Properties

Label 1134.2.k.b.971.6
Level $1134$
Weight $2$
Character 1134.971
Analytic conductor $9.055$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(647,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 971.6
Root \(-1.70672 - 0.295146i\) of defining polynomial
Character \(\chi\) \(=\) 1134.971
Dual form 1134.2.k.b.647.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.483662 + 0.837727i) q^{5} +(-0.238876 - 2.63495i) q^{7} +1.00000i q^{8} +(-0.837727 + 0.483662i) q^{10} +(4.82689 - 2.78681i) q^{11} +4.35199i q^{13} +(1.11060 - 2.40137i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.97267 - 3.41677i) q^{17} +(3.86796 + 2.23317i) q^{19} -0.967324 q^{20} +5.57361 q^{22} +(2.29786 + 1.32667i) q^{23} +(2.03214 + 3.51977i) q^{25} +(-2.17600 + 3.76893i) q^{26} +(2.16249 - 1.52435i) q^{28} -5.32498i q^{29} +(5.34038 - 3.08327i) q^{31} +(-0.866025 + 0.500000i) q^{32} -3.94535i q^{34} +(2.32290 + 1.07431i) q^{35} +(0.243608 - 0.421942i) q^{37} +(2.23317 + 3.86796i) q^{38} +(-0.837727 - 0.483662i) q^{40} +0.163771 q^{41} +8.70089 q^{43} +(4.82689 + 2.78681i) q^{44} +(1.32667 + 2.29786i) q^{46} +(-4.74500 + 8.21859i) q^{47} +(-6.88588 + 1.25885i) q^{49} +4.06428i q^{50} +(-3.76893 + 2.17600i) q^{52} +(1.74520 - 1.00759i) q^{53} +5.39149i q^{55} +(2.63495 - 0.238876i) q^{56} +(2.66249 - 4.61157i) q^{58} +(0.836931 + 1.44961i) q^{59} +(4.47927 + 2.58611i) q^{61} +6.16655 q^{62} -1.00000 q^{64} +(-3.64578 - 2.10489i) q^{65} +(2.72126 + 4.71336i) q^{67} +(1.97267 - 3.41677i) q^{68} +(1.47454 + 2.09183i) q^{70} -3.64006i q^{71} +(-2.15468 + 1.24401i) q^{73} +(0.421942 - 0.243608i) q^{74} +4.46634i q^{76} +(-8.49611 - 12.0529i) q^{77} +(-2.30121 + 3.98581i) q^{79} +(-0.483662 - 0.837727i) q^{80} +(0.141830 + 0.0818856i) q^{82} -8.41959 q^{83} +3.81643 q^{85} +(7.53520 + 4.35045i) q^{86} +(2.78681 + 4.82689i) q^{88} +(2.05811 - 3.56475i) q^{89} +(11.4673 - 1.03959i) q^{91} +2.65334i q^{92} +(-8.21859 + 4.74500i) q^{94} +(-3.74157 + 2.16020i) q^{95} +11.8552i q^{97} +(-6.59277 - 2.35274i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 4 q^{7} + 12 q^{11} - 8 q^{16} + 18 q^{17} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 2 q^{28} - 6 q^{31} - 30 q^{35} - 2 q^{37} - 12 q^{41} + 4 q^{43} + 12 q^{44} + 6 q^{46} - 18 q^{47} - 2 q^{49}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.483662 + 0.837727i −0.216300 + 0.374643i −0.953674 0.300842i \(-0.902732\pi\)
0.737374 + 0.675485i \(0.236066\pi\)
\(6\) 0 0
\(7\) −0.238876 2.63495i −0.0902867 0.995916i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.837727 + 0.483662i −0.264913 + 0.152947i
\(11\) 4.82689 2.78681i 1.45536 0.840254i 0.456584 0.889680i \(-0.349073\pi\)
0.998778 + 0.0494264i \(0.0157393\pi\)
\(12\) 0 0
\(13\) 4.35199i 1.20702i 0.797354 + 0.603512i \(0.206233\pi\)
−0.797354 + 0.603512i \(0.793767\pi\)
\(14\) 1.11060 2.40137i 0.296820 0.641793i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.97267 3.41677i −0.478443 0.828688i 0.521251 0.853403i \(-0.325465\pi\)
−0.999695 + 0.0247150i \(0.992132\pi\)
