Properties

Label 1008.2.ca.c.353.5
Level $1008$
Weight $2$
Character 1008.353
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(257,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.5
Root \(-1.70672 - 0.295146i\) of defining polynomial
Character \(\chi\) \(=\) 1008.353
Dual form 1008.2.ca.c.257.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.734581 + 1.56856i) q^{3} +(0.483662 - 0.837727i) q^{5} +(2.16249 + 1.52435i) q^{7} +(-1.92078 + 2.30447i) q^{9} +(-4.82689 + 2.78681i) q^{11} +(-3.76893 + 2.17600i) q^{13} +(1.66932 + 0.143276i) q^{15} +(1.97267 - 3.41677i) q^{17} +(-3.86796 + 2.23317i) q^{19} +(-0.802507 + 4.51176i) q^{21} +(-2.29786 - 1.32667i) q^{23} +(2.03214 + 3.51977i) q^{25} +(-5.02568 - 1.32004i) q^{27} +(4.61157 + 2.66249i) q^{29} +6.16655i q^{31} +(-7.91702 - 5.52415i) q^{33} +(2.32290 - 1.07431i) q^{35} +(0.243608 + 0.421942i) q^{37} +(-6.18177 - 4.31337i) q^{39} +(0.0818856 + 0.141830i) q^{41} +(4.35045 - 7.53520i) q^{43} +(1.00151 + 2.72368i) q^{45} +9.49001 q^{47} +(2.35274 + 6.59277i) q^{49} +(6.80851 + 0.584367i) q^{51} +(-1.74520 - 1.00759i) q^{53} +5.39149i q^{55} +(-6.34420 - 4.42670i) q^{57} -1.67386 q^{59} +5.17221i q^{61} +(-7.66649 + 2.05547i) q^{63} +4.20979i q^{65} +5.44252 q^{67} +(0.393002 - 4.57889i) q^{69} +3.64006i q^{71} +(-2.15468 - 1.24401i) q^{73} +(-4.02821 + 5.77310i) q^{75} +(-14.6862 - 1.33140i) q^{77} -4.60242 q^{79} +(-1.62120 - 8.85278i) q^{81} +(4.20979 - 7.29158i) q^{83} +(-1.90821 - 3.30512i) q^{85} +(-0.788713 + 9.18936i) q^{87} +(-2.05811 - 3.56475i) q^{89} +(-11.4673 - 1.03959i) q^{91} +(-9.67262 + 4.52983i) q^{93} +4.32040i q^{95} +(10.2669 + 5.92762i) q^{97} +(2.84928 - 16.4763i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{7} - 12 q^{11} + 6 q^{13} + 18 q^{15} - 18 q^{17} - 12 q^{21} + 6 q^{23} - 8 q^{25} - 36 q^{27} + 6 q^{29} - 30 q^{35} - 2 q^{37} + 12 q^{39} - 6 q^{41} + 2 q^{43} - 30 q^{45} + 36 q^{47} - 8 q^{49}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.734581 + 1.56856i 0.424111 + 0.905610i
\(4\) 0 0
\(5\) 0.483662 0.837727i 0.216300 0.374643i −0.737374 0.675485i \(-0.763934\pi\)
0.953674 + 0.300842i \(0.0972677\pi\)
\(6\) 0 0
\(7\) 2.16249 + 1.52435i 0.817345 + 0.576149i
\(8\) 0 0
\(9\) −1.92078 + 2.30447i −0.640260 + 0.768158i
\(10\) 0 0
\(11\) −4.82689 + 2.78681i −1.45536 + 0.840254i −0.998778 0.0494264i \(-0.984261\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(12\) 0 0
\(13\) −3.76893 + 2.17600i −1.04531 + 0.603512i −0.921334 0.388772i \(-0.872899\pi\)
−0.123980 + 0.992285i \(0.539566\pi\)
\(14\) 0 0
\(15\) 1.66932 + 0.143276i 0.431016 + 0.0369937i
\(16\) 0 0
\(17\) 1.97267 3.41677i 0.478443 0.828688i −0.521251 0.853403i \(-0.674535\pi\)
0.999695 + 0.0247150i \(0.00786784\pi\)
\(18\) 0 0
\(19\) −3.86796 + 2.23317i −0.887371 + 0.512324i −0.873082 0.487574i \(-0.837882\pi\)
−0.0142896 + 0.999898i \(0.504549\pi\)
\(20\) 0 0
\(21\) −0.802507 + 4.51176i −0.175121 + 0.984547i
\(22\) 0 0
\(23\) −2.29786 1.32667i −0.479137 0.276630i 0.240920 0.970545i \(-0.422551\pi\)
−0.720057 + 0.693915i \(0.755884\pi\)
\(24\) 0 0
\(25\) 2.03214 + 3.51977i 0.406428 + 0.703955i
\(26\) 0 0
\(27\) −5.02568 1.32004i −0.967193 0.254042i
\(28\) 0 0
\(29\) 4.61157 + 2.66249i 0.856347 + 0.494412i 0.862787 0.505567i \(-0.168717\pi\)
−0.00644015 + 0.999979i \(0.502050\pi\)
\(30\) 0 0
\(31\) 6.16655i 1.10754i 0.832668 + 0.553772i \(0.186812\pi\)
−0.832668 + 0.553772i \(0.813188\pi\)
\(32\) 0 0
\(33\) −7.91702 5.52415i −1.37818 0.961631i
\(34\) 0 0
\(35\) 2.32290 1.07431i 0.392642 0.181592i
\(36\) 0 0
\(37\) 0.243608 + 0.421942i 0.0400490 + 0.0693669i 0.885355 0.464915i \(-0.153915\pi\)
−0.845306 + 0.534282i \(0.820582\pi\)
\(38\) 0 0
\(39\) −6.18177 4.31337i −0.989876 0.690691i
\(40\) 0 0
\(41\) 0.0818856 + 0.141830i 0.0127884 + 0.0221501i 0.872349 0.488884i \(-0.162596\pi\)
−0.859560 + 0.511034i \(0.829263\pi\)
\(42\) 0 0
\(43\) 4.35045 7.53520i 0.663437 1.14911i −0.316270 0.948669i \(-0.602430\pi\)
0.979707 0.200437i \(-0.0642362\pi\)
\(44\) 0 0
\(45\) 1.00151 + 2.72368i 0.149297 + 0.406022i
\(46\) 0 0
\(47\) 9.49001 1.38426 0.692130 0.721773i \(-0.256672\pi\)
0.692130 + 0.721773i \(0.256672\pi\)
\(48\) 0 0
\(49\) 2.35274 + 6.59277i 0.336106 + 0.941824i
\(50\) 0 0
\(51\) 6.80851 + 0.584367i 0.953382 + 0.0818278i
\(52\) 0 0
\(53\) −1.74520 1.00759i −0.239722 0.138403i 0.375327 0.926892i \(-0.377530\pi\)
−0.615049 + 0.788489i \(0.710864\pi\)
\(54\) 0 0
\(55\) 5.39149i 0.726988i
\(56\) 0 0
\(57\) −6.34420 4.42670i −0.840310 0.586331i
\(58\) 0 0
\(59\) −1.67386 −0.217918 −0.108959 0.994046i \(-0.534752\pi\)
−0.108959 + 0.994046i \(0.534752\pi\)
\(60\) 0 0
\(61\) 5.17221i 0.662234i 0.943590 + 0.331117i \(0.107426\pi\)
−0.943590 + 0.331117i \(0.892574\pi\)
\(62\) 0 0
\(63\) −7.66649 + 2.05547i −0.965887 + 0.258965i
\(64\) 0 0
\(65\) 4.20979i 0.522160i
\(66\) 0 0
\(67\) 5.44252 0.664909 0.332455 0.943119i \(-0.392123\pi\)
0.332455 + 0.943119i \(0.392123\pi\)
\(68\) 0 0
\(69\) 0.393002 4.57889i 0.0473118 0.551234i
\(70\) 0 0
\(71\) 3.64006i 0.431996i 0.976394 + 0.215998i \(0.0693005\pi\)
−0.976394 + 0.215998i \(0.930700\pi\)
\(72\) 0 0
\(73\) −2.15468 1.24401i −0.252186 0.145600i 0.368579 0.929597i \(-0.379845\pi\)
−0.620765 + 0.783997i \(0.713178\pi\)
\(74\) 0 0
\(75\) −4.02821 + 5.77310i −0.465138 + 0.666620i
\(76\) 0 0
\(77\) −14.6862 1.33140i −1.67364 0.151728i
\(78\) 0 0
\(79\) −4.60242 −0.517812 −0.258906 0.965902i \(-0.583362\pi\)
−0.258906 + 0.965902i \(0.583362\pi\)
\(80\) 0 0
\(81\) −1.62120 8.85278i −0.180133 0.983642i
\(82\) 0 0
