.45675i −0.158208 0.217755i
\(253\) 8.65392 + 2.81183i 0.544067 + 0.176778i
\(254\) −0.960663 + 2.95662i −0.0602774 + 0.185515i
\(255\) 0 0
\(256\) 2.80216 + 8.62417i 0.175135 + 0.539011i
\(257\) 9.75542i 0.608526i −0.952588 0.304263i \(-0.901590\pi\)
0.952588 0.304263i \(-0.0984102\pi\)
\(258\) 20.2482 6.57904i 1.26060 0.409593i
\(259\) −1.72545 1.25361i −0.107214 0.0778955i
\(260\) 0 0
\(261\) 7.98612 5.80225i 0.494328 0.359150i
\(262\) −17.3004 + 23.8119i −1.06882 + 1.47110i
\(263\) −0.585333 + 0.805641i −0.0360932 + 0.0496780i −0.826682 0.562669i \(-0.809775\pi\)
0.790589 + 0.612347i \(0.209775\pi\)
\(264\) 2.58448 1.87774i 0.159064 0.115567i
\(265\) 0 0
\(266\) −4.32696 3.14372i −0.265303 0.192754i
\(267\) 30.3347 9.85633i 1.85645 0.603198i
\(268\) 5.13310i 0.313554i
\(269\) 1.01621 + 3.12758i 0.0619596 + 0.190692i 0.977245 0.212114i \(-0.0680349\pi\)
−0.915285 + 0.402806i \(0.868035\pi\)
\(270\) 0 0
\(271\) 3.75457 11.5554i 0.228074 0.701940i −0.769891 0.638175i \(-0.779689\pi\)
0.997965 0.0637642i \(-0.0203105\pi\)
\(272\) −8.75894 2.84595i −0.531089 0.172561i
\(273\) 4.32696 + 5.95555i 0.261879 + 0.360446i
\(274\) −1.43769 −0.0868543
\(275\) 0 0
\(276\) 23.4896 1.41391
\(277\) 6.97499 + 9.60025i 0.419087 + 0.576823i 0.965405 0.260754i \(-0.0839712\pi\)
−0.546319 + 0.837577i \(0.683971\pi\)
\(278\) −32.8657 10.6787i −1.97115 0.640467i
\(279\) −0.0773542 + 0.238072i −0.00463108 + 0.0142530i
\(280\) 0 0
\(281\) −7.61468 23.4356i −0.454253 1.39805i −0.872009 0.489489i \(-0.837183\pi\)
0.417756 0.908559i \(-0.362817\pi\)
\(282\) 45.5069i 2.70990i
\(283\) −3.19881 + 1.03936i −0.190150 + 0.0617833i −0.402544 0.915401i \(-0.631874\pi\)
0.212394 + 0.977184i \(0.431874\pi\)
\(284\) 18.3199 + 13.3102i 1.08709 + 0.789815i
\(285\) 0 0
\(286\) −11.3843 + 8.27117i −0.673168 + 0.489085i
\(287\) 5.03588 6.93130i 0.297259 0.409141i
\(288\) −8.71584 + 11.9963i −0.513586 + 0.706890i
\(289\) −6.97519 + 5.06777i −0.410305 + 0.298104i
\(290\) 0 0
\(291\) −30.2883 22.0057i −1.77553 1.29000i
\(292\) −1.73302 + 0.563092i −0.101417 + 0.0329525i
\(293\) 8.96340i 0.523647i 0.965116 + 0.261824i \(0.0843239\pi\)
−0.965116 + 0.261824i \(0.915676\pi\)
\(294\) 8.52155 + 26.2266i 0.496987 + 1.52957i
\(295\) 0 0
\(296\) 0.482504 1.48499i 0.0280450 0.0863136i
\(297\) 4.87861 + 1.58516i 0.283086 + 0.0919801i
\(298\) −3.93641 5.41801i −0.228030 0.313857i
\(299\) −15.3507 −0.887756
\(300\) 0 0
\(301\) 4.60867 0.265640
\(302\) 21.6781 + 29.8374i 1.24744 + 1.71695i
\(303\) −5.32583 1.73047i −0.305961 0.0994128i
\(304\) −2.54112 + 7.82078i −0.145743 + 0.448552i
\(305\) 0 0
\(306\) −3.41958 10.5244i −0.195484 0.601638i
\(307\) 9.48133i 0.541128i 0.962702 + 0.270564i \(0.0872102\pi\)
−0.962702 + 0.270564i \(0.912790\pi\)
\(308\) 4.43299 1.44037i 0.252593 0.0820725i
\(309\) −18.0804 13.1362i −1.02856 0.747291i
\(310\) 0 0
\(311\) −23.7301 + 17.2409i −1.34561 + 0.977643i −0.346393 + 0.938089i \(0.612594\pi\)
−0.999217 + 0.0395541i \(0.987406\pi\)
\(312\) −3.16780 + 4.36010i −0.179341 + 0.246842i
\(313\) −11.1033 + 15.2824i −0.627596 + 0.863811i −0.997878 0.0651079i \(-0.979261\pi\)
0.370283 + 0.928919i \(0.379261\pi\)
\(314\) −2.79224 + 2.02868i −0.157575 + 0.114485i
\(315\) 0 0
\(316\) −30.1151 21.8799i −1.69411 1.23084i
\(317\) −21.6739 + 7.04229i −1.21733 + 0.395534i −0.846109 0.533010i \(-0.821061\pi\)
−0.371221 + 0.928545i \(0.621061\pi\)
\(318\) 34.6826i 1.94490i
\(319\) 3.32768 + 10.2415i 0.186314 + 0.573416i
\(320\) 0 0
\(321\) 3.27267 10.0722i 0.182663 0.562178i
\(322\) 8.95435 + 2.90945i 0.499007 + 0.162137i
\(323\) −4.39711 6.05210i −0.244662 0.336748i
\(324\) 26.1587 1.45326
\(325\) 0 0
\(326\) −1.86202 −0.103128
\(327\) 21.0303 + 28.9457i 1.16298 + 1.60070i
\(328\) 5.96538 + 1.93827i 0.329383 + 0.107023i
\(329\) −3.04408 + 9.36871i −0.167825 + 0.516513i
\(330\) 0 0
\(331\) 0.915615 + 2.81797i 0.0503268 + 0.154890i 0.973061 0.230546i \(-0.0740512\pi\)
−0.922735 + 0.385436i \(0.874051\pi\)
\(332\) 4.15928i 0.228270i
\(333\) −3.74725 + 1.21756i −0.205348 + 0.0667217i
\(334\) −8.76510 6.36822i −0.479605 0.348453i
\(335\) 0 0
\(336\) −5.61615 + 4.08037i −0.306386 + 0.222603i
\(337\) −11.0576 + 15.2195i −0.602345 + 0.829057i −0.995920 0.0902353i \(-0.971238\pi\)
0.393575 + 0.919292i \(0.371238\pi\)
\(338\) −1.98037 + 2.72574i −0.107718 + 0.148261i
\(339\) −12.0182 + 8.73173i −0.652739 + 0.474242i
\(340\) 0 0
\(341\) −0.220923 0.160510i −0.0119636 0.00869209i
\(342\) −9.39711 + 3.05331i −0.508138 + 0.165104i
\(343\) 12.9162i 0.697410i
\(344\) 1.04264 + 3.20891i 0.0562152 + 0.173013i
\(345\) 0 0
\(346\) 3.71467 11.4326i 0.199702 0.614620i
\(347\) −21.6253 7.02649i −1.16091 0.377201i −0.335665 0.941981i \(-0.608961\pi\)
−0.825242 + 0.564780i \(0.808961\pi\)
\(348\) 16.3398 + 22.4898i 0.875906 + 1.20558i