\(18\) 0 0
\(19\) 3.86796 + 2.23317i 0.887371 + 0.512324i 0.873082 0.487574i \(-0.162118\pi\)
0.0142896 + 0.999898i \(0.495451\pi\)
\(20\) −0.967324 −0.216300
\(21\) 0 0
\(22\) 5.57361 1.18830
\(23\) 2.29786 + 1.32667i 0.479137 + 0.276630i 0.720057 0.693915i \(-0.244116\pi\)
−0.240920 + 0.970545i \(0.577449\pi\)
\(24\) 0 0
\(25\) 2.03214 + 3.51977i 0.406428 + 0.703955i
\(26\) −2.17600 + 3.76893i −0.426748 + 0.739149i
\(27\) 0 0
\(28\) 2.16249 1.52435i 0.408673 0.288074i
\(29\) 5.32498i 0.988825i −0.869228 0.494412i \(-0.835383\pi\)
0.869228 0.494412i \(-0.164617\pi\)
\(30\) 0 0
\(31\) 5.34038 3.08327i 0.959161 0.553772i 0.0632466 0.997998i \(-0.479855\pi\)
0.895915 + 0.444226i \(0.146521\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 3.94535i 0.676621i
\(35\) 2.32290 + 1.07431i 0.392642 + 0.181592i
\(36\) 0 0
\(37\) 0.243608 0.421942i 0.0400490 0.0693669i −0.845306 0.534282i \(-0.820582\pi\)
0.885355 + 0.464915i \(0.153915\pi\)
\(38\) 2.23317 + 3.86796i 0.362268 + 0.627466i
\(39\) 0 0
\(40\) −0.837727 0.483662i −0.132456 0.0764737i
\(41\) 0.163771 0.0255768 0.0127884 0.999918i \(-0.495929\pi\)
0.0127884 + 0.999918i \(0.495929\pi\)
\(42\) 0 0
\(43\) 8.70089 1.32687 0.663437 0.748232i \(-0.269097\pi\)
0.663437 + 0.748232i \(0.269097\pi\)
\(44\) 4.82689 + 2.78681i 0.727681 + 0.420127i
\(45\) 0 0
\(46\) 1.32667 + 2.29786i 0.195607 + 0.338801i
\(47\) −4.74500 + 8.21859i −0.692130 + 1.19880i 0.279009 + 0.960289i \(0.409994\pi\)
−0.971139 + 0.238516i \(0.923339\pi\)
\(48\) 0 0
\(49\) −6.88588 + 1.25885i −0.983697 + 0.179836i
\(50\) 4.06428i 0.574777i
\(51\) 0 0
\(52\) −3.76893 + 2.17600i −0.522657 + 0.301756i
\(53\) 1.74520 1.00759i 0.239722 0.138403i −0.375327 0.926892i \(-0.622470\pi\)
0.615049 + 0.788489i \(0.289136\pi\)
\(54\) 0 0
\(55\) 5.39149i 0.726988i
\(56\) 2.63495 0.238876i 0.352109 0.0319212i
\(57\) 0 0
\(58\) 2.66249 4.61157i 0.349602 0.605529i
\(59\) 0.836931 + 1.44961i 0.108959 + 0.188723i 0.915349 0.402662i \(-0.131915\pi\)
−0.806390 + 0.591384i \(0.798582\pi\)
\(60\) 0 0
\(61\) 4.47927 + 2.58611i 0.573512 + 0.331117i 0.758551 0.651614i \(-0.225908\pi\)
−0.185039 + 0.982731i \(0.559241\pi\)
\(62\) 6.16655 0.783152
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.64578 2.10489i −0.452203 0.261080i
\(66\) 0 0
\(67\) 2.72126 + 4.71336i 0.332455 + 0.575828i 0.982993 0.183645i \(-0.0587898\pi\)
−0.650538 + 0.759474i \(0.725456\pi\)
\(68\) 1.97267 3.41677i 0.239222 0.414344i
\(69\) 0 0
\(70\) 1.47454 + 2.09183i 0.176241 + 0.250022i
\(71\) 3.64006i 0.431996i −0.976394 0.215998i \(-0.930700\pi\)
0.976394 0.215998i \(-0.0693005\pi\)
\(72\) 0 0
\(73\) −2.15468 + 1.24401i −0.252186 + 0.145600i −0.620765 0.783997i \(-0.713178\pi\)
0.368579 + 0.929597i \(0.379845\pi\)
\(74\) 0.421942 0.243608i 0.0490498 0.0283189i
\(75\) 0 0
\(76\) 4.46634i 0.512324i
\(77\) −8.49611 12.0529i −0.968222 1.37355i
\(78\) 0 0
\(79\) −2.30121 + 3.98581i −0.258906 + 0.448438i −0.965949 0.258732i \(-0.916695\pi\)
0.707043 + 0.707170i \(0.250029\pi\)