\(83\) 4.20979 7.29158i 0.462085 0.800355i −0.536980 0.843595i \(-0.680435\pi\)
0.999065 + 0.0432405i \(0.0137682\pi\)
\(84\) 0 0
\(85\) −1.90821 3.30512i −0.206975 0.358491i
\(86\) 0 0
\(87\) −0.788713 + 9.18936i −0.0845589 + 0.985202i
\(88\) 0 0
\(89\) −2.05811 3.56475i −0.218159 0.377863i 0.736086 0.676888i \(-0.236672\pi\)
−0.954245 + 0.299025i \(0.903338\pi\)
\(90\) 0 0
\(91\) −11.4673 1.03959i −1.20210 0.108978i
\(92\) 0 0
\(93\) −9.67262 + 4.52983i −1.00300 + 0.469721i
\(94\) 0 0
\(95\) 4.32040i 0.443263i
\(96\) 0 0
\(97\) 10.2669 + 5.92762i 1.04245 + 0.601859i 0.920526 0.390681i \(-0.127760\pi\)
0.121924 + 0.992539i \(0.461094\pi\)
\(98\) 0 0
\(99\) 2.84928 16.4763i 0.286363 1.65593i
\(100\) 0 0
\(101\) 2.65813 + 4.60402i 0.264494 + 0.458117i 0.967431 0.253135i \(-0.0814618\pi\)
−0.702937 + 0.711252i \(0.748128\pi\)
\(102\) 0 0
\(103\) −7.74616 4.47225i −0.763252 0.440664i 0.0672102 0.997739i \(-0.478590\pi\)
−0.830462 + 0.557075i \(0.811924\pi\)
\(104\) 0 0
\(105\) 3.39148 + 2.85445i 0.330975 + 0.278566i
\(106\) 0 0
\(107\) −16.5898 + 9.57813i −1.60380 + 0.925953i −0.613079 + 0.790022i \(0.710069\pi\)
−0.990718 + 0.135931i \(0.956597\pi\)
\(108\) 0 0
\(109\) −9.62168 + 16.6652i −0.921590 + 1.59624i −0.124635 + 0.992203i \(0.539776\pi\)
−0.796955 + 0.604038i \(0.793557\pi\)
\(110\) 0 0
\(111\) −0.482893 + 0.692066i −0.0458342 + 0.0656880i
\(112\) 0 0
\(113\) 7.31199 4.22158i 0.687854 0.397133i −0.114953 0.993371i \(-0.536672\pi\)
0.802808 + 0.596238i \(0.203339\pi\)
\(114\) 0 0
\(115\) −2.22278 + 1.28332i −0.207275 + 0.119670i
\(116\) 0 0
\(117\) 2.22477 12.8650i 0.205680 1.18937i
\(118\) 0 0
\(119\) 9.47423 4.38170i 0.868501 0.401670i
\(120\) 0 0
\(121\) 10.0326 17.3769i 0.912053 1.57972i
\(122\) 0 0
\(123\) −0.162318 + 0.232628i −0.0146357 + 0.0209754i
\(124\) 0 0
\(125\) 8.76810 0.784243
\(126\) 0 0
\(127\) −3.31883 −0.294498 −0.147249 0.989099i \(-0.547042\pi\)
−0.147249 + 0.989099i \(0.547042\pi\)
\(128\) 0 0
\(129\) 15.0152 + 1.28874i 1.32201 + 0.113467i
\(130\) 0 0
\(131\) 9.37335 16.2351i 0.818954 1.41847i −0.0875000 0.996165i \(-0.527888\pi\)
0.906454 0.422305i \(-0.138779\pi\)
\(132\) 0 0
\(133\) −11.7686 1.06690i −1.02046 0.0925121i
\(134\) 0 0
\(135\) −3.53657 + 3.57170i −0.304379 + 0.307403i
\(136\) 0 0
\(137\) 14.6656 8.46717i 1.25296 0.723399i 0.281267 0.959630i \(-0.409245\pi\)
0.971697 + 0.236230i \(0.0759120\pi\)
\(138\) 0 0
\(139\) 10.5033 6.06406i 0.890875 0.514347i 0.0166466 0.999861i \(-0.494701\pi\)
0.874229 + 0.485514i \(0.161368\pi\)
\(140\) 0 0
\(141\) 6.97118 + 14.8857i 0.587079 + 1.25360i
\(142\) 0 0
\(143\) 12.1282 21.0066i 1.01421 1.75666i
\(144\) 0 0
\(145\) 4.46088 2.57549i 0.370456 0.213883i
\(146\) 0 0
\(147\) −8.61290 + 8.53335i −0.710380 + 0.703819i
\(148\) 0 0
\(149\) −7.56951 4.37026i −0.620118 0.358025i 0.156797 0.987631i \(-0.449883\pi\)
−0.776915 + 0.629606i \(0.783217\pi\)
\(150\) 0 0
\(151\) 11.0471 + 19.1341i 0.898997 + 1.55711i 0.828778 + 0.559578i \(0.189037\pi\)
0.0702195 + 0.997532i \(0.477630\pi\)
\(152\) 0 0
\(153\) 4.08478 + 11.1088i 0.330235 + 0.898096i
\(154\) 0 0
\(155\) 5.16588 + 2.98252i 0.414934 + 0.239562i
\(156\) 0 0
\(157\) 1.42457i 0.113693i 0.998383 + 0.0568467i \(0.0181046\pi\)
−0.998383 + 0.0568467i \(0.981895\pi\)
\(158\) 0 0
\(159\) 0.298480 3.47761i 0.0236710 0.275793i
\(160\) 0 0
\(161\) −2.94680 6.37165i −0.232241 0.502157i
\(162\) 0 0
\(163\) 3.72148 + 6.44579i 0.291489 + 0.504873i 0.974162 0.225851i \(-0.0725161\pi\)
−0.682673 + 0.730724i \(0.739183\pi\)
\(164\) 0 0
\(165\) −8.45689 + 3.96049i −0.658368 + 0.308323i
\(166\) 0 0
\(167\) 3.24855 + 5.62665i 0.251380 + 0.435404i 0.963906 0.266242i \(-0.0857822\pi\)
−0.712526 + 0.701646i \(0.752449\pi\)
\(168\) 0 0
\(169\) 2.96991 5.14404i 0.228455 0.395695i
\(170\) 0 0
\(171\) 2.28323 13.2030i 0.174603 1.00966i
\(172\) 0 0
\(173\) 11.8188 0.898564 0.449282 0.893390i \(-0.351680\pi\)
0.449282 + 0.893390i \(0.351680\pi\)
\(174\) 0 0
\(175\) −0.970861 + 10.7092i −0.0733902 + 0.809537i
\(176\) 0 0
\(177\) −1.22959 2.62556i −0.0924215 0.197349i
\(178\) 0 0
\(179\) 2.10764 + 1.21685i 0.157533 + 0.0909515i 0.576694 0.816960i \(-0.304343\pi\)
−0.419161 + 0.907912i \(0.637676\pi\)
\(180\) 0 0
\(181\) 11.5342i 0.857327i −0.903464 0.428663i \(-0.858985\pi\)
0.903464 0.428663i \(-0.141015\pi\)
\(182\) 0 0
\(183\) −8.11294 + 3.79941i −0.599726 + 0.280861i
\(184\) 0 0
\(185\) 0.471297 0.0346504
\(186\) 0 0
\(187\) 21.9898i 1.60806i
\(188\) 0 0
\(189\) −8.85579 10.5155i −0.644164 0.764887i
\(190\) 0 0
\(191\) 22.0689i 1.59685i −0.602094 0.798425i \(-0.705667\pi\)
0.602094 0.798425i \(-0.294333\pi\)
\(192\) 0 0
\(193\) −19.9396 −1.43528 −0.717641 0.696413i \(-0.754778\pi\)
−0.717641 + 0.696413i \(0.754778\pi\)
\(194\) 0 0
\(195\) −6.60331 + 3.09243i −0.472873 + 0.221453i
\(196\) 0 0
\(197\) 4.62560i 0.329560i 0.986330 + 0.164780i \(0.0526914\pi\)
−0.986330 + 0.164780i \(0.947309\pi\)
\(198\) 0 0
\(199\) 18.1024 + 10.4514i 1.28324 + 0.740882i 0.977440 0.211212i \(-0.0677412\pi\)
0.305805 + 0.952094i \(0.401075\pi\)
\(200\) 0 0
\(201\) 3.99797 + 8.53693i 0.281995 + 0.602149i
\(202\) 0 0
\(203\) 5.91393 + 12.7872i 0.415076 + 0.897489i
\(204\) 0 0
\(205\) 0.158420 0.0110645
\(206\) 0 0
\(207\) 7.47097 2.74712i 0.519268 0.190938i
\(208\) 0 0
\(209\) 12.4468 21.5585i 0.860965 1.49123i
\(210\) 0 0
\(211\) 3.34310 + 5.79042i 0.230148 + 0.398629i 0.957852 0.287263i \(-0.0927455\pi\)
−0.727703 + 0.685892i \(0.759412\pi\)
\(212\) 0 0
\(213\) −5.70967 + 2.67392i −0.391220 + 0.183214i
\(214\) 0 0
\(215\) −4.20829 7.28898i −0.287003 0.497104i