\(349\) −1.93849 −0.103765 −0.0518824 0.998653i \(-0.516522\pi\)
−0.0518824 + 0.998653i \(0.516522\pi\)
\(350\) 0 0
\(351\) −8.65392 −0.461912
\(352\) −9.50802 13.0867i −0.506779 0.697522i
\(353\) −4.99252 1.62217i −0.265725 0.0863394i 0.173124 0.984900i \(-0.444614\pi\)
−0.438849 + 0.898561i \(0.644614\pi\)
\(354\) −6.96689 + 21.4419i −0.370286 + 1.13962i
\(355\) 0 0
\(356\) 10.5285 + 32.4033i 0.558008 + 1.71737i
\(357\) 6.31519i 0.334235i
\(358\) −17.1923 + 5.58612i −0.908642 + 0.295236i
\(359\) 18.2787 + 13.2803i 0.964713 + 0.700905i 0.954241 0.299040i \(-0.0966664\pi\)
0.0104726 + 0.999945i \(0.496666\pi\)
\(360\) 0 0
\(361\) 9.96746 7.24178i 0.524603 0.381146i
\(362\) −17.5163 + 24.1091i −0.920637 + 1.26715i
\(363\) −9.04569 + 12.4503i −0.474775 + 0.653472i
\(364\) −6.36167 + 4.62203i −0.333442 + 0.242260i
\(365\) 0 0
\(366\) 10.2727 + 7.46353i 0.536961 + 0.390125i
\(367\) 6.94150 2.25543i 0.362343 0.117732i −0.122187 0.992507i \(-0.538991\pi\)
0.484530 + 0.874775i \(0.338991\pi\)
\(368\) 14.4759i 0.754610i
\(369\) −4.89105 15.0531i −0.254618 0.783634i
\(370\) 0 0
\(371\) 2.32001 7.14025i 0.120449 0.370703i
\(372\) −0.670438 0.217838i −0.0347606 0.0112944i
\(373\) −13.1119 18.0470i −0.678911 0.934440i 0.321010 0.947076i \(-0.395978\pi\)
−0.999920 + 0.0126358i \(0.995978\pi\)
\(374\) 12.0718 0.624216
\(375\) 0 0
\(376\) −7.21188 −0.371924
\(377\) −10.6783 14.6974i −0.549959 0.756953i
\(378\) 5.04798 + 1.64019i 0.259640 + 0.0843621i
\(379\) 10.1811 31.3341i 0.522966 1.60952i −0.245337 0.969438i \(-0.578899\pi\)
0.768303 0.640086i \(-0.221101\pi\)
\(380\) 0 0
\(381\) 1.01282 + 3.11713i 0.0518881 + 0.159695i
\(382\) 2.64072i 0.135111i
\(383\) −19.6871 + 6.39671i −1.00596 + 0.326857i −0.765245 0.643739i \(-0.777382\pi\)
−0.240716 + 0.970595i \(0.577382\pi\)
\(384\) −10.1811 7.39697i −0.519550 0.377475i
\(385\) 0 0
\(386\) 35.7194 25.9517i 1.81807 1.32091i
\(387\) 5.00447 6.88806i 0.254391 0.350140i
\(388\) 23.5063 32.3537i 1.19335 1.64251i
\(389\) −0.925886 + 0.672696i −0.0469443 + 0.0341070i −0.611010 0.791623i \(-0.709236\pi\)
0.564066 + 0.825730i \(0.309236\pi\)
\(390\) 0 0
\(391\) 10.6539 + 7.74052i 0.538792 + 0.391455i
\(392\) −4.15636 + 1.35048i −0.209928 + 0.0682098i
\(393\) 31.0310i 1.56531i
\(394\) −7.86239 24.1980i −0.396102 1.21908i
\(395\) 0 0
\(396\) 2.66095 8.18955i 0.133718 0.411540i
\(397\) −4.45583 1.44779i −0.223631 0.0726623i 0.195058 0.980792i \(-0.437510\pi\)
−0.418690 + 0.908129i \(0.637510\pi\)
\(398\) −12.7552 17.5560i −0.639361 0.880005i
\(399\) −5.63877 −0.282292
\(400\) 0 0
\(401\) −24.0851 −1.20275 −0.601376 0.798966i \(-0.705381\pi\)
−0.601376 + 0.798966i \(0.705381\pi\)
\(402\) −5.88998 8.10687i −0.293766 0.404334i
\(403\) 0.438139 + 0.142360i 0.0218253 + 0.00709146i
\(404\) 1.84847 5.68902i 0.0919650 0.283039i
\(405\) 0 0
\(406\) 3.44320 + 10.5971i 0.170883 + 0.525925i
\(407\) 4.29821i 0.213054i
\(408\) 4.39711 1.42871i 0.217689 0.0707316i
\(409\) −1.53660 1.11641i −0.0759801 0.0552027i 0.549147 0.835726i \(-0.314953\pi\)
−0.625127 + 0.780523i \(0.714953\pi\)
\(410\) 0 0
\(411\) −1.22626 + 0.890932i −0.0604871 + 0.0439464i
\(412\) 14.0320 19.3134i 0.691306 0.951501i
\(413\) −2.86861 + 3.94830i −0.141155 + 0.194283i
\(414\) 14.0718 10.2237i 0.691589 0.502469i
\(415\) 0 0
\(416\) 22.0776 + 16.0403i 1.08244 + 0.786441i
\(417\) −34.6499 + 11.2584i −1.69681 + 0.551328i
\(418\) 10.7788i 0.527207i
\(419\) 0.719410 + 2.21412i 0.0351455 + 0.108167i 0.967090 0.254434i \(-0.0818890\pi\)
−0.931945 + 0.362600i \(0.881889\pi\)
\(420\) 0 0
\(421\) −7.40097 + 22.7779i −0.360701 + 1.11012i 0.591928 + 0.805991i \(0.298367\pi\)
−0.952629 + 0.304134i \(0.901633\pi\)
\(422\) 17.1701 + 5.57891i 0.835829 + 0.271577i
\(423\) 10.6968 + 14.7229i 0.520098 + 0.715853i
\(424\) 5.49645 0.266931
\(425\) 0 0
\(426\) 44.2060 2.14179
\(427\) 1.61562 + 2.22371i 0.0781855 + 0.107613i
\(428\) 10.7591 + 3.49584i 0.520061 + 0.168978i
\(429\) −4.58448 + 14.1096i −0.221341 + 0.681217i
\(430\) 0 0
\(431\) 0.368430 + 1.13391i 0.0177467 + 0.0546186i 0.959538 0.281580i \(-0.0908586\pi\)
−0.941791 + 0.336199i \(0.890859\pi\)
\(432\) 8.16074i 0.392634i
\(433\) 24.3602 7.91511i 1.17068 0.380376i 0.341781 0.939780i \(-0.388970\pi\)
0.828895 + 0.559404i \(0.188970\pi\)
\(434\) −0.228592 0.166082i −0.0109728 0.00797219i
\(435\) 0 0
\(436\) −30.9196 + 22.4644i −1.48078 + 1.07585i
\(437\) 6.91144 9.51278i 0.330619 0.455058i
\(438\) −2.09089 + 2.87786i −0.0999066 + 0.137510i
\(439\) 15.6740 11.3878i 0.748079 0.543511i −0.147152 0.989114i \(-0.547011\pi\)
0.895231 + 0.445603i \(0.147011\pi\)
\(440\) 0 0
\(441\) 8.92181 + 6.48207i 0.424848 + 0.308670i
\(442\) −19.3687 + 6.29327i −0.921274 + 0.299340i
\(443\) 2.46263i 0.117003i 0.998287 + 0.0585016i \(0.0186323\pi\)