\(80\) −0.483662 0.837727i −0.0540751 0.0936608i
\(81\) 0 0
\(82\) 0.141830 + 0.0818856i 0.0156625 + 0.00904275i
\(83\) −8.41959 −0.924170 −0.462085 0.886836i \(-0.652898\pi\)
−0.462085 + 0.886836i \(0.652898\pi\)
\(84\) 0 0
\(85\) 3.81643 0.413950
\(86\) 7.53520 + 4.35045i 0.812541 + 0.469121i
\(87\) 0 0
\(88\) 2.78681 + 4.82689i 0.297075 + 0.514548i
\(89\) 2.05811 3.56475i 0.218159 0.377863i −0.736086 0.676888i \(-0.763328\pi\)
0.954245 + 0.299025i \(0.0966615\pi\)
\(90\) 0 0
\(91\) 11.4673 1.03959i 1.20210 0.108978i
\(92\) 2.65334i 0.276630i
\(93\) 0 0
\(94\) −8.21859 + 4.74500i −0.847683 + 0.489410i
\(95\) −3.74157 + 2.16020i −0.383877 + 0.221632i
\(96\) 0 0
\(97\) 11.8552i 1.20372i 0.798603 + 0.601859i \(0.205573\pi\)
−0.798603 + 0.601859i \(0.794427\pi\)
\(98\) −6.59277 2.35274i −0.665970 0.237663i
\(99\) 0 0
\(100\) −2.03214 + 3.51977i −0.203214 + 0.351977i
\(101\) −2.65813 4.60402i −0.264494 0.458117i 0.702937 0.711252i \(-0.251872\pi\)
−0.967431 + 0.253135i \(0.918538\pi\)
\(102\) 0 0
\(103\) −7.74616 4.47225i −0.763252 0.440664i 0.0672102 0.997739i \(-0.478590\pi\)
−0.830462 + 0.557075i \(0.811924\pi\)
\(104\) −4.35199 −0.426748
\(105\) 0 0
\(106\) 2.01518 0.195732
\(107\) −16.5898 9.57813i −1.60380 0.925953i −0.990718 0.135931i \(-0.956597\pi\)
−0.613079 0.790022i \(-0.710069\pi\)
\(108\) 0 0
\(109\) −9.62168 16.6652i −0.921590 1.59624i −0.796955 0.604038i \(-0.793557\pi\)
−0.124635 0.992203i \(-0.539776\pi\)
\(110\) −2.69574 + 4.66917i −0.257029 + 0.445188i
\(111\) 0 0
\(112\) 2.40137 + 1.11060i 0.226908 + 0.104942i
\(113\) 8.44316i 0.794266i 0.917761 + 0.397133i \(0.129995\pi\)
−0.917761 + 0.397133i \(0.870005\pi\)
\(114\) 0 0
\(115\) −2.22278 + 1.28332i −0.207275 + 0.119670i
\(116\) 4.61157 2.66249i 0.428174 0.247206i
\(117\) 0 0
\(118\) 1.67386i 0.154091i
\(119\) −8.53178 + 6.01407i −0.782107 + 0.551309i
\(120\) 0 0
\(121\) 10.0326 17.3769i 0.912053 1.57972i
\(122\) 2.58611 + 4.47927i 0.234135 + 0.405534i
\(123\) 0 0
\(124\) 5.34038 + 3.08327i 0.479581 + 0.276886i
\(125\) −8.76810 −0.784243
\(126\) 0 0
\(127\) 3.31883 0.294498 0.147249 0.989099i \(-0.452958\pi\)
0.147249 + 0.989099i \(0.452958\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.10489 3.64578i −0.184611 0.319756i
\(131\) 9.37335 16.2351i 0.818954 1.41847i −0.0875000 0.996165i \(-0.527888\pi\)
0.906454 0.422305i \(-0.138779\pi\)
\(132\) 0 0
\(133\) 4.96031 10.7253i 0.430114 0.930003i
\(134\) 5.44252i 0.470162i
\(135\) 0 0
\(136\) 3.41677 1.97267i 0.292986 0.169155i
\(137\) 14.6656 8.46717i 1.25296 0.723399i 0.281267 0.959630i \(-0.409245\pi\)
0.971697 + 0.236230i \(0.0759120\pi\)
\(138\) 0 0
\(139\) 12.1281i 1.02869i 0.857582 + 0.514347i \(0.171966\pi\)
−0.857582 + 0.514347i \(0.828034\pi\)
\(140\) 0.231071 + 2.54885i 0.0195290 + 0.215417i
\(141\) 0 0
\(142\) 1.82003 3.15239i 0.152734 0.264543i
\(143\) 12.1282 + 21.0066i 1.01421 + 1.75666i
\(144\) 0 0
\(145\) 4.46088 + 2.57549i 0.370456 + 0.213883i
\(146\) −2.48801 −0.205909
\(147\) 0 0
\(148\) 0.487217 0.0400490