\(216\) 0 0
\(217\) −9.39995 + 13.3351i −0.638110 + 0.905246i
\(218\) 0 0
\(219\) 0.368514 4.29358i 0.0249018 0.290133i
\(220\) 0 0
\(221\) 17.1701i 1.15499i
\(222\) 0 0
\(223\) −7.08622 4.09123i −0.474528 0.273969i 0.243605 0.969875i \(-0.421670\pi\)
−0.718133 + 0.695905i \(0.755003\pi\)
\(224\) 0 0
\(225\) −12.0145 2.07770i −0.800968 0.138513i
\(226\) 0 0
\(227\) 5.34688 + 9.26106i 0.354885 + 0.614678i 0.987098 0.160116i \(-0.0511868\pi\)
−0.632214 + 0.774794i \(0.717853\pi\)
\(228\) 0 0
\(229\) 25.2942 + 14.6036i 1.67149 + 0.965034i 0.966806 + 0.255510i \(0.0822435\pi\)
0.704682 + 0.709524i \(0.251090\pi\)
\(230\) 0 0
\(231\) −8.69979 24.0142i −0.572404 1.58002i
\(232\) 0 0
\(233\) 5.57664 3.21967i 0.365338 0.210928i −0.306082 0.952005i \(-0.599018\pi\)
0.671420 + 0.741077i \(0.265685\pi\)
\(234\) 0 0
\(235\) 4.58996 7.95004i 0.299416 0.518603i
\(236\) 0 0
\(237\) −3.38085 7.21918i −0.219610 0.468936i
\(238\) 0 0
\(239\) 4.01452 2.31778i 0.259678 0.149925i −0.364510 0.931200i \(-0.618763\pi\)
0.624187 + 0.781275i \(0.285430\pi\)
\(240\) 0 0
\(241\) 9.08846 5.24722i 0.585439 0.338003i −0.177853 0.984057i \(-0.556915\pi\)
0.763292 + 0.646054i \(0.223582\pi\)
\(242\) 0 0
\(243\) 12.6952 9.04604i 0.814400 0.580304i
\(244\) 0 0
\(245\) 6.66087 + 1.21772i 0.425548 + 0.0777971i
\(246\) 0 0
\(247\) 9.71873 16.8333i 0.618388 1.07108i
\(248\) 0 0
\(249\) 14.5297 + 1.24707i 0.920785 + 0.0790300i
\(250\) 0 0
\(251\) −7.85271 −0.495659 −0.247829 0.968804i \(-0.579717\pi\)
−0.247829 + 0.968804i \(0.579717\pi\)
\(252\) 0 0
\(253\) 14.7887 0.929758
\(254\) 0 0
\(255\) 3.78256 5.42104i 0.236873 0.339478i
\(256\) 0 0
\(257\) −1.71568 + 2.97164i −0.107021 + 0.185366i −0.914562 0.404445i \(-0.867465\pi\)
0.807541 + 0.589811i \(0.200798\pi\)
\(258\) 0 0
\(259\) −0.116385 + 1.28379i −0.00723178 + 0.0797708i
\(260\) 0 0
\(261\) −14.9935 + 5.51318i −0.928072 + 0.341257i
\(262\) 0 0
\(263\) 3.17080 1.83066i 0.195520 0.112883i −0.399044 0.916932i \(-0.630658\pi\)
0.594564 + 0.804048i \(0.297325\pi\)
\(264\) 0 0
\(265\) −1.68817 + 0.974668i −0.103704 + 0.0598734i
\(266\) 0 0
\(267\) 4.07969 5.84687i 0.249673 0.357823i
\(268\) 0 0
\(269\) −6.34303 + 10.9865i −0.386741 + 0.669856i −0.992009 0.126166i \(-0.959733\pi\)
0.605268 + 0.796022i \(0.293066\pi\)
\(270\) 0 0
\(271\) 17.2136 9.93828i 1.04565 0.603708i 0.124223 0.992254i \(-0.460356\pi\)
0.921429 + 0.388547i \(0.127023\pi\)
\(272\) 0 0
\(273\) −6.79297 18.7508i −0.411129 1.13485i
\(274\) 0 0
\(275\) −19.6179 11.3264i −1.18300 0.683006i
\(276\) 0 0
\(277\) 3.73302 + 6.46579i 0.224296 + 0.388491i 0.956108 0.293015i \(-0.0946585\pi\)
−0.731812 + 0.681506i \(0.761325\pi\)
\(278\) 0 0
\(279\) −14.2106 11.8446i −0.850769 0.709117i
\(280\) 0 0
\(281\) −19.2746 11.1282i −1.14983 0.663854i −0.200983 0.979595i \(-0.564414\pi\)
−0.948845 + 0.315741i \(0.897747\pi\)
\(282\) 0 0
\(283\) 16.1802i 0.961815i −0.876771 0.480908i \(-0.840307\pi\)
0.876771 0.480908i \(-0.159693\pi\)
\(284\) 0 0
\(285\) −6.77681 + 3.17368i −0.401424 + 0.187993i
\(286\) 0 0
\(287\) −0.0391210 + 0.431528i −0.00230924 + 0.0254723i
\(288\) 0 0
\(289\) 0.717124 + 1.24210i 0.0421838 + 0.0730644i
\(290\) 0 0
\(291\) −1.75595 + 20.4587i −0.102935 + 1.19931i
\(292\) 0 0
\(293\) −4.43406 7.68002i −0.259041 0.448672i 0.706944 0.707269i \(-0.250073\pi\)
−0.965985 + 0.258597i \(0.916740\pi\)
\(294\) 0 0
\(295\) −0.809584 + 1.40224i −0.0471358 + 0.0816416i
\(296\) 0 0
\(297\) 27.9371 7.63390i 1.62108 0.442964i
\(298\) 0 0
\(299\) 11.5473 0.667799
\(300\) 0 0
\(301\) 20.8940 9.66321i 1.20431 0.556978i
\(302\) 0 0
\(303\) −5.26908 + 7.55147i −0.302701 + 0.433821i
\(304\) 0 0
\(305\) 4.33290 + 2.50160i 0.248101 + 0.143241i
\(306\) 0 0
\(307\) 27.1427i 1.54912i −0.632501 0.774559i \(-0.717972\pi\)
0.632501 0.774559i \(-0.282028\pi\)
\(308\) 0 0
\(309\) 1.32482 15.4356i 0.0753664 0.878099i
\(310\) 0 0
\(311\) −16.8955 −0.958055 −0.479028 0.877800i \(-0.659011\pi\)
−0.479028 + 0.877800i \(0.659011\pi\)
\(312\) 0 0
\(313\) 4.27739i 0.241772i −0.992666 0.120886i \(-0.961426\pi\)
0.992666 0.120886i \(-0.0385736\pi\)
\(314\) 0 0
\(315\) −1.98606 + 7.41658i −0.111902 + 0.417877i
\(316\) 0 0
\(317\) 6.62940i 0.372344i −0.982517 0.186172i \(-0.940392\pi\)
0.982517 0.186172i \(-0.0596082\pi\)
\(318\) 0 0
\(319\) −29.6794 −1.66173
\(320\) 0 0
\(321\) −27.2105 18.9862i −1.51874 1.05971i
\(322\) 0 0
\(323\) 17.6212i 0.980472i
\(324\) 0 0
\(325\) −15.3180 8.84386i −0.849691 0.490569i
\(326\) 0 0
\(327\) −33.2084 2.85024i −1.83643 0.157619i
\(328\) 0 0
\(329\) 20.5221 + 14.4661i 1.13142 + 0.797539i
\(330\) 0 0
\(331\) 0.757792 0.0416520 0.0208260 0.999783i \(-0.493370\pi\)
0.0208260 + 0.999783i \(0.493370\pi\)
\(332\) 0 0
\(333\) −1.44027 0.249069i −0.0789265 0.0136489i
\(334\) 0 0
\(335\) 2.63234 4.55935i 0.143820 0.249104i
\(336\) 0 0
\(337\) 1.01088 + 1.75089i 0.0550660 + 0.0953772i 0.892244 0.451553i \(-0.149130\pi\)
−0.837178 + 0.546930i \(0.815796\pi\)
\(338\) 0 0
\(339\) 11.9931 + 8.36823i 0.651374 + 0.454500i
\(340\) 0 0
\(341\) −17.1850 29.7652i −0.930618 1.61188i
\(342\) 0 0
\(343\) −4.96188 + 17.8432i −0.267916 + 0.963442i
\(344\) 0 0
\(345\) −3.64578 2.54386i −0.196282 0.136957i
\(346\) 0 0
\(347\) 20.9661i 1.12552i 0.826620 + 0.562761i \(0.190261\pi\)
−0.826620 + 0.562761i \(0.809739\pi\)
\(348\) 0 0
\(349\) −5.36406 3.09694i −0.287132 0.165776i 0.349516 0.936930i \(-0.386346\pi\)
−0.636648 + 0.771155i \(0.719679\pi\)
\(350\) 0 0
\(351\) 21.8139 5.96071i 1.16434 0.318159i
\(352\) 0 0
\(353\) 9.41889 + 16.3140i 0.501317 + 0.868306i 0.999999 + 0.00152110i \(0.000484180\pi\)