−0.998287 + 0.0585016i \(0.981368\pi\)
\(444\) −3.42878 10.5527i −0.162723 0.500809i
\(445\) 0 0
\(446\) −18.2641 + 56.2113i −0.864833 + 2.66168i
\(447\) −6.71502 2.18184i −0.317610 0.103198i
\(448\) −6.12613 8.43190i −0.289433 0.398370i
\(449\) 14.3585 0.677618 0.338809 0.940855i \(-0.389976\pi\)
0.338809 + 0.940855i \(0.389976\pi\)
\(450\) 0 0
\(451\) 17.2664 0.813041
\(452\) −9.32717 12.8378i −0.438713 0.603837i
\(453\) 36.9802 + 12.0156i 1.73748 + 0.564542i
\(454\) 14.3321 44.1098i 0.672641 2.07018i
\(455\) 0 0
\(456\) −1.27568 3.92614i −0.0597392 0.183858i
\(457\) 25.1964i 1.17864i 0.807901 + 0.589319i \(0.200604\pi\)
−0.807901 + 0.589319i \(0.799396\pi\)
\(458\) −4.90965 + 1.59524i −0.229413 + 0.0745408i
\(459\) 6.00610 + 4.36369i 0.280341 + 0.203679i
\(460\) 0 0
\(461\) −23.3203 + 16.9432i −1.08614 + 0.789124i −0.978743 0.205092i \(-0.934251\pi\)
−0.107394 + 0.994217i \(0.534251\pi\)
\(462\) 5.34841 7.36146i 0.248831 0.342486i
\(463\) 18.7384 25.7911i 0.870846 1.19862i −0.108028 0.994148i \(-0.534453\pi\)
0.978873 0.204468i \(-0.0655465\pi\)
\(464\) 13.8598 10.0697i 0.643425 0.467475i
\(465\) 0 0
\(466\) 10.0480 + 7.30033i 0.465466 + 0.338181i
\(467\) 40.9902 13.3185i 1.89680 0.616307i 0.925314 0.379201i \(-0.123801\pi\)
0.971484 0.237106i \(-0.0761988\pi\)
\(468\) 14.5270i 0.671512i
\(469\) −0.670307 2.06299i −0.0309519 0.0952601i
\(470\) 0 0
\(471\) −1.12444 + 3.46068i −0.0518115 + 0.159460i
\(472\) −3.39808 1.10410i −0.156409 0.0508205i
\(473\) 5.45932 + 7.51411i 0.251020 + 0.345499i
\(474\) −72.6679 −3.33775
\(475\) 0 0
\(476\) 6.74584 0.309195
\(477\) −8.15246 11.2209i −0.373276 0.513770i
\(478\) −13.9469 4.53161i −0.637915 0.207271i
\(479\) −6.49749 + 19.9972i −0.296878 + 0.913697i 0.685706 + 0.727878i \(0.259494\pi\)
−0.982584 + 0.185818i \(0.940506\pi\)
\(480\) 0 0
\(481\) 2.24075 + 6.89631i 0.102169 + 0.314445i
\(482\) 2.46014i 0.112057i
\(483\) 9.44047 3.06739i 0.429556 0.139571i
\(484\) −13.2993 9.66254i −0.604516 0.439206i
\(485\) 0 0
\(486\) 28.3323 20.5846i 1.28518 0.933739i
\(487\) 16.4104 22.5869i 0.743625 1.02351i −0.254777 0.967000i \(-0.582002\pi\)
0.998402 0.0565121i \(-0.0179979\pi\)
\(488\) −1.18281 + 1.62800i −0.0535433 + 0.0736960i
\(489\) −1.58819 + 1.15389i −0.0718204 + 0.0521805i
\(490\) 0 0
\(491\) −12.1037 8.79389i −0.546234 0.396862i 0.280161 0.959953i \(-0.409612\pi\)
−0.826395 + 0.563091i \(0.809612\pi\)
\(492\) 42.3913 13.7738i 1.91115 0.620969i
\(493\) 15.5849i 0.701909i
\(494\) 5.61920 + 17.2941i 0.252820 + 0.778099i
\(495\) 0 0
\(496\) −0.134247 + 0.413170i −0.00602787 + 0.0185519i
\(497\) 9.10089 + 2.95706i 0.408231 + 0.132642i
\(498\) −4.77257 6.56888i −0.213864 0.294359i
\(499\) 44.3253 1.98427 0.992137 0.125160i \(-0.0399443\pi\)
0.992137 + 0.125160i \(0.0399443\pi\)
\(500\) 0 0
\(501\) −11.4224 −0.510316
\(502\) 5.64885 + 7.77498i 0.252121 + 0.347014i
\(503\) 22.4651 + 7.29936i 1.00167 + 0.325462i 0.763532 0.645769i \(-0.223463\pi\)
0.238137 + 0.971232i \(0.423463\pi\)
\(504\) 0.408487 1.25719i 0.0181955 0.0559999i
\(505\) 0 0
\(506\) 5.86346 + 18.0459i 0.260663 + 0.802237i
\(507\) 3.55211i 0.157755i
\(508\) −3.32969 + 1.08188i −0.147731 + 0.0480008i
\(509\) −21.6132 15.7029i −0.957990 0.696020i −0.00530682 0.999986i \(-0.501689\pi\)
−0.952683 + 0.303966i \(0.901689\pi\)
\(510\) 0 0
\(511\) −0.622968 + 0.452613i −0.0275585 + 0.0200224i
\(512\) −17.8438 + 24.5598i −0.788591 + 1.08540i
\(513\) 3.89629 5.36279i 0.172026 0.236773i
\(514\) 16.4577 11.9572i 0.725918 0.527410i
\(515\) 0 0
\(516\) 19.3976 + 14.0931i 0.853930 + 0.620416i
\(517\) −18.8809 + 6.13479i −0.830383 + 0.269808i
\(518\) 4.44743i 0.195409i
\(519\) −3.91633 12.0532i −0.171908 0.529078i
\(520\) 0 0
\(521\) 10.1071 31.1065i 0.442800 1.36280i −0.442078 0.896977i \(-0.645759\pi\)
0.884878 0.465822i \(-0.154241\pi\)
\(522\) 19.5772 + 6.36101i 0.856869 + 0.278414i
\(523\) 0.138697 + 0.190901i 0.00606481 + 0.00834750i 0.812039 0.583604i \(-0.198358\pi\)
−0.805974 + 0.591951i \(0.798358\pi\)
\(524\) −33.1471 −1.44804
\(525\) 0 0
\(526\) −2.07658 −0.0905434
\(527\) −0.232299 0.319732i −0.0101191 0.0139277i
\(528\) −13.3055 4.32322i −0.579048 0.188144i
\(529\) 0.710999 2.18823i 0.0309130 0.0951405i
\(530\) 0 0
\(531\) 2.78611 + 8.57476i 0.120907 + 0.372113i
\(532\) 6.02330i 0.261143i
\(533\) −27.7032 + 9.00132i −1.19996 + 0.389890i
\(534\) 53.8091 + 39.0946i 2.32855 + 1.69179i
\(535\) 0 0
\(536\) 1.28477 0.933437i 0.0554934 0.0403183i
\(537\) −11.2023 + 15.4186i −0.483413 + 0.665361i
\(538\) −4.03076 + 5.54786i −0.173778 + 0.239185i
\(539\) −9.73271 + 7.07123i −0.419217 + 0.304579i
\(540\) 0 0
\(541\) 27.1484 + 19.7244i 1.16720 + 0.848020i 0.990671 0.136276i \(-0.0435133\pi\)
0.176528 + 0.984296i \(0.443513\pi\)
\(542\) 24.0963 7.82935i 1.03502 0.336299i