\(149\) −7.56951 4.37026i −0.620118 0.358025i 0.156797 0.987631i \(-0.449883\pi\)
−0.776915 + 0.629606i \(0.783217\pi\)
\(150\) 0 0
\(151\) −11.0471 19.1341i −0.898997 1.55711i −0.828778 0.559578i \(-0.810963\pi\)
−0.0702195 0.997532i \(-0.522370\pi\)
\(152\) −2.23317 + 3.86796i −0.181134 + 0.313733i
\(153\) 0 0
\(154\) −1.33140 14.6862i −0.107288 1.18345i
\(155\) 5.96505i 0.479124i
\(156\) 0 0
\(157\) −1.23372 + 0.712287i −0.0984614 + 0.0568467i −0.548422 0.836202i \(-0.684771\pi\)
0.449961 + 0.893048i \(0.351438\pi\)
\(158\) −3.98581 + 2.30121i −0.317094 + 0.183074i
\(159\) 0 0
\(160\) 0.967324i 0.0764737i
\(161\) 2.94680 6.37165i 0.232241 0.502157i
\(162\) 0 0
\(163\) −3.72148 + 6.44579i −0.291489 + 0.504873i −0.974162 0.225851i \(-0.927484\pi\)
0.682673 + 0.730724i \(0.260817\pi\)
\(164\) 0.0818856 + 0.141830i 0.00639419 + 0.0110751i
\(165\) 0 0
\(166\) −7.29158 4.20979i −0.565936 0.326743i
\(167\) −6.49710 −0.502761 −0.251380 0.967888i \(-0.580884\pi\)
−0.251380 + 0.967888i \(0.580884\pi\)
\(168\) 0 0
\(169\) −5.93982 −0.456909
\(170\) 3.30512 + 1.90821i 0.253491 + 0.146353i
\(171\) 0 0
\(172\) 4.35045 + 7.53520i 0.331718 + 0.574553i
\(173\) 5.90938 10.2354i 0.449282 0.778179i −0.549057 0.835785i \(-0.685013\pi\)
0.998339 + 0.0576053i \(0.0183465\pi\)
\(174\) 0 0
\(175\) 8.78898 6.19537i 0.664384 0.468326i
\(176\) 5.57361i 0.420127i
\(177\) 0 0
\(178\) 3.56475 2.05811i 0.267189 0.154262i
\(179\) 2.10764 1.21685i 0.157533 0.0909515i −0.419161 0.907912i \(-0.637676\pi\)
0.576694 + 0.816960i \(0.304343\pi\)
\(180\) 0 0
\(181\) 11.5342i 0.857327i 0.903464 + 0.428663i \(0.141015\pi\)
−0.903464 + 0.428663i \(0.858985\pi\)
\(182\) 10.4507 + 4.83332i 0.774660 + 0.358270i
\(183\) 0 0
\(184\) −1.32667 + 2.29786i −0.0978035 + 0.169401i
\(185\) 0.235648 + 0.408155i 0.0173252 + 0.0300081i
\(186\) 0 0
\(187\) −19.0438 10.9949i −1.39262 0.804028i
\(188\) −9.49001 −0.692130
\(189\) 0 0
\(190\) −4.32040 −0.313435
\(191\) −19.1122 11.0345i −1.38291 0.798425i −0.390409 0.920641i \(-0.627666\pi\)
−0.992503 + 0.122216i \(0.961000\pi\)
\(192\) 0 0
\(193\) 9.96979 + 17.2682i 0.717641 + 1.24299i 0.961932 + 0.273289i \(0.0881116\pi\)
−0.244291 + 0.969702i \(0.578555\pi\)
\(194\) −5.92762 + 10.2669i −0.425578 + 0.737123i
\(195\) 0 0
\(196\) −4.53314 5.33392i −0.323795 0.380994i
\(197\) 4.62560i 0.329560i 0.986330 + 0.164780i \(0.0526914\pi\)
−0.986330 + 0.164780i \(0.947309\pi\)
\(198\) 0 0
\(199\) −18.1024 + 10.4514i −1.28324 + 0.740882i −0.977440 0.211212i \(-0.932259\pi\)
−0.305805 + 0.952094i \(0.598925\pi\)
\(200\) −3.51977 + 2.03214i −0.248886 + 0.143694i
\(201\) 0 0
\(202\) 5.31626i 0.374051i
\(203\) −14.0310 + 1.27201i −0.984786 + 0.0892777i
\(204\) 0 0
\(205\) −0.0792099 + 0.137196i −0.00553226 + 0.00958215i
\(206\) −4.47225 7.74616i −0.311596 0.539701i
\(207\) 0 0
\(208\) −3.76893 2.17600i −0.261329 0.150878i
\(209\) 24.8936 1.72193
\(210\) 0 0
\(211\) 6.68620 0.460297 0.230148 0.973156i \(-0.426079\pi\)
0.230148 + 0.973156i \(0.426079\pi\)
\(212\) 1.74520 + 1.00759i 0.119861 + 0.0692017i
\(213\) 0 0