−0.498682 + 0.866785i \(0.666182\pi\)
\(354\) 0 0
\(355\) 3.04938 + 1.76056i 0.161844 + 0.0934409i
\(356\) 0 0
\(357\) 13.8326 + 11.6422i 0.732097 + 0.616171i
\(358\) 0 0
\(359\) 24.0735 13.8988i 1.27055 0.733553i 0.295459 0.955355i \(-0.404527\pi\)
0.975092 + 0.221803i \(0.0711942\pi\)
\(360\) 0 0
\(361\) 0.474089 0.821146i 0.0249520 0.0432182i
\(362\) 0 0
\(363\) 34.6266 + 2.97196i 1.81742 + 0.155988i
\(364\) 0 0
\(365\) −2.08428 + 1.20336i −0.109096 + 0.0629866i
\(366\) 0 0
\(367\) 18.8390 10.8767i 0.983388 0.567759i 0.0800968 0.996787i \(-0.474477\pi\)
0.903291 + 0.429028i \(0.141144\pi\)
\(368\) 0 0
\(369\) −0.484128 0.0837212i −0.0252027 0.00435835i
\(370\) 0 0
\(371\) −2.23806 4.83920i −0.116194 0.251239i
\(372\) 0 0
\(373\) −5.86560 + 10.1595i −0.303709 + 0.526040i −0.976973 0.213362i \(-0.931558\pi\)
0.673264 + 0.739402i \(0.264892\pi\)
\(374\) 0 0
\(375\) 6.44088 + 13.7533i 0.332606 + 0.710218i
\(376\) 0 0
\(377\) −23.1743 −1.19354
\(378\) 0 0
\(379\) −34.8881 −1.79208 −0.896041 0.443971i \(-0.853569\pi\)
−0.896041 + 0.443971i \(0.853569\pi\)
\(380\) 0 0
\(381\) −2.43795 5.20579i −0.124900 0.266701i
\(382\) 0 0
\(383\) −5.92412 + 10.2609i −0.302708 + 0.524306i −0.976748 0.214389i \(-0.931224\pi\)
0.674040 + 0.738695i \(0.264557\pi\)
\(384\) 0 0
\(385\) −8.21849 + 11.6591i −0.418853 + 0.594200i
\(386\) 0 0
\(387\) 9.00841 + 24.4990i 0.457923 + 1.24535i
\(388\) 0 0
\(389\) −5.50224 + 3.17672i −0.278975 + 0.161066i −0.632959 0.774185i \(-0.718160\pi\)
0.353984 + 0.935251i \(0.384827\pi\)
\(390\) 0 0
\(391\) −9.06586 + 5.23418i −0.458480 + 0.264704i
\(392\) 0 0
\(393\) 32.3513 + 2.77668i 1.63191 + 0.140065i
\(394\) 0 0
\(395\) −2.22601 + 3.85557i −0.112003 + 0.193995i
\(396\) 0 0
\(397\) −7.42647 + 4.28768i −0.372724 + 0.215192i −0.674648 0.738140i \(-0.735704\pi\)
0.301924 + 0.953332i \(0.402371\pi\)
\(398\) 0 0
\(399\) −6.97146 19.2435i −0.349009 0.963378i
\(400\) 0 0
\(401\) −20.0216 11.5595i −0.999833 0.577254i −0.0916343 0.995793i \(-0.529209\pi\)
−0.908199 + 0.418539i \(0.862542\pi\)
\(402\) 0 0
\(403\) −13.4184 23.2413i −0.668417 1.15773i
\(404\) 0 0
\(405\) −8.20033 2.92363i −0.407478 0.145276i
\(406\) 0 0
\(407\) −2.35174 1.35778i −0.116572 0.0673026i
\(408\) 0 0
\(409\) 1.55989i 0.0771318i −0.999256 0.0385659i \(-0.987721\pi\)
0.999256 0.0385659i \(-0.0122790\pi\)
\(410\) 0 0
\(411\) 24.0543 + 16.7840i 1.18651 + 0.827896i
\(412\) 0 0
\(413\) −3.61971 2.55154i −0.178114 0.125553i
\(414\) 0 0
\(415\) −4.07224 7.05332i −0.199898 0.346234i
\(416\) 0 0
\(417\) 17.2274 + 12.0205i 0.843628 + 0.588646i
\(418\) 0 0
\(419\) −3.40822 5.90321i −0.166502 0.288391i 0.770685 0.637216i \(-0.219914\pi\)
−0.937188 + 0.348825i \(0.886581\pi\)
\(420\) 0 0
\(421\) −6.75727 + 11.7039i −0.329329 + 0.570415i −0.982379 0.186900i \(-0.940156\pi\)
0.653050 + 0.757315i \(0.273489\pi\)
\(422\) 0 0
\(423\) −18.2282 + 21.8695i −0.886287 + 1.06333i
\(424\) 0 0
\(425\) 16.0350 0.777812
\(426\) 0 0
\(427\) −7.88424 + 11.1849i −0.381545 + 0.541274i
\(428\) 0 0
\(429\) 41.8593 + 3.59274i 2.02098 + 0.173459i
\(430\) 0 0
\(431\) −12.2628 7.07990i −0.590676 0.341027i 0.174689 0.984624i \(-0.444108\pi\)
−0.765365 + 0.643597i \(0.777441\pi\)
\(432\) 0 0
\(433\) 23.4830i 1.12852i −0.825597 0.564260i \(-0.809161\pi\)
0.825597 0.564260i \(-0.190839\pi\)
\(434\) 0 0
\(435\) 7.31670 + 5.10527i 0.350809 + 0.244779i
\(436\) 0 0
\(437\) 11.8507 0.566897
\(438\) 0 0
\(439\) 4.23080i 0.201925i 0.994890 + 0.100963i \(0.0321922\pi\)
−0.994890 + 0.100963i \(0.967808\pi\)
\(440\) 0 0
\(441\) −19.7120 7.24144i −0.938665 0.344830i
\(442\) 0 0
\(443\) 29.8098i 1.41631i 0.706058 + 0.708154i \(0.250472\pi\)
−0.706058 + 0.708154i \(0.749528\pi\)
\(444\) 0 0
\(445\) −3.98172 −0.188751
\(446\) 0 0
\(447\) 1.29461 15.0836i 0.0612328 0.713428i
\(448\) 0 0
\(449\) 8.41716i 0.397230i −0.980078 0.198615i \(-0.936356\pi\)
0.980078 0.198615i \(-0.0636444\pi\)
\(450\) 0 0
\(451\) −0.790505 0.456399i −0.0372234 0.0214910i
\(452\) 0 0
\(453\) −21.8980 + 31.3836i −1.02886 + 1.47453i
\(454\) 0 0
\(455\) −6.41717 + 9.10363i −0.300841 + 0.426785i
\(456\) 0 0
\(457\) −3.88219 −0.181601 −0.0908006 0.995869i \(-0.528943\pi\)
−0.0908006 + 0.995869i \(0.528943\pi\)
\(458\) 0 0
\(459\) −14.4243 + 14.5676i −0.673269 + 0.679957i
\(460\) 0 0
\(461\) −17.0423 + 29.5181i −0.793739 + 1.37480i 0.129898 + 0.991527i \(0.458535\pi\)
−0.923637 + 0.383269i \(0.874798\pi\)
\(462\) 0 0
\(463\) 6.10962 + 10.5822i 0.283938 + 0.491796i 0.972351 0.233523i \(-0.0750256\pi\)
−0.688413 + 0.725319i \(0.741692\pi\)
\(464\) 0 0
\(465\) −0.883517 + 10.2939i −0.0409721 + 0.477369i
\(466\) 0 0
\(467\) −15.4057 26.6835i −0.712893 1.23477i −0.963767 0.266747i \(-0.914051\pi\)
0.250874 0.968020i \(-0.419282\pi\)
\(468\) 0 0
\(469\) 11.7694 + 8.29628i 0.543460 + 0.383087i
\(470\) 0 0
\(471\) −2.23453 + 1.04647i −0.102962 + 0.0482186i
\(472\) 0 0
\(473\) 48.4954i 2.22982i
\(474\) 0 0
\(475\) −15.7205 9.07623i −0.721306 0.416446i
\(476\) 0 0
\(477\) 5.67412 2.08640i 0.259800 0.0955299i
\(478\) 0 0
\(479\) 20.8747 + 36.1560i 0.953788 + 1.65201i 0.737118 + 0.675764i \(0.236186\pi\)
0.216670 + 0.976245i \(0.430481\pi\)
\(480\) 0 0
\(481\) −1.83629 1.06018i −0.0837276 0.0483401i
\(482\) 0 0
\(483\) 7.82967 9.30274i 0.356262 0.423289i
\(484\) 0 0
\(485\) 9.93146 5.73393i 0.450964 0.260364i
\(486\) 0 0
\(487\) −10.5832 + 18.3306i −0.479568 + 0.830637i −0.999725 0.0234338i \(-0.992540\pi\)
0.520157 + 0.854071i \(0.325873\pi\)
\(488\) 0 0
\(489\) −7.37690 + 10.5723i −0.333595 + 0.478097i
\(490\) 0 0