\(543\) 31.4183i 1.34829i
\(544\) −7.23434 22.2650i −0.310170 0.954604i
\(545\) 0 0
\(546\) −4.74364 + 14.5994i −0.203009 + 0.624798i
\(547\) 36.6276 + 11.9010i 1.56608 + 0.508851i 0.958424 0.285348i \(-0.0921093\pi\)
0.607658 + 0.794199i \(0.292109\pi\)
\(548\) −0.951688 1.30989i −0.0406541 0.0559555i
\(549\) 5.07790 0.216720
\(550\) 0 0
\(551\) 13.9156 0.592825
\(552\) 4.27150 + 5.87922i 0.181807 + 0.250236i
\(553\) −14.9605 4.86095i −0.636183 0.206708i
\(554\) −7.64668 + 23.5341i −0.324876 + 0.999866i
\(555\) 0 0
\(556\) −12.0262 37.0128i −0.510024 1.56969i
\(557\) 4.33445i 0.183657i 0.995775 + 0.0918283i \(0.0292711\pi\)
−0.995775 + 0.0918283i \(0.970729\pi\)
\(558\) −0.496448 + 0.161306i −0.0210163 + 0.00682861i
\(559\) −12.6765 9.21004i −0.536160 0.389543i
\(560\) 0 0
\(561\) 10.2965 7.48081i 0.434717 0.315840i
\(562\) 30.2032 41.5712i 1.27405 1.75357i
\(563\) 20.5148 28.2362i 0.864595 1.19001i −0.115860 0.993266i \(-0.536962\pi\)
0.980454 0.196747i \(-0.0630377\pi\)
\(564\) −41.4614 + 30.1235i −1.74584 + 1.26843i
\(565\) 0 0
\(566\) −5.67421 4.12255i −0.238505 0.173284i
\(567\) 10.5132 3.41593i 0.441511 0.143456i
\(568\) 7.00572i 0.293953i
\(569\) 12.9678 + 39.9107i 0.543637 + 1.67314i 0.724208 + 0.689581i \(0.242205\pi\)
−0.180571 + 0.983562i \(0.557795\pi\)
\(570\) 0 0
\(571\) −4.27469 + 13.1561i −0.178890 + 0.550567i −0.999790 0.0205055i \(-0.993472\pi\)
0.820900 + 0.571072i \(0.193472\pi\)
\(572\) −15.0718 4.89711i −0.630182 0.204759i
\(573\) 1.63644 + 2.25237i 0.0683633 + 0.0940940i
\(574\) 17.8658 0.745704
\(575\) 0 0
\(576\) −19.2544 −0.802268
\(577\) −7.51147 10.3387i −0.312707 0.430404i 0.623516 0.781810i \(-0.285704\pi\)
−0.936223 + 0.351407i \(0.885704\pi\)
\(578\) −17.0990 5.55579i −0.711223 0.231090i
\(579\) 14.3843 44.2703i 0.597791 1.83981i
\(580\) 0 0
\(581\) −0.543140 1.67161i −0.0225333 0.0693502i
\(582\) 78.0696i 3.23609i
\(583\) 14.3899 4.67556i 0.595968 0.193642i
\(584\) −0.456080 0.331361i −0.0188727 0.0137118i
\(585\) 0 0
\(586\) −15.1215 + 10.9864i −0.624665 + 0.453845i
\(587\) 7.16331 9.85945i 0.295661 0.406943i −0.635181 0.772363i \(-0.719075\pi\)
0.930843 + 0.365420i \(0.119075\pi\)
\(588\) −18.2543 + 25.1248i −0.752793 + 1.03613i
\(589\) −0.285485 + 0.207417i −0.0117632 + 0.00854648i
\(590\) 0 0
\(591\) −21.7015 15.7671i −0.892680 0.648570i
\(592\) −6.50330 + 2.11305i −0.267284 + 0.0868459i
\(593\) 31.2580i 1.28361i −0.766866 0.641807i \(-0.778185\pi\)
0.766866 0.641807i \(-0.221815\pi\)
\(594\) 3.30550 + 10.1733i 0.135626 + 0.417415i
\(595\) 0 0
\(596\) 2.33063 7.17294i 0.0954663 0.293815i
\(597\) −21.7588 7.06986i −0.890528 0.289350i
\(598\) −18.8154 25.8972i −0.769419 1.05901i
\(599\) 33.3707 1.36349 0.681746 0.731589i \(-0.261221\pi\)
0.681746 + 0.731589i \(0.261221\pi\)
\(600\) 0 0
\(601\) −46.8052 −1.90922 −0.954611 0.297854i \(-0.903729\pi\)
−0.954611 + 0.297854i \(0.903729\pi\)
\(602\) 5.64885 + 7.77498i 0.230230 + 0.316884i
\(603\) −3.81119 1.23833i −0.155204 0.0504287i
\(604\) −12.8350 + 39.5020i −0.522248 + 1.60731i
\(605\) 0 0
\(606\) −3.60852 11.1059i −0.146586 0.451145i
\(607\) 30.7401i 1.24770i −0.781543 0.623851i \(-0.785567\pi\)
0.781543 0.623851i \(-0.214433\pi\)
\(608\) −19.8802 + 6.45947i −0.806249 + 0.261966i
\(609\) 9.50380 + 6.90492i 0.385114 + 0.279801i
\(610\) 0 0
\(611\) 27.0955 19.6861i 1.09617 0.796413i
\(612\) 7.32517 10.0822i 0.296102 0.407550i
\(613\) −22.5060 + 30.9768i −0.909008 + 1.25114i 0.0584964 + 0.998288i \(0.481369\pi\)
−0.967504 + 0.252854i \(0.918631\pi\)
\(614\) −15.9953 + 11.6213i −0.645518 + 0.468996i
\(615\) 0 0
\(616\) 1.16663 + 0.847609i 0.0470050 + 0.0341512i
\(617\) 0.404490 0.131427i 0.0162842 0.00529104i −0.300864 0.953667i \(-0.597275\pi\)
0.317148 + 0.948376i \(0.397275\pi\)
\(618\) 46.6032i 1.87466i
\(619\) −2.32117 7.14384i −0.0932958 0.287135i 0.893510 0.449043i \(-0.148235\pi\)
−0.986806 + 0.161908i \(0.948235\pi\)
\(620\) 0 0
\(621\) −3.60594 + 11.0979i −0.144701 + 0.445345i
\(622\) −58.1720 18.9012i −2.33248 0.757870i
\(623\) 8.46278 + 11.6480i 0.339054 + 0.466668i
\(624\) 23.6020 0.944834
\(625\) 0 0
\(626\) −39.3912 −1.57439
\(627\) −6.67955 9.19361i −0.266755 0.367157i
\(628\) −3.69667 1.20112i −0.147513 0.0479300i
\(629\) 1.92227 5.91615i 0.0766461 0.235892i
\(630\) 0 0
\(631\) −3.48311 10.7199i −0.138660 0.426752i 0.857481 0.514515i \(-0.172028\pi\)
−0.996141 + 0.0877630i \(0.972028\pi\)
\(632\) 11.5163i 0.458094i
\(633\) 18.1023 5.88178i 0.719500 0.233780i
\(634\) −38.4463 27.9329i −1.52690 1.10936i
\(635\) 0 0
\(636\) 31.5994 22.9583i 1.25300 0.910355i
\(637\) 11.9294 16.4194i 0.472659 0.650560i
\(638\) −13.1991 + 18.1669i −0.522556 + 0.719236i
\(639\) 14.3020 10.3910i 0.565780 0.411063i
\(640\) 0 0
\(641\) −21.1012 15.3309i −0.833447 0.605535i 0.0870851 0.996201i \(-0.472245\pi\)