\(214\) −9.57813 16.5898i −0.654747 1.13406i
\(215\) −4.20829 + 7.28898i −0.287003 + 0.497104i
\(216\) 0 0
\(217\) −9.39995 13.3351i −0.638110 0.905246i
\(218\) 19.2434i 1.30333i
\(219\) 0 0
\(220\) −4.66917 + 2.69574i −0.314795 + 0.181747i
\(221\) 14.8697 8.58505i 1.00025 0.577493i
\(222\) 0 0
\(223\) 8.18246i 0.547938i 0.961738 + 0.273969i \(0.0883366\pi\)
−0.961738 + 0.273969i \(0.911663\pi\)
\(224\) 1.52435 + 2.16249i 0.101850 + 0.144488i
\(225\) 0 0
\(226\) −4.22158 + 7.31199i −0.280815 + 0.486386i
\(227\) 5.34688 + 9.26106i 0.354885 + 0.614678i 0.987098 0.160116i \(-0.0511868\pi\)
−0.632214 + 0.774794i \(0.717853\pi\)
\(228\) 0 0
\(229\) −25.2942 14.6036i −1.67149 0.965034i −0.966806 0.255510i \(-0.917757\pi\)
−0.704682 0.709524i \(-0.748910\pi\)
\(230\) −2.56664 −0.169239
\(231\) 0 0
\(232\) 5.32498 0.349602
\(233\) −5.57664 3.21967i −0.365338 0.210928i 0.306082 0.952005i \(-0.400982\pi\)
−0.671420 + 0.741077i \(0.734315\pi\)
\(234\) 0 0
\(235\) −4.58996 7.95004i −0.299416 0.518603i
\(236\) −0.836931 + 1.44961i −0.0544796 + 0.0943614i
\(237\) 0 0
\(238\) −10.3958 + 0.942449i −0.673858 + 0.0610899i
\(239\) 4.63557i 0.299850i −0.988697 0.149925i \(-0.952097\pi\)
0.988697 0.149925i \(-0.0479032\pi\)
\(240\) 0 0
\(241\) −9.08846 + 5.24722i −0.585439 + 0.338003i −0.763292 0.646054i \(-0.776418\pi\)
0.177853 + 0.984057i \(0.443085\pi\)
\(242\) 17.3769 10.0326i 1.11703 0.644919i
\(243\) 0 0
\(244\) 5.17221i 0.331117i
\(245\) 2.27586 6.37734i 0.145400 0.407434i
\(246\) 0 0
\(247\) −9.71873 + 16.8333i −0.618388 + 1.07108i
\(248\) 3.08327 + 5.34038i 0.195788 + 0.339115i
\(249\) 0 0
\(250\) −7.59340 4.38405i −0.480249 0.277272i
\(251\) −7.85271 −0.495659 −0.247829 0.968804i \(-0.579717\pi\)
−0.247829 + 0.968804i \(0.579717\pi\)
\(252\) 0 0
\(253\) 14.7887 0.929758
\(254\) 2.87419 + 1.65941i 0.180343 + 0.104121i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.71568 2.97164i 0.107021 0.185366i −0.807541 0.589811i \(-0.799202\pi\)
0.914562 + 0.404445i \(0.132535\pi\)
\(258\) 0 0
\(259\) −1.16999 0.541103i −0.0726995 0.0336225i
\(260\) 4.20979i 0.261080i
\(261\) 0 0
\(262\) 16.2351 9.37335i 1.00301 0.579088i
\(263\) −3.17080 + 1.83066i −0.195520 + 0.112883i −0.594564 0.804048i \(-0.702675\pi\)
0.399044 + 0.916932i \(0.369342\pi\)
\(264\) 0 0
\(265\) 1.94934i 0.119747i
\(266\) 9.65842 6.80824i 0.592196 0.417440i
\(267\) 0 0
\(268\) −2.72126 + 4.71336i −0.166227 + 0.287914i
\(269\) 6.34303 + 10.9865i 0.386741 + 0.669856i 0.992009 0.126166i \(-0.0402673\pi\)
−0.605268 + 0.796022i \(0.706934\pi\)
\(270\) 0 0
\(271\) −17.2136 9.93828i −1.04565 0.603708i −0.124223 0.992254i \(-0.539644\pi\)
−0.921429 + 0.388547i \(0.872977\pi\)
\(272\) 3.94535 0.239222
\(273\) 0 0
\(274\) 16.9343 1.02304
\(275\) 19.6179 + 11.3264i 1.18300 + 0.683006i
\(276\) 0 0
\(277\) 3.73302 + 6.46579i 0.224296 + 0.388491i 0.956108 0.293015i \(-0.0946585\pi\)
−0.731812 + 0.681506i \(0.761325\pi\)
\(278\) −6.06406 + 10.5033i −0.363698 + 0.629944i
\(279\) 0 0
\(280\) −1.07431 + 2.32290i −0.0642023 + 0.138820i