\(491\) −32.3428 + 18.6731i −1.45961 + 0.842707i −0.998992 0.0448915i \(-0.985706\pi\)
−0.460619 + 0.887598i \(0.652372\pi\)
\(492\) 0 0
\(493\) 18.1942 10.5044i 0.819427 0.473097i
\(494\) 0 0
\(495\) −12.4245 10.3559i −0.558442 0.465462i
\(496\) 0 0
\(497\) −5.54872 + 7.87161i −0.248894 + 0.353090i
\(498\) 0 0
\(499\) 13.7099 23.7462i 0.613738 1.06303i −0.376867 0.926267i \(-0.622999\pi\)
0.990605 0.136758i \(-0.0436681\pi\)
\(500\) 0 0
\(501\) −6.43944 + 9.22879i −0.287693 + 0.412312i
\(502\) 0 0
\(503\) 11.2791 0.502909 0.251454 0.967869i \(-0.419091\pi\)
0.251454 + 0.967869i \(0.419091\pi\)
\(504\) 0 0
\(505\) 5.14255 0.228840
\(506\) 0 0
\(507\) 10.2504 + 0.879780i 0.455236 + 0.0390724i
\(508\) 0 0
\(509\) 9.31667 16.1370i 0.412954 0.715258i −0.582257 0.813005i \(-0.697830\pi\)
0.995211 + 0.0977470i \(0.0311636\pi\)
\(510\) 0 0
\(511\) −2.76319 5.97463i −0.122236 0.264302i
\(512\) 0 0
\(513\) 22.3870 6.11732i 0.988412 0.270086i
\(514\) 0 0
\(515\) −7.49305 + 4.32611i −0.330183 + 0.190631i
\(516\) 0 0
\(517\) −45.8072 + 26.4468i −2.01460 + 1.16313i
\(518\) 0 0
\(519\) 8.68184 + 18.5385i 0.381091 + 0.813749i
\(520\) 0 0
\(521\) −7.64255 + 13.2373i −0.334826 + 0.579936i −0.983451 0.181172i \(-0.942011\pi\)
0.648625 + 0.761108i \(0.275344\pi\)
\(522\) 0 0
\(523\) 31.5991 18.2437i 1.38173 0.797743i 0.389368 0.921082i \(-0.372694\pi\)
0.992365 + 0.123339i \(0.0393602\pi\)
\(524\) 0 0
\(525\) −17.5112 + 6.34390i −0.764251 + 0.276870i
\(526\) 0 0
\(527\) 21.0697 + 12.1646i 0.917809 + 0.529897i
\(528\) 0 0
\(529\) −7.97989 13.8216i −0.346952 0.600938i
\(530\) 0 0
\(531\) 3.21512 3.85737i 0.139524 0.167396i
\(532\) 0 0
\(533\) −0.617243 0.356365i −0.0267358 0.0154359i
\(534\) 0 0
\(535\) 18.5303i 0.801135i
\(536\) 0 0
\(537\) −0.360468 + 4.19984i −0.0155554 + 0.181237i
\(538\) 0 0
\(539\) −29.7292 25.2659i −1.28053 1.08828i
\(540\) 0 0
\(541\) 2.63647 + 4.56649i 0.113351 + 0.196329i 0.917119 0.398613i \(-0.130508\pi\)
−0.803769 + 0.594942i \(0.797175\pi\)
\(542\) 0 0
\(543\) 18.0920 8.47277i 0.776404 0.363601i
\(544\) 0 0
\(545\) 9.30729 + 16.1207i 0.398680 + 0.690535i
\(546\) 0 0
\(547\) 9.29831 16.1051i 0.397567 0.688606i −0.595858 0.803090i \(-0.703188\pi\)
0.993425 + 0.114484i \(0.0365213\pi\)
\(548\) 0 0
\(549\) −11.9192 9.93469i −0.508700 0.424002i
\(550\) 0 0
\(551\) −23.7832 −1.01320
\(552\) 0 0
\(553\) −9.95268 7.01567i −0.423231 0.298337i
\(554\) 0 0
\(555\) 0.346206 + 0.739259i 0.0146956 + 0.0313798i
\(556\) 0 0
\(557\) 23.8694 + 13.7810i 1.01138 + 0.583920i 0.911595 0.411089i \(-0.134851\pi\)
0.0997845 + 0.995009i \(0.468185\pi\)
\(558\) 0 0
\(559\) 37.8662i 1.60157i
\(560\) 0 0
\(561\) −34.4924 + 16.1533i −1.45627 + 0.681993i
\(562\) 0 0
\(563\) 18.8515 0.794497 0.397249 0.917711i \(-0.369965\pi\)
0.397249 + 0.917711i \(0.369965\pi\)
\(564\) 0 0
\(565\) 8.16727i 0.343600i
\(566\) 0 0
\(567\) 9.98886 21.6153i 0.419493 0.907759i
\(568\) 0 0
\(569\) 4.46988i 0.187387i 0.995601 + 0.0936936i \(0.0298674\pi\)
−0.995601 + 0.0936936i \(0.970133\pi\)
\(570\) 0 0
\(571\) −18.6249 −0.779428 −0.389714 0.920936i \(-0.627426\pi\)
−0.389714 + 0.920936i \(0.627426\pi\)
\(572\) 0 0
\(573\) 34.6165 16.2114i 1.44612 0.677241i
\(574\) 0 0
\(575\) 10.7839i 0.449721i
\(576\) 0 0
\(577\) 31.9418 + 18.4416i 1.32976 + 0.767735i 0.985262 0.171053i \(-0.0547170\pi\)
0.344495 + 0.938788i \(0.388050\pi\)
\(578\) 0 0
\(579\) −14.6472 31.2765i −0.608719 1.29981i
\(580\) 0 0
\(581\) 20.2185 9.35079i 0.838806 0.387936i
\(582\) 0 0
\(583\) 11.2319 0.465176
\(584\) 0 0
\(585\) −9.70134 8.08608i −0.401101 0.334318i
\(586\) 0 0
\(587\) −13.2295 + 22.9141i −0.546039 + 0.945766i 0.452502 + 0.891763i \(0.350531\pi\)
−0.998541 + 0.0540032i \(0.982802\pi\)
\(588\) 0 0
\(589\) −13.7709 23.8520i −0.567422 0.982803i
\(590\) 0 0
\(591\) −7.25554 + 3.39788i −0.298453 + 0.139770i
\(592\) 0 0
\(593\) −17.3351 30.0254i −0.711869 1.23299i −0.964155 0.265341i \(-0.914516\pi\)
0.252285 0.967653i \(-0.418818\pi\)
\(594\) 0 0
\(595\) 0.911654 10.0561i 0.0373742 0.412259i
\(596\) 0 0
\(597\) −3.09604 + 36.0722i −0.126712 + 1.47634i
\(598\) 0 0
\(599\) 24.4887i 1.00058i 0.865857 + 0.500291i \(0.166774\pi\)
−0.865857 + 0.500291i \(0.833226\pi\)
\(600\) 0 0
\(601\) −19.3812 11.1898i −0.790577 0.456440i 0.0495885 0.998770i \(-0.484209\pi\)
−0.840166 + 0.542330i \(0.817542\pi\)
\(602\) 0 0
\(603\) −10.4539 + 12.5421i −0.425715 + 0.510755i
\(604\) 0 0
\(605\) −9.70476 16.8091i −0.394554 0.683388i
\(606\) 0 0
\(607\) 28.2180 + 16.2917i 1.14533 + 0.661259i 0.947746 0.319026i \(-0.103356\pi\)
0.197589 + 0.980285i \(0.436689\pi\)
\(608\) 0 0
\(609\) −15.7133 + 18.6696i −0.636737 + 0.756532i
\(610\) 0 0
\(611\) −35.7672 + 20.6502i −1.44699 + 0.835418i
\(612\) 0 0
\(613\) 5.86931 10.1659i 0.237059 0.410598i −0.722810 0.691047i \(-0.757150\pi\)
0.959869 + 0.280449i \(0.0904832\pi\)
\(614\) 0 0
\(615\) 0.116372 + 0.248491i 0.00469258 + 0.0100201i
\(616\) 0 0
\(617\) −38.1947 + 22.0517i −1.53766 + 0.887770i −0.538687 + 0.842506i \(0.681080\pi\)
−0.998975 + 0.0452639i \(0.985587\pi\)
\(618\) 0 0
\(619\) 4.28374 2.47322i 0.172178 0.0994070i −0.411434 0.911439i \(-0.634972\pi\)
0.583612 + 0.812032i \(0.301639\pi\)
\(620\) 0 0
\(621\) 9.79706 + 9.70071i 0.393143 + 0.389276i
\(622\) 0 0
\(623\) 0.983266 10.8460i 0.0393937 0.434536i
\(624\) 0 0
\(625\) −5.91991 + 10.2536i −0.236797 + 0.410144i
\(626\) 0 0
\(627\) 42.9591 + 3.68714i 1.71562 + 0.147250i
\(628\) 0 0
\(629\) 1.92224 0.0766447
\(630\) 0 0
\(631\) 9.08478 0.361659 0.180830 0.983514i \(-0.442122\pi\)
0.180830 + 0.983514i \(0.442122\pi\)