−0.920533 + 0.390666i \(0.872245\pi\)
\(642\) 21.0035 6.82445i 0.828942 0.269340i
\(643\) 31.9492i 1.25995i −0.776614 0.629977i \(-0.783064\pi\)
0.776614 0.629977i \(-0.216936\pi\)
\(644\) 3.27657 + 10.0842i 0.129115 + 0.397375i
\(645\) 0 0
\(646\) 4.82055 14.8361i 0.189662 0.583720i
\(647\) 7.03243 + 2.28497i 0.276473 + 0.0898316i 0.443972 0.896041i \(-0.353569\pi\)
−0.167499 + 0.985872i \(0.553569\pi\)
\(648\) 4.75686 + 6.54726i 0.186867 + 0.257201i
\(649\) −9.83550 −0.386077
\(650\) 0 0
\(651\) −0.297895 −0.0116754
\(652\) −1.23257 1.69649i −0.0482713 0.0664398i
\(653\) 17.7708 + 5.77407i 0.695424 + 0.225957i 0.635336 0.772236i \(-0.280862\pi\)
0.0600882 + 0.998193i \(0.480862\pi\)
\(654\) −23.0555 + 70.9575i −0.901541 + 2.77466i
\(655\) 0 0
\(656\) −8.48835 26.1245i −0.331414 1.01999i
\(657\) 1.42256i 0.0554994i
\(658\) −19.5364 + 6.34777i −0.761609 + 0.247462i
\(659\) 7.92963 + 5.76122i 0.308895 + 0.224425i 0.731422 0.681925i \(-0.238857\pi\)
−0.422527 + 0.906350i \(0.638857\pi\)
\(660\) 0 0
\(661\) 22.7807 16.5511i 0.886066 0.643765i −0.0487833 0.998809i \(-0.515534\pi\)
0.934849 + 0.355045i \(0.115534\pi\)
\(662\) −3.63174 + 4.99866i −0.141152 + 0.194278i
\(663\) −12.6204 + 17.3704i −0.490134 + 0.674612i
\(664\) 1.04103 0.756351i 0.0403997 0.0293521i
\(665\) 0 0
\(666\) −6.64706 4.82937i −0.257568 0.187134i
\(667\) −23.2976 + 7.56986i −0.902087 + 0.293106i
\(668\) 12.2014i 0.472085i
\(669\) 19.2557 + 59.2629i 0.744468 + 2.29124i
\(670\) 0 0
\(671\) −1.71178 + 5.26831i −0.0660825 + 0.203381i
\(672\) −16.7826 5.45299i −0.647402 0.210354i
\(673\) 22.9385 + 31.5721i 0.884214 + 1.21702i 0.975236 + 0.221168i \(0.0709868\pi\)
−0.0910215 + 0.995849i \(0.529013\pi\)
\(674\) −39.2290 −1.51104
\(675\) 0 0
\(676\) −3.79434 −0.145936
\(677\) 2.95969 + 4.07367i 0.113750 + 0.156564i 0.862096 0.506745i \(-0.169152\pi\)
−0.748346 + 0.663309i \(0.769152\pi\)
\(678\) −29.4614 9.57259i −1.13146 0.367633i
\(679\) 5.22228 16.0725i 0.200413 0.616807i
\(680\) 0 0
\(681\) −15.1102 46.5044i −0.579025 1.78205i
\(682\) 0.569440i 0.0218050i
\(683\) 28.8467 9.37285i 1.10379 0.358642i 0.300228 0.953867i \(-0.402937\pi\)
0.803559 + 0.595225i \(0.202937\pi\)
\(684\) −9.00233 6.54058i −0.344213 0.250085i
\(685\) 0 0
\(686\) −21.7900 + 15.8314i −0.831948 + 0.604446i
\(687\) −3.19906 + 4.40313i −0.122052 + 0.167990i
\(688\) 8.68518 11.9541i 0.331119 0.455747i
\(689\) −20.6506 + 15.0035i −0.786724 + 0.571588i
\(690\) 0 0
\(691\) 17.1778 + 12.4804i 0.653474 + 0.474777i 0.864453 0.502714i \(-0.167665\pi\)
−0.210979 + 0.977491i \(0.567665\pi\)
\(692\) 12.8752 4.18340i 0.489441 0.159029i
\(693\) 3.63886i 0.138229i
\(694\) −14.6522 45.0949i −0.556191 1.71178i
\(695\) 0 0
\(696\) −2.65765 + 8.17939i −0.100738 + 0.310039i
\(697\) 23.7658 + 7.72198i 0.900194 + 0.292491i
\(698\) −2.37600 3.27029i −0.0899330 0.123782i
\(699\) 13.0943 0.495273
\(700\) 0 0
\(701\) 32.7698 1.23770 0.618849 0.785510i \(-0.287599\pi\)
0.618849 + 0.785510i \(0.287599\pi\)
\(702\) −10.6071 14.5994i −0.400339 0.551020i
\(703\) −5.28247 1.71638i −0.199232 0.0647345i
\(704\) 6.49074 19.9764i 0.244629 0.752890i
\(705\) 0 0
\(706\) −3.38269 10.4108i −0.127309 0.391817i
\(707\) 2.52780i 0.0950676i
\(708\) −24.1475 + 7.84600i −0.907519 + 0.294871i
\(709\) 16.0557 + 11.6652i 0.602985 + 0.438094i 0.846937 0.531693i \(-0.178444\pi\)
−0.243952 + 0.969787i \(0.578444\pi\)
\(710\) 0 0
\(711\) −23.5103 + 17.0813i −0.881707 + 0.640598i
\(712\) −6.19566 + 8.52760i −0.232192 + 0.319585i
\(713\) 0.365130 0.502558i 0.0136742 0.0188210i
\(714\) 10.6539 7.74052i 0.398713 0.289682i
\(715\) 0 0
\(716\) −16.4700 11.9662i −0.615514 0.447197i
\(717\) −14.7040 + 4.77763i −0.549132 + 0.178424i
\(718\) 47.1144i 1.75829i
\(719\) −7.48443 23.0347i −0.279122 0.859049i −0.988099 0.153818i \(-0.950843\pi\)
0.708977 0.705231i \(-0.249157\pi\)
\(720\) 0 0
\(721\) 3.11741 9.59440i 0.116098 0.357314i
\(722\) 24.4342 + 7.93916i 0.909347 + 0.295465i
\(723\) −1.52454 2.09835i −0.0566982 0.0780384i
\(724\) −33.5609 −1.24728
\(725\) 0 0
\(726\) −32.0914 −1.19102
\(727\) −3.44742 4.74496i −0.127858 0.175981i 0.740289 0.672289i \(-0.234689\pi\)
−0.868147 + 0.496308i \(0.834689\pi\)
\(728\) −2.31370 0.751766i −0.0857513 0.0278623i
\(729\) 1.08320 3.33374i 0.0401185 0.123472i
\(730\) 0 0
\(731\) 4.15382 + 12.7841i 0.153635 + 0.472838i
\(732\) 14.3000i 0.528542i
\(733\) 32.8129 10.6615i 1.21197 0.393793i 0.367819 0.929897i \(-0.380105\pi\)
0.844152 + 0.536104i \(0.180105\pi\)
\(734\) 12.3132 + 8.94604i 0.454487 + 0.330204i
\(735\) 0 0
\(736\) 29.7698 21.6290i 1.09733 0.797255i
\(737\) 2.56953 3.53666i 0.0946499 0.130274i
\(738\) 19.4001 26.7019i 0.714128 0.982912i
\(739\) 32.0138 23.2594i 1.17765 0.855611i 0.185743 0.982598i \(-0.440531\pi\)