\(281\) 22.2564i 1.32771i 0.747862 + 0.663854i \(0.231080\pi\)
−0.747862 + 0.663854i \(0.768920\pi\)
\(282\) 0 0
\(283\) −14.0125 + 8.09012i −0.832957 + 0.480908i −0.854864 0.518852i \(-0.826359\pi\)
0.0219073 + 0.999760i \(0.493026\pi\)
\(284\) 3.15239 1.82003i 0.187060 0.107999i
\(285\) 0 0
\(286\) 24.2563i 1.43431i
\(287\) −0.0391210 0.431528i −0.00230924 0.0254723i
\(288\) 0 0
\(289\) 0.717124 1.24210i 0.0421838 0.0730644i
\(290\) 2.57549 + 4.46088i 0.151238 + 0.261952i
\(291\) 0 0
\(292\) −2.15468 1.24401i −0.126093 0.0727999i
\(293\) −8.86813 −0.518082 −0.259041 0.965866i \(-0.583406\pi\)
−0.259041 + 0.965866i \(0.583406\pi\)
\(294\) 0 0
\(295\) −1.61917 −0.0942715
\(296\) 0.421942 + 0.243608i 0.0245249 + 0.0141595i
\(297\) 0 0
\(298\) −4.37026 7.56951i −0.253162 0.438490i
\(299\) −5.77366 + 10.0003i −0.333899 + 0.578331i
\(300\) 0 0
\(301\) −2.07844 22.9264i −0.119799 1.32145i
\(302\) 22.0941i 1.27137i
\(303\) 0 0
\(304\) −3.86796 + 2.23317i −0.221843 + 0.128081i
\(305\) −4.33290 + 2.50160i −0.248101 + 0.143241i
\(306\) 0 0
\(307\) 27.1427i 1.54912i −0.632501 0.774559i \(-0.717972\pi\)
0.632501 0.774559i \(-0.282028\pi\)
\(308\) 6.19005 13.3843i 0.352711 0.762641i
\(309\) 0 0
\(310\) −2.98252 + 5.16588i −0.169396 + 0.293402i
\(311\) 8.44774 + 14.6319i 0.479028 + 0.829700i 0.999711 0.0240499i \(-0.00765605\pi\)
−0.520683 + 0.853750i \(0.674323\pi\)
\(312\) 0 0
\(313\) −3.70433 2.13870i −0.209381 0.120886i 0.391643 0.920117i \(-0.371907\pi\)
−0.601024 + 0.799231i \(0.705240\pi\)
\(314\) −1.42457 −0.0803934
\(315\) 0 0
\(316\) −4.60242 −0.258906
\(317\) 5.74123 + 3.31470i 0.322460 + 0.186172i 0.652488 0.757799i \(-0.273725\pi\)
−0.330029 + 0.943971i \(0.607058\pi\)
\(318\) 0 0
\(319\) −14.8397 25.7031i −0.830864 1.43910i
\(320\) 0.483662 0.837727i 0.0270375 0.0468304i
\(321\) 0 0
\(322\) 5.73783 4.04461i 0.319757 0.225397i
\(323\) 17.6212i 0.980472i
\(324\) 0 0
\(325\) −15.3180 + 8.84386i −0.849691 + 0.490569i
\(326\) −6.44579 + 3.72148i −0.356999 + 0.206114i
\(327\) 0 0
\(328\) 0.163771i 0.00904275i
\(329\) 22.7890 + 10.5396i 1.25640 + 0.581067i
\(330\) 0 0
\(331\) 0.378896 0.656267i 0.0208260 0.0360717i −0.855425 0.517927i \(-0.826704\pi\)
0.876251 + 0.481856i \(0.160037\pi\)
\(332\) −4.20979 7.29158i −0.231042 0.400177i
\(333\) 0 0
\(334\) −5.62665 3.24855i −0.307877 0.177753i
\(335\) −5.26468 −0.287640
\(336\) 0 0
\(337\) −2.02176 −0.110132 −0.0550660 0.998483i \(-0.517537\pi\)
−0.0550660 + 0.998483i \(0.517537\pi\)
\(338\) −5.14404 2.96991i −0.279799 0.161542i
\(339\) 0 0
\(340\) 1.90821 + 3.30512i 0.103487 + 0.179245i
\(341\) 17.1850 29.7652i 0.930618 1.61188i
\(342\) 0 0
\(343\) 4.96188 + 17.8432i 0.267916 + 0.963442i
\(344\) 8.70089i 0.469121i
\(345\) 0 0
\(346\) 10.2354 5.90938i 0.550256 0.317690i
\(347\) −18.1572 + 10.4831i −0.974730 + 0.562761i −0.900675 0.434494i \(-0.856927\pi\)
−0.0740550 + 0.997254i \(0.523594\pi\)
\(348\) 0 0
\(349\) 6.19389i 0.331551i −0.986164 0.165776i \(-0.946987\pi\)
0.986164 0.165776i \(-0.0530127\pi\)
\(350\) 10.7092 0.970861i 0.572429 0.0518947i