\(632\) 0 0
\(633\) −6.62686 + 9.49739i −0.263394 + 0.377487i
\(634\) 0 0
\(635\) −1.60519 + 2.78027i −0.0637001 + 0.110332i
\(636\) 0 0
\(637\) −23.2132 19.7282i −0.919739 0.781658i
\(638\) 0 0
\(639\) −8.38843 6.99177i −0.331841 0.276590i
\(640\) 0 0
\(641\) −12.1954 + 7.04105i −0.481691 + 0.278105i −0.721121 0.692809i \(-0.756373\pi\)
0.239430 + 0.970914i \(0.423040\pi\)
\(642\) 0 0
\(643\) −7.33157 + 4.23288i −0.289129 + 0.166929i −0.637549 0.770410i \(-0.720052\pi\)
0.348420 + 0.937339i \(0.386718\pi\)
\(644\) 0 0
\(645\) 8.34189 11.9553i 0.328461 0.470740i
\(646\) 0 0
\(647\) 12.1662 21.0725i 0.478304 0.828446i −0.521387 0.853320i \(-0.674585\pi\)
0.999691 + 0.0248742i \(0.00791854\pi\)
\(648\) 0 0
\(649\) 8.07955 4.66473i 0.317150 0.183107i
\(650\) 0 0
\(651\) −27.8220 4.94869i −1.09043 0.193955i
\(652\) 0 0
\(653\) −36.0653 20.8223i −1.41134 0.814840i −0.415829 0.909443i \(-0.636509\pi\)
−0.995515 + 0.0946029i \(0.969842\pi\)
\(654\) 0 0
\(655\) −9.06707 15.7046i −0.354280 0.613631i
\(656\) 0 0
\(657\) 7.00545 2.57594i 0.273309 0.100497i
\(658\) 0 0
\(659\) 9.09866 + 5.25312i 0.354434 + 0.204632i 0.666636 0.745383i \(-0.267733\pi\)
−0.312203 + 0.950016i \(0.601067\pi\)
\(660\) 0 0
\(661\) 19.5131i 0.758972i −0.925198 0.379486i \(-0.876101\pi\)
0.925198 0.379486i \(-0.123899\pi\)
\(662\) 0 0
\(663\) −26.9324 + 12.6128i −1.04597 + 0.489842i
\(664\) 0 0
\(665\) −6.58578 + 9.34282i −0.255386 + 0.362299i
\(666\) 0 0
\(667\) −7.06450 12.2361i −0.273539 0.473783i
\(668\) 0 0
\(669\) 1.21195 14.1205i 0.0468567 0.545931i
\(670\) 0 0
\(671\) −14.4140 24.9657i −0.556445 0.963790i
\(672\) 0 0
\(673\) −3.10277 + 5.37415i −0.119603 + 0.207158i −0.919610 0.392832i \(-0.871495\pi\)
0.800007 + 0.599990i \(0.204829\pi\)
\(674\) 0 0
\(675\) −5.56665 20.3718i −0.214260 0.784110i
\(676\) 0 0
\(677\) 24.7531 0.951339 0.475669 0.879624i \(-0.342206\pi\)
0.475669 + 0.879624i \(0.342206\pi\)
\(678\) 0 0
\(679\) 13.1664 + 28.4688i 0.505281 + 1.09253i
\(680\) 0 0
\(681\) −10.5988 + 15.1899i −0.406149 + 0.582079i
\(682\) 0 0
\(683\) 18.3119 + 10.5724i 0.700687 + 0.404542i 0.807603 0.589726i \(-0.200764\pi\)
−0.106916 + 0.994268i \(0.534098\pi\)
\(684\) 0 0
\(685\) 16.3810i 0.625886i
\(686\) 0 0
\(687\) −4.32605 + 50.4031i −0.165049 + 1.92300i
\(688\) 0 0
\(689\) 8.77006 0.334113
\(690\) 0 0
\(691\) 6.44470i 0.245168i 0.992458 + 0.122584i \(0.0391181\pi\)
−0.992458 + 0.122584i \(0.960882\pi\)
\(692\) 0 0
\(693\) 31.2771 31.2866i 1.18812 1.18848i
\(694\) 0 0
\(695\) 11.7318i 0.445014i
\(696\) 0 0
\(697\) 0.646134 0.0244741
\(698\) 0 0
\(699\) 9.14675 + 6.38220i 0.345962 + 0.241397i
\(700\) 0 0
\(701\) 24.5717i 0.928061i 0.885819 + 0.464031i \(0.153597\pi\)
−0.885819 + 0.464031i \(0.846403\pi\)
\(702\) 0 0
\(703\) −1.88454 1.08804i −0.0710767 0.0410361i
\(704\) 0 0
\(705\) 15.8418 + 1.35969i 0.596638 + 0.0512088i
\(706\) 0 0
\(707\) −1.26993 + 14.0081i −0.0477606 + 0.526827i
\(708\) 0 0
\(709\) 44.2740 1.66275 0.831373 0.555715i \(-0.187555\pi\)
0.831373 + 0.555715i \(0.187555\pi\)
\(710\) 0 0
\(711\) 8.84023 10.6061i 0.331535 0.397762i
\(712\) 0 0
\(713\) 8.18098 14.1699i 0.306380 0.530666i
\(714\) 0 0
\(715\) −11.7319 20.3202i −0.438747 0.759931i
\(716\) 0 0
\(717\) 6.58458 + 4.59442i 0.245906 + 0.171582i
\(718\) 0 0
\(719\) −2.22433 3.85266i −0.0829537 0.143680i 0.821564 0.570117i \(-0.193102\pi\)
−0.904517 + 0.426437i \(0.859769\pi\)
\(720\) 0 0
\(721\) −9.93376 21.4790i −0.369952 0.799921i
\(722\) 0 0
\(723\) 14.9068 + 10.4013i 0.554390 + 0.386829i
\(724\) 0 0
\(725\) 21.6422i 0.803773i
\(726\) 0 0
\(727\) −30.4270 17.5670i −1.12848 0.651525i −0.184924 0.982753i \(-0.559204\pi\)
−0.943551 + 0.331227i \(0.892537\pi\)
\(728\) 0 0
\(729\) 23.5150 + 13.2682i 0.870925 + 0.491416i
\(730\) 0 0
\(731\) −17.1640 29.7289i −0.634834 1.09956i
\(732\) 0 0
\(733\) −5.03789 2.90863i −0.186079 0.107433i 0.404067 0.914729i \(-0.367596\pi\)
−0.590145 + 0.807297i \(0.700930\pi\)
\(734\) 0 0
\(735\) 2.98289 + 11.3425i 0.110025 + 0.418375i
\(736\) 0 0
\(737\) −26.2704 + 15.1672i −0.967684 + 0.558693i
\(738\) 0 0
\(739\) 5.51675 9.55529i 0.202937 0.351497i −0.746537 0.665344i \(-0.768285\pi\)
0.949473 + 0.313847i \(0.101618\pi\)
\(740\) 0 0
\(741\) 33.5433 + 2.87899i 1.23225 + 0.105762i
\(742\) 0 0
\(743\) 0.543196 0.313615i 0.0199279 0.0115054i −0.490003 0.871721i \(-0.663004\pi\)
0.509931 + 0.860215i \(0.329671\pi\)
\(744\) 0 0
\(745\) −7.32216 + 4.22745i −0.268263 + 0.154882i
\(746\) 0 0
\(747\) 8.71716 + 23.7069i 0.318944 + 0.867390i
\(748\) 0 0
\(749\) −50.4757 4.57598i −1.84434 0.167202i
\(750\) 0 0
\(751\) 2.23529 3.87163i 0.0815668 0.141278i −0.822356 0.568973i \(-0.807341\pi\)
0.903923 + 0.427695i \(0.140674\pi\)
\(752\) 0 0
\(753\) −5.76845 12.3175i −0.210214 0.448874i
\(754\) 0 0
\(755\) 21.3722 0.777813
\(756\) 0 0
\(757\) 5.75624 0.209214 0.104607 0.994514i \(-0.466642\pi\)
0.104607 + 0.994514i \(0.466642\pi\)
\(758\) 0 0
\(759\) 10.8635 + 23.1970i 0.394320 + 0.841998i
\(760\) 0 0
\(761\) −10.4970 + 18.1813i −0.380516 + 0.659073i −0.991136 0.132851i \(-0.957587\pi\)
0.610620 + 0.791924i \(0.290920\pi\)
\(762\) 0 0
\(763\) −46.2104 + 21.3717i −1.67293 + 0.773707i
\(764\) 0 0
\(765\) 11.2818 + 1.95099i 0.407895 + 0.0705382i
\(766\) 0 0
\(767\) 6.30868 3.64232i 0.227793 0.131516i
\(768\) 0 0
\(769\) 34.1729 19.7298i 1.23231 0.711473i 0.264797 0.964304i \(-0.414695\pi\)
0.967511 + 0.252831i \(0.0813616\pi\)
\(770\) 0 0
\(771\) −5.92151 0.508238i −0.213258 0.0183037i
\(772\) 0 0
\(773\) 17.3164 29.9929i 0.622829 1.07877i −0.366128 0.930565i \(-0.619317\pi\)