0.991904 + 0.126988i \(0.0405309\pi\)
\(740\) 0 0
\(741\) 15.5099 + 11.2686i 0.569770 + 0.413962i
\(742\) 14.8895 4.83788i 0.546609 0.177604i
\(743\) 29.7058i 1.08980i 0.838501 + 0.544900i \(0.183433\pi\)
−0.838501 + 0.544900i \(0.816567\pi\)
\(744\) −0.0673939 0.207417i −0.00247078 0.00760428i
\(745\) 0 0
\(746\) 14.3746 44.2405i 0.526292 1.61976i
\(747\) −3.08815 1.00340i −0.112990 0.0367126i
\(748\) 7.99095 + 10.9986i 0.292178 + 0.402149i
\(749\) 4.78058 0.174679
\(750\) 0 0
\(751\) 26.8870 0.981122 0.490561 0.871407i \(-0.336792\pi\)
0.490561 + 0.871407i \(0.336792\pi\)
\(752\) 18.5642 + 25.5514i 0.676966 + 0.931764i
\(753\) 9.63623 + 3.13100i 0.351164 + 0.114100i
\(754\) 11.7066 36.0291i 0.426328 1.31210i
\(755\) 0 0
\(756\) 1.84715 + 5.68495i 0.0671803 + 0.206760i
\(757\) 44.6792i 1.62389i 0.583731 + 0.811947i \(0.301592\pi\)
−0.583731 + 0.811947i \(0.698408\pi\)
\(758\) 65.3405 21.2304i 2.37327 0.771123i
\(759\) 16.1841 + 11.7584i 0.587446 + 0.426804i
\(760\) 0 0
\(761\) −16.4295 + 11.9367i −0.595568 + 0.432706i −0.844303 0.535866i \(-0.819985\pi\)
0.248735 + 0.968572i \(0.419985\pi\)
\(762\) −4.01728 + 5.52931i −0.145531 + 0.200306i
\(763\) −9.49307 + 13.0661i −0.343672 + 0.473024i
\(764\) −2.40596 + 1.74803i −0.0870447 + 0.0632417i
\(765\) 0 0
\(766\) −34.9219 25.3722i −1.26178 0.916736i
\(767\) 15.7807 5.12746i 0.569808 0.185142i
\(768\) 19.9359i 0.719375i
\(769\) −8.05227 24.7823i −0.290372 0.893674i −0.984737 0.174051i \(-0.944314\pi\)
0.694364 0.719624i \(-0.255686\pi\)
\(770\) 0 0
\(771\) 6.62755 20.3975i 0.238685 0.734598i
\(772\) 47.2892 + 15.3652i 1.70198 + 0.553006i
\(773\) 8.07058 + 11.1082i 0.290278 + 0.399534i 0.929105 0.369817i \(-0.120580\pi\)
−0.638826 + 0.769351i \(0.720580\pi\)
\(774\) 17.7543 0.638166
\(775\) 0 0
\(776\) 12.3724 0.444142
\(777\) −2.75605 3.79338i −0.0988728 0.136087i
\(778\) −2.26972 0.737476i −0.0813733 0.0264398i
\(779\) 6.89488 21.2203i 0.247035 0.760295i
\(780\) 0 0
\(781\) 5.95942 + 18.3412i 0.213245 + 0.656300i
\(782\) 27.4610i 0.982005i
\(783\) −13.1339 + 4.26747i −0.469368 + 0.152507i
\(784\) 15.4837 + 11.2495i 0.552988 + 0.401769i
\(785\) 0 0
\(786\) −52.3503 + 38.0347i −1.86727 + 1.35665i
\(787\) −11.5594 + 15.9101i −0.412048 + 0.567136i −0.963716 0.266928i \(-0.913991\pi\)
0.551668 + 0.834064i \(0.313991\pi\)
\(788\) 16.8423 23.1814i 0.599981 0.825803i
\(789\) −1.77120 + 1.28685i −0.0630562 + 0.0458130i
\(790\) 0 0
\(791\) −5.42501 3.94150i −0.192891 0.140144i
\(792\) 2.53365 0.823232i 0.0900293 0.0292523i
\(793\) 9.34520i 0.331858i
\(794\) −3.01905 9.29167i −0.107142 0.329749i
\(795\) 0 0
\(796\) 7.55197 23.2426i 0.267673 0.823812i
\(797\) 10.4085 + 3.38191i 0.368686 + 0.119793i 0.487500 0.873123i \(-0.337909\pi\)
−0.118813 + 0.992917i \(0.537909\pi\)
\(798\) −6.91144 9.51278i −0.244662 0.336749i
\(799\) −28.7318 −1.01646
\(800\) 0 0
\(801\) 26.5985 0.939812
\(802\) −29.5211 40.6323i −1.04243 1.43478i
\(803\) −1.47591 0.479551i −0.0520836 0.0169230i
\(804\) 3.48728 10.7327i 0.122987 0.378515i
\(805\) 0 0
\(806\) 0.296861 + 0.913645i 0.0104565 + 0.0321818i
\(807\) 7.22982i 0.254502i
\(808\) 1.76004 0.571873i 0.0619182 0.0201184i
\(809\) 13.3025 + 9.66480i 0.467689 + 0.339796i 0.796540 0.604586i \(-0.206661\pi\)
−0.328851 + 0.944382i \(0.606661\pi\)
\(810\) 0 0
\(811\) −18.3220 + 13.3117i −0.643373 + 0.467438i −0.861007 0.508592i \(-0.830166\pi\)
0.217634 + 0.976030i \(0.430166\pi\)
\(812\) −7.37579 + 10.1519i −0.258839 + 0.356262i
\(813\) 15.7008 21.6103i 0.550651 0.757906i
\(814\) 7.25121 5.26831i 0.254155 0.184654i
\(815\) 0 0
\(816\) −16.3805 11.9011i −0.573433 0.416624i
\(817\) 11.4148 3.70891i 0.399355 0.129758i
\(818\) 3.96067i 0.138482i
\(819\) 1.89701 + 5.83841i 0.0662870 + 0.204011i
\(820\) 0 0
\(821\) −12.2924 + 37.8322i −0.429009 + 1.32035i 0.470094 + 0.882616i \(0.344220\pi\)
−0.899103 + 0.437737i \(0.855780\pi\)
\(822\) −3.00606 0.976728i −0.104848 0.0340673i
\(823\) 9.73384 + 13.3975i 0.339300 + 0.467007i 0.944237 0.329267i \(-0.106802\pi\)
−0.604937 + 0.796274i \(0.706802\pi\)
\(824\) 7.38562 0.257290
\(825\) 0 0
\(826\) −10.1770 −0.354102
\(827\) 15.3037 + 21.0637i 0.532160 + 0.732456i 0.987458 0.157884i \(-0.0504671\pi\)
−0.455297 + 0.890339i \(0.650467\pi\)
\(828\) 18.6297 + 6.05316i 0.647428 + 0.210362i
\(829\) −1.58945 + 4.89182i −0.0552039 + 0.169900i −0.974857 0.222832i \(-0.928470\pi\)
0.919653 + 0.392732i \(0.128470\pi\)
\(830\) 0 0
\(831\) 8.06180 + 24.8117i 0.279661 + 0.860708i
\(832\) 35.4352i 1.22849i
\(833\) −16.5588 + 5.38027i −0.573727 + 0.186415i
\(834\) −61.4638 44.6560i −2.12832 1.54631i
\(835\) 0 0
\(836\) 9.82055 7.13505i 0.339651 0.246771i
\(837\) 0.205840 0.283315i 0.00711489 0.00979280i
\(838\) −2.85350 + 3.92751i −0.0985726 + 0.135674i