\(351\) 0 0
\(352\) −2.78681 + 4.82689i −0.148537 + 0.257274i
\(353\) −9.41889 16.3140i −0.501317 0.868306i −0.999999 0.00152110i \(-0.999516\pi\)
0.498682 0.866785i \(-0.333818\pi\)
\(354\) 0 0
\(355\) 3.04938 + 1.76056i 0.161844 + 0.0934409i
\(356\) 4.11622 0.218159
\(357\) 0 0
\(358\) 2.43370 0.128625
\(359\) 24.0735 + 13.8988i 1.27055 + 0.733553i 0.975092 0.221803i \(-0.0711942\pi\)
0.295459 + 0.955355i \(0.404527\pi\)
\(360\) 0 0
\(361\) 0.474089 + 0.821146i 0.0249520 + 0.0432182i
\(362\) −5.76708 + 9.98887i −0.303111 + 0.525003i
\(363\) 0 0
\(364\) 6.63394 + 9.41114i 0.347713 + 0.493278i
\(365\) 2.40671i 0.125973i
\(366\) 0 0
\(367\) 18.8390 10.8767i 0.983388 0.567759i 0.0800968 0.996787i \(-0.474477\pi\)
0.903291 + 0.429028i \(0.141144\pi\)
\(368\) −2.29786 + 1.32667i −0.119784 + 0.0691575i
\(369\) 0 0
\(370\) 0.471297i 0.0245016i
\(371\) −3.07184 4.35782i −0.159482 0.226247i
\(372\) 0 0
\(373\) −5.86560 + 10.1595i −0.303709 + 0.526040i −0.976973 0.213362i \(-0.931558\pi\)
0.673264 + 0.739402i \(0.264892\pi\)
\(374\) −10.9949 19.0438i −0.568533 0.984729i
\(375\) 0 0
\(376\) −8.21859 4.74500i −0.423841 0.244705i
\(377\) 23.1743 1.19354
\(378\) 0 0
\(379\) 34.8881 1.79208 0.896041 0.443971i \(-0.146431\pi\)
0.896041 + 0.443971i \(0.146431\pi\)
\(380\) −3.74157 2.16020i −0.191939 0.110816i
\(381\) 0 0
\(382\) −11.0345 19.1122i −0.564572 0.977867i
\(383\) −5.92412 + 10.2609i −0.302708 + 0.524306i −0.976748 0.214389i \(-0.931224\pi\)
0.674040 + 0.738695i \(0.264557\pi\)
\(384\) 0 0
\(385\) 14.2063 1.28790i 0.724019 0.0656374i
\(386\) 19.9396i 1.01490i
\(387\) 0 0
\(388\) −10.2669 + 5.92762i −0.521225 + 0.300929i
\(389\) −5.50224 + 3.17672i −0.278975 + 0.161066i −0.632959 0.774185i \(-0.718160\pi\)
0.353984 + 0.935251i \(0.384827\pi\)
\(390\) 0 0
\(391\) 10.4684i 0.529407i
\(392\) −1.25885 6.88588i −0.0635816 0.347789i
\(393\) 0 0
\(394\) −2.31280 + 4.00588i −0.116517 + 0.201814i
\(395\) −2.22601 3.85557i −0.112003 0.193995i
\(396\) 0 0
\(397\) −7.42647 4.28768i −0.372724 0.215192i 0.301924 0.953332i \(-0.402371\pi\)
−0.674648 + 0.738140i \(0.735704\pi\)
\(398\) −20.9028 −1.04777
\(399\) 0 0
\(400\) −4.06428 −0.203214
\(401\) −20.0216 11.5595i −0.999833 0.577254i −0.0916343 0.995793i \(-0.529209\pi\)
−0.908199 + 0.418539i \(0.862542\pi\)
\(402\) 0 0
\(403\) 13.4184 + 23.2413i 0.668417 + 1.15773i
\(404\) 2.65813 4.60402i 0.132247 0.229058i
\(405\) 0 0
\(406\) −12.7872 5.91393i −0.634620 0.293503i
\(407\) 2.71556i 0.134605i
\(408\) 0 0
\(409\) 1.35091 0.779947i 0.0667981 0.0385659i −0.466229 0.884664i \(-0.654388\pi\)
0.533027 + 0.846098i \(0.321054\pi\)
\(410\) −0.137196 + 0.0792099i −0.00677561 + 0.00391190i
\(411\) 0 0
\(412\) 8.94450i 0.440664i
\(413\) 3.61971 2.55154i 0.178114 0.125553i
\(414\) 0 0
\(415\) 4.07224 7.05332i 0.199898 0.346234i
\(416\) −2.17600 3.76893i −0.106687 0.184787i
\(417\) 0 0
\(418\) 21.5585 + 12.4468i 1.05446 + 0.608794i
\(419\) 6.81644 0.333005 0.166502 0.986041i \(-0.446753\pi\)
0.166502 + 0.986041i \(0.446753\pi\)
\(420\) 0 0