0.988956 0.148206i \(-0.0473499\pi\)
\(774\) 0 0
\(775\) −21.7048 + 12.5313i −0.779661 + 0.450137i
\(776\) 0 0
\(777\) −2.09920 + 0.760492i −0.0753084 + 0.0272825i
\(778\) 0 0
\(779\) −0.633461 0.365729i −0.0226961 0.0131036i
\(780\) 0 0
\(781\) −10.1442 17.5702i −0.362986 0.628711i
\(782\) 0 0
\(783\) −19.6617 19.4683i −0.702651 0.695741i
\(784\) 0 0
\(785\) 1.19340 + 0.689012i 0.0425944 + 0.0245919i
\(786\) 0 0
\(787\) 35.3099i 1.25866i −0.777137 0.629332i \(-0.783329\pi\)
0.777137 0.629332i \(-0.216671\pi\)
\(788\) 0 0
\(789\) 5.20072 + 3.62883i 0.185151 + 0.129190i
\(790\) 0 0
\(791\) 22.2473 + 2.01687i 0.791022 + 0.0717116i
\(792\) 0 0
\(793\) −11.2547 19.4937i −0.399667 0.692243i
\(794\) 0 0
\(795\) −2.76893 1.93203i −0.0982038 0.0685222i
\(796\) 0 0
\(797\) 9.60992 + 16.6449i 0.340401 + 0.589591i 0.984507 0.175344i \(-0.0561039\pi\)
−0.644106 + 0.764936i \(0.722771\pi\)
\(798\) 0 0
\(799\) 18.7207 32.4252i 0.662290 1.14712i
\(800\) 0 0
\(801\) 12.1680 + 2.10424i 0.429937 + 0.0743498i
\(802\) 0 0
\(803\) 13.8672 0.489363
\(804\) 0 0
\(805\) −6.76296 0.613110i −0.238363 0.0216093i
\(806\) 0 0
\(807\) −21.8924 1.87900i −0.770649 0.0661441i
\(808\) 0 0
\(809\) −34.0157 19.6390i −1.19593 0.690469i −0.236283 0.971684i \(-0.575929\pi\)
−0.959645 + 0.281215i \(0.909263\pi\)
\(810\) 0 0
\(811\) 9.68436i 0.340064i −0.985439 0.170032i \(-0.945613\pi\)
0.985439 0.170032i \(-0.0543871\pi\)
\(812\) 0 0
\(813\) 28.2336 + 19.7002i 0.990196 + 0.690915i
\(814\) 0 0
\(815\) 7.19975 0.252196
\(816\) 0 0
\(817\) 38.8611i 1.35958i
\(818\) 0 0
\(819\) 24.4218 24.4292i 0.853366 0.853625i
\(820\) 0 0
\(821\) 12.6924i 0.442968i 0.975164 + 0.221484i \(0.0710900\pi\)
−0.975164 + 0.221484i \(0.928910\pi\)
\(822\) 0 0
\(823\) −17.4767 −0.609201 −0.304600 0.952480i \(-0.598523\pi\)
−0.304600 + 0.952480i \(0.598523\pi\)
\(824\) 0 0
\(825\) 3.35523 39.0920i 0.116814 1.36101i
\(826\) 0 0
\(827\) 46.9482i 1.63255i −0.577665 0.816274i \(-0.696036\pi\)
0.577665 0.816274i \(-0.303964\pi\)
\(828\) 0 0
\(829\) −1.99797 1.15353i −0.0693924 0.0400637i 0.464902 0.885362i \(-0.346089\pi\)
−0.534295 + 0.845298i \(0.679423\pi\)
\(830\) 0 0
\(831\) −7.39979 + 10.6051i −0.256696 + 0.367888i
\(832\) 0 0
\(833\) 27.1672 + 4.96661i 0.941286 + 0.172083i
\(834\) 0 0
\(835\) 6.28480 0.217495
\(836\) 0 0
\(837\) 8.14011 30.9911i 0.281363 1.07121i
\(838\) 0 0
\(839\) −8.51664 + 14.7513i −0.294027 + 0.509270i −0.974758 0.223264i \(-0.928329\pi\)
0.680731 + 0.732533i \(0.261662\pi\)
\(840\) 0 0
\(841\) −0.322276 0.558199i −0.0111130 0.0192482i
\(842\) 0 0
\(843\) 3.29653 38.4081i 0.113538 1.32284i
\(844\) 0 0
\(845\) −2.87287 4.97595i −0.0988296 0.171178i
\(846\) 0 0
\(847\) 48.1838 22.2844i 1.65562 0.765700i
\(848\) 0 0
\(849\) 25.3797 11.8857i 0.871030 0.407916i
\(850\) 0 0
\(851\) 1.29275i 0.0443150i
\(852\) 0 0
\(853\) 2.87158 + 1.65791i 0.0983209 + 0.0567656i 0.548354 0.836246i \(-0.315255\pi\)
−0.450033 + 0.893012i \(0.648588\pi\)
\(854\) 0 0
\(855\) −9.95624 8.29854i −0.340496 0.283804i
\(856\) 0 0
\(857\) −4.74512 8.21879i −0.162090 0.280748i 0.773528 0.633762i \(-0.218490\pi\)
−0.935618 + 0.353014i \(0.885157\pi\)
\(858\) 0 0
\(859\) 25.5104 + 14.7284i 0.870404 + 0.502528i 0.867482 0.497468i \(-0.165737\pi\)
0.00292142 + 0.999996i \(0.499070\pi\)
\(860\) 0 0
\(861\) −0.705617 + 0.255629i −0.0240474 + 0.00871180i
\(862\) 0 0
\(863\) −13.4610 + 7.77172i −0.458218 + 0.264553i −0.711295 0.702894i \(-0.751891\pi\)
0.253076 + 0.967446i \(0.418558\pi\)
\(864\) 0 0
\(865\) 5.71629 9.90090i 0.194360 0.336641i
\(866\) 0 0
\(867\) −1.42152 + 2.03727i −0.0482773 + 0.0691895i
\(868\) 0 0
\(869\) 22.2154 12.8260i 0.753604 0.435094i
\(870\) 0 0
\(871\) −20.5125 + 11.8429i −0.695039 + 0.401281i
\(872\) 0 0
\(873\) −33.3806 + 12.2742i −1.12976 + 0.415420i
\(874\) 0 0
\(875\) 18.9609 + 13.3656i 0.640997 + 0.451840i
\(876\) 0 0
\(877\) 22.7249 39.3606i 0.767364 1.32911i −0.171624 0.985163i \(-0.554901\pi\)
0.938988 0.343950i \(-0.111765\pi\)
\(878\) 0 0
\(879\) 8.78942 12.5967i 0.296460 0.424877i
\(880\) 0 0
\(881\) 15.6912 0.528651 0.264326 0.964433i \(-0.414851\pi\)
0.264326 + 0.964433i \(0.414851\pi\)
\(882\) 0 0
\(883\) 10.5344 0.354510 0.177255 0.984165i \(-0.443278\pi\)
0.177255 + 0.984165i \(0.443278\pi\)
\(884\) 0 0
\(885\) −2.79421 0.239824i −0.0939262 0.00806159i
\(886\) 0 0
\(887\) −0.0302741 + 0.0524362i −0.00101650 + 0.00176064i −0.866533 0.499119i \(-0.833657\pi\)
0.865517 + 0.500880i \(0.166990\pi\)
\(888\) 0 0
\(889\) −7.17694 5.05904i −0.240707 0.169675i
\(890\) 0 0
\(891\) 32.4963 + 38.2134i 1.08867 + 1.28020i
\(892\) 0 0
\(893\) −36.7070 + 21.1928i −1.22835 + 0.709190i
\(894\) 0 0
\(895\) 2.03877 1.17709i 0.0681487 0.0393456i
\(896\) 0 0
\(897\) 8.48245 + 18.1127i 0.283221 + 0.604766i
\(898\) 0 0
\(899\) −16.4184 + 28.4375i −0.547583 + 0.948442i
\(900\) 0 0
\(901\) −6.88542 + 3.97530i −0.229386 + 0.132436i
\(902\) 0 0
\(903\) 30.5057 + 25.6752i 1.01517 + 0.854418i
\(904\) 0 0
\(905\) −9.66247 5.57863i −0.321192 0.185440i
\(906\) 0 0
\(907\) 12.0490 + 20.8695i 0.400081 + 0.692961i 0.993735 0.111760i \(-0.0356487\pi\)
−0.593654 + 0.804720i \(0.702315\pi\)
\(908\) 0 0
\(909\) −15.7155 2.71772i −0.521251 0.0901410i
\(910\) 0 0
\(911\) −22.0494 12.7302i −0.730528 0.421771i 0.0880873 0.996113i \(-0.471925\pi\)
−0.818615 + 0.574342i \(0.805258\pi\)
\(912\) 0 0
\(913\) 46.9275i 1.55307i
\(914\) 0 0
\(915\) −0.741053 + 8.63406i −0.0244985 + 0.285433i
\(916\) 0 0
\(917\) 45.0177 20.8201i 1.48662 0.687540i
\(918\) 0 0