\(839\) 31.2009 22.6688i 1.07717 0.782612i 0.0999856 0.994989i \(-0.468120\pi\)
0.977188 + 0.212377i \(0.0681203\pi\)
\(840\) 0 0
\(841\) 0.00757268 + 0.00550188i 0.000261127 + 0.000189720i
\(842\) −47.4983 + 15.4331i −1.63690 + 0.531861i
\(843\) 54.1744i 1.86586i
\(844\) 6.28288 + 19.3367i 0.216266 + 0.665597i
\(845\) 0 0
\(846\) −11.7269 + 36.0918i −0.403180 + 1.24086i
\(847\) −6.60679 2.14668i −0.227012 0.0737607i
\(848\) −14.1485 19.4737i −0.485861 0.668730i
\(849\) −7.39447 −0.253777
\(850\) 0 0
\(851\) 9.77764 0.335173
\(852\) 29.2624 + 40.2762i 1.00251 + 1.37984i
\(853\) −8.69991 2.82677i −0.297879 0.0967868i 0.156265 0.987715i \(-0.450055\pi\)
−0.454144 + 0.890928i \(0.650055\pi\)
\(854\) −1.77121 + 5.45121i −0.0606094 + 0.186537i
\(855\) 0 0
\(856\) 1.08153 + 3.32861i 0.0369659 + 0.113769i
\(857\) 13.6712i 0.466998i −0.972357 0.233499i \(-0.924982\pi\)
0.972357 0.233499i \(-0.0750176\pi\)
\(858\) −29.4225 + 9.55995i −1.00447 + 0.326371i
\(859\) −28.8460 20.9579i −0.984213 0.715073i −0.0255669 0.999673i \(-0.508139\pi\)
−0.958646 + 0.284600i \(0.908139\pi\)
\(860\) 0 0
\(861\) 15.2384 11.0713i 0.519323 0.377310i
\(862\) −1.46136 + 2.01139i −0.0497741 + 0.0685082i
\(863\) −19.9455 + 27.4526i −0.678953 + 0.934498i −0.999921 0.0125918i \(-0.995992\pi\)
0.320968 + 0.947090i \(0.395992\pi\)
\(864\) 16.7826 12.1933i 0.570955 0.414823i
\(865\) 0 0
\(866\) 43.2113 + 31.3949i 1.46838 + 1.06684i
\(867\) −18.0272 + 5.85741i −0.612237 + 0.198928i
\(868\) 0.318210i 0.0108007i
\(869\) −9.79636 30.1501i −0.332319 1.02277i
\(870\) 0 0
\(871\) −2.27898 + 7.01398i −0.0772203 + 0.237660i
\(872\) −11.2453 3.65380i −0.380812 0.123733i
\(873\) −18.3510 25.2580i −0.621087 0.854853i
\(874\) 24.5197 0.829391
\(875\) 0 0
\(876\) −4.00610 −0.135354
\(877\) −16.8689 23.2181i −0.569622 0.784018i 0.422888 0.906182i \(-0.361017\pi\)
−0.992510 + 0.122164i \(0.961017\pi\)
\(878\) 38.4232 + 12.4845i 1.29672 + 0.421330i
\(879\) −6.08947 + 18.7415i −0.205393 + 0.632134i
\(880\) 0 0
\(881\) 2.57423 + 7.92267i 0.0867281 + 0.266922i 0.985010 0.172498i \(-0.0551840\pi\)
−0.898282 + 0.439420i \(0.855184\pi\)
\(882\) 22.9964i 0.774331i
\(883\) −47.8539 + 15.5487i −1.61041 + 0.523254i −0.969652 0.244488i \(-0.921380\pi\)
−0.640759 + 0.767742i \(0.721380\pi\)
\(884\) −18.5550 13.4810i −0.624072 0.453415i
\(885\) 0 0
\(886\) −4.15454 + 3.01845i −0.139574 + 0.101407i
\(887\) 7.12315 9.80417i 0.239172 0.329192i −0.672510 0.740088i \(-0.734784\pi\)
0.911682 + 0.410896i \(0.134784\pi\)
\(888\) 2.01773 2.77716i 0.0677104 0.0931954i
\(889\) −1.19693 + 0.869617i −0.0401436 + 0.0291660i
\(890\) 0 0
\(891\) 18.0231 + 13.0945i 0.603795 + 0.438683i
\(892\) −63.3042 + 20.5688i −2.11958 + 0.688694i
\(893\) 25.6543i 0.858490i
\(894\) −4.54977 14.0027i −0.152167 0.468322i
\(895\) 0 0
\(896\) 1.75541 5.40260i 0.0586442 0.180488i
\(897\) −32.0967 10.4289i −1.07168 0.348209i
\(898\) 17.5992 + 24.2232i 0.587292 + 0.808338i
\(899\) 0.735159 0.0245189
\(900\) 0 0
\(901\) 21.8976 0.729514
\(902\) 21.1634 + 29.1289i 0.704663 + 0.969886i
\(903\) 9.63623 + 3.13100i 0.320674 + 0.104193i
\(904\) 1.51705 4.66900i 0.0504564 0.155289i
\(905\) 0 0
\(906\) 25.0559 + 77.1142i 0.832428 + 2.56195i
\(907\) 31.9105i 1.05957i −0.848132 0.529786i \(-0.822272\pi\)
0.848132 0.529786i \(-0.177728\pi\)
\(908\) 49.6757 16.1406i 1.64855 0.535645i
\(909\) −3.77801 2.74488i −0.125309 0.0910421i
\(910\) 0 0
\(911\) 19.9730 14.5112i 0.661735 0.480778i −0.205514 0.978654i \(-0.565886\pi\)
0.867248 + 0.497876i \(0.165886\pi\)
\(912\) −10.6264 + 14.6260i −0.351876 + 0.484316i
\(913\) 2.08206 2.86570i 0.0689060 0.0948409i
\(914\) −42.5071 + 30.8832i −1.40601 + 1.02153i
\(915\) 0 0
\(916\) −4.70339 3.41721i −0.155404 0.112908i
\(917\) −13.3218 + 4.32852i −0.439925 + 0.142940i
\(918\) 15.4810i 0.510951i
\(919\) 6.02121 + 18.5314i 0.198621 + 0.611293i 0.999915 + 0.0130225i \(0.00414530\pi\)
−0.801294 + 0.598271i \(0.795855\pi\)
\(920\) 0 0
\(921\) −6.44134 + 19.8244i −0.212249 + 0.653237i
\(922\) −57.1675 18.5748i −1.88271 0.611730i
\(923\) −19.1233 26.3210i −0.629452 0.866366i
\(924\) 10.2474 0.337116
\(925\) 0 0
\(926\) 66.4781 2.18461
\(927\) −10.9545 15.0776i −0.359794 0.495214i
\(928\) 41.4168 + 13.4571i 1.35957 + 0.441752i
\(929\) −3.63535 + 11.1885i −0.119272 + 0.367082i −0.992814 0.119667i \(-0.961817\pi\)
0.873542 + 0.486749i \(0.161817\pi\)
\(930\) 0 0
\(931\) 4.80399 + 14.7852i 0.157444 + 0.484564i
\(932\) 13.9873i 0.458168i
\(933\) −61.3300 + 19.9273i −2.00786 + 0.652392i
\(934\) 72.7104 + 52.8272i 2.37916 + 1.72856i
\(935\) 0 0
\(936\) −3.63597 + 2.64169i −0.118846 + 0.0863463i
\(937\) −12.3836 + 17.0446i −0.404556 + 0.556823i −0.961880 0.273472i \(-0.911828\pi\)
0.557324 + 0.830295i \(0.311828\pi\)
\(938\) 2.65874 3.65944i 0.0868108 0.119485i
\(939\) −33.5982 + 24.4105i −1.09644 + 0.796607i
\(940\) 0 0
\(941\) 1.81791 + 1.32079i 0.0592622 + 0.0430565i 0.617022 0.786946i \(-0.288339\pi\)
−0.557760 + 0.830002i \(0.688339\pi\)
\(942\) −7.21650 + 2.34478i −0.235126 + 0.0763971i
\(943\) 39.2778i 1.27906i
\(944\) 4.83525 + 14.8814i 0.157374 + 0.484347i
\(945\) 0 0
\(946\) −5.98505 + 18.4201i −0.194591 + 0.598889i
\(947\) −6.42557 2.08780i −0.208803 0.0678442i 0.202748 0.979231i \(-0.435013\pi\)
−0.411551 + 0.911387i \(0.635013\pi\)
\(948\) −48.1028 66.2078i −1.56231 2.15033i
\(949\) 2.61803 0.0849850
\(950\) 0 0
\(951\) −50.1021 −1.62467
\(952\) 1.22671 + 1.68842i 0.0397578 + 0.0547219i
\(953\) −57.0190 18.5266i −1.84703 0.600136i −0.997343 0.0728437i \(-0.976793\pi\)
−0.849684 0.527292i \(-0.823207\pi\)
\(954\) 8.93754 27.5069i 0.289364 0.890569i
\(955\) 0 0
\(956\) −5.10343 15.7067i −0.165057 0.507992i
\(957\) 23.6747i 0.765293i
\(958\) −41.6999 + 13.5491i −1.34726 + 0.437752i
\(959\) −0.553535 0.402166i −0.0178746 0.0129866i
\(960\) 0 0
\(961\) 25.0644 18.2104i 0.808530 0.587432i
\(962\) −8.88781 + 12.2330i −0.286555 + 0.394408i
\(963\) 5.19114 7.14499i 0.167282 0.230244i
\(964\) 2.24144 1.62850i 0.0721920 0.0524505i
\(965\) 0 0
\(966\) 16.7460 + 12.1667i 0.538793 + 0.391456i
\(967\) 8.61276 2.79845i 0.276968 0.0899922i −0.167240 0.985916i \(-0.553485\pi\)
0.444207 + 0.895924i \(0.353485\pi\)
\(968\) 5.08580i 0.163464i
\(969\) −5.08225 15.6416i −0.163265 0.502479i
\(970\) 0 0
\(971\) 14.6322 45.0333i 0.469570 1.44519i −0.383573 0.923511i \(-0.625307\pi\)
0.853143 0.521677i \(-0.174693\pi\)
\(972\) 37.5094 + 12.1875i 1.20312 + 0.390916i
\(973\) −9.66665 13.3050i −0.309899 0.426539i
\(974\) 58.2191 1.86546
\(975\) 0 0
\(976\) 8.81263 0.282085
\(977\) 2.78885 + 3.83852i 0.0892231 + 0.122805i 0.851295 0.524687i \(-0.175818\pi\)
−0.762072 + 0.647492i \(0.775818\pi\)
\(978\) −3.89328 1.26500i −0.124493 0.0404504i
\(979\) −8.96645 + 27.5959i −0.286569 + 0.881968i
\(980\) 0 0
\(981\) 9.22005 + 28.3764i 0.294374 + 0.905988i
\(982\) 31.1981i 0.995570i
\(983\) 17.6569 5.73708i 0.563168 0.182984i −0.0135783 0.999908i \(-0.504322\pi\)
0.576746 + 0.816924i \(0.304322\pi\)
\(984\) 11.1561 + 8.10542i 0.355645 + 0.258391i
\(985\) 0 0
\(986\) −26.2922 + 19.1024i −0.837315 + 0.608345i
\(987\) −12.7297 + 17.5209i −0.405190 + 0.557696i
\(988\) −12.0370 + 16.5676i −0.382949 + 0.527085i
\(989\) −17.0932 + 12.4190i −0.543533 + 0.394900i
\(990\) 0 0
\(991\) 32.1340 + 23.3467i 1.02077 + 0.741634i 0.966441 0.256889i \(-0.0826976\pi\)
0.0543304 + 0.998523i \(0.482698\pi\)
\(992\) −1.05027 + 0.341253i −0.0333460 + 0.0108348i
\(993\) 6.51411i 0.206719i
\(994\) 6.16631 + 18.9779i 0.195583 + 0.601944i
\(995\) 0 0
\(996\) 2.82570 8.69660i 0.0895356 0.275562i
\(997\) 28.8088 + 9.36056i 0.912385 + 0.296452i 0.727339 0.686278i \(-0.240757\pi\)
0.185046 + 0.982730i \(0.440757\pi\)
\(998\) 54.3295 + 74.7782i 1.71977 + 2.36706i
\(999\) 5.51210 0.174395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.e.i.374.2 8
5.2 odd 4 625.2.d.o.251.1 16
5.3 odd 4 625.2.d.o.251.4 16
5.4 even 2 625.2.e.a.374.1 8
25.2 odd 20 125.2.d.b.26.4 16
25.3 odd 20 625.2.a.f.1.2 8
25.4 even 10 625.2.b.c.624.7 8
25.6 even 5 25.2.e.a.4.1 8
25.8 odd 20 125.2.d.b.101.1 16
25.9 even 10 inner 625.2.e.i.249.2 8
25.11 even 5 125.2.e.b.99.2 8
25.12 odd 20 625.2.d.o.376.1 16
25.13 odd 20 625.2.d.o.376.4 16
25.14 even 10 25.2.e.a.19.1 yes 8
25.16 even 5 625.2.e.a.249.1 8
25.17 odd 20 125.2.d.b.101.4 16
25.19 even 10 125.2.e.b.24.2 8
25.21 even 5 625.2.b.c.624.2 8
25.22 odd 20 625.2.a.f.1.7 8
25.23 odd 20 125.2.d.b.26.1 16
75.14 odd 10 225.2.m.a.19.2 8
75.47 even 20 5625.2.a.x.1.2 8
75.53 even 20 5625.2.a.x.1.7 8
75.56 odd 10 225.2.m.a.154.2 8
100.3 even 20 10000.2.a.bj.1.7 8
100.31 odd 10 400.2.y.c.129.1 8
100.39 odd 10 400.2.y.c.369.1 8
100.47 even 20 10000.2.a.bj.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 25.6 even 5
25.2.e.a.19.1 yes 8 25.14 even 10
125.2.d.b.26.1 16 25.23 odd 20
125.2.d.b.26.4 16 25.2 odd 20
125.2.d.b.101.1 16 25.8 odd 20
125.2.d.b.101.4 16 25.17 odd 20
125.2.e.b.24.2 8 25.19 even 10
125.2.e.b.99.2 8 25.11 even 5
225.2.m.a.19.2 8 75.14 odd 10
225.2.m.a.154.2 8 75.56 odd 10
400.2.y.c.129.1 8 100.31 odd 10
400.2.y.c.369.1 8 100.39 odd 10
625.2.a.f.1.2 8 25.3 odd 20
625.2.a.f.1.7 8 25.22 odd 20
625.2.b.c.624.2 8 25.21 even 5
625.2.b.c.624.7 8 25.4 even 10
625.2.d.o.251.1 16 5.2 odd 4
625.2.d.o.251.4 16 5.3 odd 4
625.2.d.o.376.1 16 25.12 odd 20
625.2.d.o.376.4 16 25.13 odd 20
625.2.e.a.249.1 8 25.16 even 5
625.2.e.a.374.1 8 5.4 even 2
625.2.e.i.249.2 8 25.9 even 10 inner
625.2.e.i.374.2 8 1.1 even 1 trivial
5625.2.a.x.1.2 8 75.47 even 20
5625.2.a.x.1.7 8 75.53 even 20
10000.2.a.bj.1.2 8 100.47 even 20
10000.2.a.bj.1.7 8 100.3 even 20