\(919\) −11.4534 19.8378i −0.377812 0.654389i 0.612932 0.790136i \(-0.289990\pi\)
−0.990744 + 0.135747i \(0.956657\pi\)
\(920\) 0 0
\(921\) 42.5751 19.9386i 1.40290 0.656998i
\(922\) 0 0
\(923\) −7.92076 13.7192i −0.260715 0.451572i
\(924\) 0 0
\(925\) −0.990094 + 1.71489i −0.0325541 + 0.0563853i
\(926\) 0 0
\(927\) 25.1849 9.26062i 0.827179 0.304159i
\(928\) 0 0
\(929\) 28.7973 0.944809 0.472404 0.881382i \(-0.343386\pi\)
0.472404 + 0.881382i \(0.343386\pi\)
\(930\) 0 0
\(931\) −23.8231 20.2465i −0.780770 0.663553i
\(932\) 0 0
\(933\) −12.4111 26.5016i −0.406321 0.867625i
\(934\) 0 0
\(935\) 18.4215 + 10.6356i 0.602447 + 0.347823i
\(936\) 0 0
\(937\) 53.6825i 1.75373i 0.480736 + 0.876865i \(0.340369\pi\)
−0.480736 + 0.876865i \(0.659631\pi\)
\(938\) 0 0
\(939\) 6.70936 3.14209i 0.218952 0.102538i
\(940\) 0 0
\(941\) −45.9021 −1.49637 −0.748184 0.663492i \(-0.769074\pi\)
−0.748184 + 0.663492i \(0.769074\pi\)
\(942\) 0 0
\(943\) 0.434541i 0.0141506i
\(944\) 0 0
\(945\) −13.0923 + 2.33281i −0.425893 + 0.0758864i
\(946\) 0 0
\(947\) 28.9183i 0.939718i 0.882741 + 0.469859i \(0.155695\pi\)
−0.882741 + 0.469859i \(0.844305\pi\)
\(948\) 0 0
\(949\) 10.8278 0.351485
\(950\) 0 0
\(951\) 10.3986 4.86984i 0.337199 0.157915i
\(952\) 0 0
\(953\) 12.8715i 0.416949i 0.978028 + 0.208475i \(0.0668498\pi\)
−0.978028 + 0.208475i \(0.933150\pi\)
\(954\) 0 0
\(955\) −18.4877 10.6739i −0.598249 0.345399i
\(956\) 0 0
\(957\) −21.8019 46.5540i −0.704756 1.50488i
\(958\) 0 0
\(959\) 44.6211 + 4.04521i 1.44089 + 0.130627i
\(960\) 0 0
\(961\) −7.02628 −0.226654
\(962\) 0 0
\(963\) 9.79284 56.6283i 0.315570 1.82482i
\(964\) 0 0
\(965\) −9.64402 + 16.7039i −0.310452 + 0.537719i
\(966\) 0 0
\(967\) −3.11725 5.39923i −0.100244 0.173627i 0.811541 0.584295i \(-0.198629\pi\)
−0.911785 + 0.410668i \(0.865296\pi\)
\(968\) 0 0
\(969\) −27.6400 + 12.9442i −0.887926 + 0.415829i
\(970\) 0 0
\(971\) 19.6863 + 34.0977i 0.631764 + 1.09425i 0.987191 + 0.159544i \(0.0510023\pi\)
−0.355426 + 0.934704i \(0.615664\pi\)
\(972\) 0 0
\(973\) 31.9570 + 2.89712i 1.02449 + 0.0928774i
\(974\) 0 0
\(975\) 2.61983 30.5238i 0.0839017 0.977544i
\(976\) 0 0
\(977\) 26.8438i 0.858809i −0.903112 0.429405i \(-0.858723\pi\)
0.903112 0.429405i \(-0.141277\pi\)
\(978\) 0 0
\(979\) 19.8685 + 11.4711i 0.635001 + 0.366618i
\(980\) 0 0
\(981\) −19.9235 54.1832i −0.636108 1.72994i
\(982\) 0 0
\(983\) −5.98457 10.3656i −0.190878 0.330611i 0.754663 0.656112i \(-0.227800\pi\)
−0.945541 + 0.325502i \(0.894467\pi\)
\(984\) 0 0
\(985\) 3.87499 + 2.23723i 0.123467 + 0.0712839i
\(986\) 0 0
\(987\) −7.61580 + 42.8166i −0.242414 + 1.36287i
\(988\) 0 0
\(989\) −19.9935 + 11.5432i −0.635755 + 0.367053i
\(990\) 0 0
\(991\) 5.40420 9.36036i 0.171670 0.297342i −0.767334 0.641248i \(-0.778417\pi\)
0.939004 + 0.343906i \(0.111750\pi\)
\(992\) 0 0
\(993\) 0.556660 + 1.18864i 0.0176651 + 0.0377205i
\(994\) 0 0
\(995\) 17.5109 10.1099i 0.555132 0.320506i
\(996\) 0 0
\(997\) −11.6653 + 6.73498i −0.369445 + 0.213299i −0.673216 0.739446i \(-0.735088\pi\)
0.303771 + 0.952745i \(0.401754\pi\)
\(998\) 0 0
\(999\) −0.667317 2.44212i −0.0211130 0.0772653i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.c.353.5 16
3.2 odd 2 3024.2.ca.c.2033.4 16
4.3 odd 2 126.2.l.a.101.3 yes 16
7.5 odd 6 1008.2.df.c.929.7 16
9.4 even 3 3024.2.df.c.17.4 16
9.5 odd 6 1008.2.df.c.689.7 16
12.11 even 2 378.2.l.a.143.6 16
21.5 even 6 3024.2.df.c.1601.4 16
28.3 even 6 882.2.m.a.587.7 16
28.11 odd 6 882.2.m.b.587.6 16
28.19 even 6 126.2.t.a.47.1 yes 16
28.23 odd 6 882.2.t.a.803.4 16
28.27 even 2 882.2.l.b.227.2 16
36.7 odd 6 1134.2.k.a.647.3 16
36.11 even 6 1134.2.k.b.647.6 16
36.23 even 6 126.2.t.a.59.1 yes 16
36.31 odd 6 378.2.t.a.17.6 16
63.5 even 6 inner 1008.2.ca.c.257.5 16
63.40 odd 6 3024.2.ca.c.2609.4 16
84.11 even 6 2646.2.m.b.1763.2 16
84.23 even 6 2646.2.t.b.1979.7 16
84.47 odd 6 378.2.t.a.89.6 16
84.59 odd 6 2646.2.m.a.1763.3 16
84.83 odd 2 2646.2.l.a.521.7 16
252.23 even 6 882.2.l.b.509.6 16
252.31 even 6 2646.2.m.b.881.2 16
252.47 odd 6 1134.2.k.a.971.3 16
252.59 odd 6 882.2.m.b.293.6 16
252.67 odd 6 2646.2.m.a.881.3 16
252.95 even 6 882.2.m.a.293.7 16
252.103 even 6 378.2.l.a.341.2 16
252.131 odd 6 126.2.l.a.5.7 16
252.139 even 6 2646.2.t.b.2285.7 16
252.167 odd 6 882.2.t.a.815.4 16
252.187 even 6 1134.2.k.b.971.6 16
252.247 odd 6 2646.2.l.a.1097.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.7 16 252.131 odd 6
126.2.l.a.101.3 yes 16 4.3 odd 2
126.2.t.a.47.1 yes 16 28.19 even 6
126.2.t.a.59.1 yes 16 36.23 even 6
378.2.l.a.143.6 16 12.11 even 2
378.2.l.a.341.2 16 252.103 even 6
378.2.t.a.17.6 16 36.31 odd 6
378.2.t.a.89.6 16 84.47 odd 6
882.2.l.b.227.2 16 28.27 even 2
882.2.l.b.509.6 16 252.23 even 6
882.2.m.a.293.7 16 252.95 even 6
882.2.m.a.587.7 16 28.3 even 6
882.2.m.b.293.6 16 252.59 odd 6
882.2.m.b.587.6 16 28.11 odd 6
882.2.t.a.803.4 16 28.23 odd 6
882.2.t.a.815.4 16 252.167 odd 6
1008.2.ca.c.257.5 16 63.5 even 6 inner
1008.2.ca.c.353.5 16 1.1 even 1 trivial
1008.2.df.c.689.7 16 9.5 odd 6
1008.2.df.c.929.7 16 7.5 odd 6
1134.2.k.a.647.3 16 36.7 odd 6
1134.2.k.a.971.3 16 252.47 odd 6
1134.2.k.b.647.6 16 36.11 even 6
1134.2.k.b.971.6 16 252.187 even 6
2646.2.l.a.521.7 16 84.83 odd 2
2646.2.l.a.1097.3 16 252.247 odd 6
2646.2.m.a.881.3 16 252.67 odd 6
2646.2.m.a.1763.3 16 84.59 odd 6
2646.2.m.b.881.2 16 252.31 even 6
2646.2.m.b.1763.2 16 84.11 even 6
2646.2.t.b.1979.7 16 84.23 even 6
2646.2.t.b.2285.7 16 252.139 even 6
3024.2.ca.c.2033.4 16 3.2 odd 2
3024.2.ca.c.2609.4 16 63.40 odd 6
3024.2.df.c.17.4 16 9.4 even 3
3024.2.df.c.1601.4 16 21.5 even 6