\(421\) 13.5145 0.658659 0.329329 0.944215i \(-0.393177\pi\)
0.329329 + 0.944215i \(0.393177\pi\)
\(422\) 5.79042 + 3.34310i 0.281873 + 0.162740i
\(423\) 0 0
\(424\) 1.00759 + 1.74520i 0.0489330 + 0.0847544i
\(425\) 8.01750 13.8867i 0.388906 0.673605i
\(426\) 0 0
\(427\) 5.74426 12.4204i 0.277984 0.601065i
\(428\) 19.1563i 0.925953i
\(429\) 0 0
\(430\) −7.28898 + 4.20829i −0.351506 + 0.202942i
\(431\) −12.2628 + 7.07990i −0.590676 + 0.341027i −0.765365 0.643597i \(-0.777441\pi\)
0.174689 + 0.984624i \(0.444108\pi\)
\(432\) 0 0
\(433\) 23.4830i 1.12852i 0.825597 + 0.564260i \(0.190839\pi\)
−0.825597 + 0.564260i \(0.809161\pi\)
\(434\) −1.47304 16.2485i −0.0707082 0.779954i
\(435\) 0 0
\(436\) 9.62168 16.6652i 0.460795 0.798121i
\(437\) 5.92536 + 10.2630i 0.283449 + 0.490947i
\(438\) 0 0
\(439\) −3.66398 2.11540i −0.174872 0.100963i 0.410009 0.912081i \(-0.365526\pi\)
−0.584881 + 0.811119i \(0.698859\pi\)
\(440\) −5.39149 −0.257029
\(441\) 0 0
\(442\) 17.1701 0.816699
\(443\) 25.8161 + 14.9049i 1.22656 + 0.708154i 0.966308 0.257388i \(-0.0828618\pi\)
0.260250 + 0.965541i \(0.416195\pi\)
\(444\) 0 0
\(445\) 1.99086 + 3.44827i 0.0943757 + 0.163464i
\(446\) −4.09123 + 7.08622i −0.193725 + 0.335542i
\(447\) 0 0
\(448\) 0.238876 + 2.63495i 0.0112858 + 0.124489i
\(449\) 8.41716i 0.397230i −0.980078 0.198615i \(-0.936356\pi\)
0.980078 0.198615i \(-0.0636444\pi\)
\(450\) 0 0
\(451\) 0.790505 0.456399i 0.0372234 0.0214910i
\(452\) −7.31199 + 4.22158i −0.343927 + 0.198566i
\(453\) 0 0
\(454\) 10.6938i 0.501883i
\(455\) −4.67539 + 10.1092i −0.219186 + 0.473929i
\(456\) 0 0
\(457\) 1.94109 3.36207i 0.0908006 0.157271i −0.817048 0.576570i \(-0.804391\pi\)
0.907848 + 0.419299i \(0.137724\pi\)
\(458\) −14.6036 25.2942i −0.682382 1.18192i
\(459\) 0 0
\(460\) −2.22278 1.28332i −0.103638 0.0598352i
\(461\) −34.0846 −1.58748 −0.793739 0.608259i \(-0.791868\pi\)
−0.793739 + 0.608259i \(0.791868\pi\)
\(462\) 0 0
\(463\) 12.2192 0.567877 0.283938 0.958843i \(-0.408359\pi\)
0.283938 + 0.958843i \(0.408359\pi\)
\(464\) 4.61157 + 2.66249i 0.214087 + 0.123603i
\(465\) 0 0
\(466\) −3.21967 5.57664i −0.149148 0.258333i
\(467\) −15.4057 + 26.6835i −0.712893 + 1.23477i 0.250874 + 0.968020i \(0.419282\pi\)
−0.963767 + 0.266747i \(0.914051\pi\)
\(468\) 0 0
\(469\) 11.7694 8.29628i 0.543460 0.383087i
\(470\) 9.17991i 0.423438i
\(471\) 0 0
\(472\) −1.44961 + 0.836931i −0.0667236 + 0.0385229i
\(473\) 41.9983 24.2477i 1.93108 1.11491i
\(474\) 0 0
\(475\) 18.1525i 0.832892i
\(476\) −9.47423 4.38170i −0.434250 0.200835i
\(477\) 0 0
\(478\) 2.31778 4.01452i 0.106013 0.183620i
\(479\) 20.8747 + 36.1560i 0.953788 + 1.65201i 0.737118 + 0.675764i \(0.236186\pi\)
0.216670 + 0.976245i \(0.430481\pi\)
\(480\) 0 0
\(481\) 1.83629 + 1.06018i 0.0837276 + 0.0483401i
\(482\) −10.4944 −0.478009
\(483\) 0 0
\(484\) 20.0652 0.912053
\(485\) −9.93146 5.73393i −0.450964 0.260364i
\(486\) 0 0
\(487\) 10.5832 + 18.3306i 0.479568 + 0.830637i 0.999725 0.0234338i \(-0.00745988\pi\)
−0.520157 + 0.854071i \(0.674127\pi\)
\(488\) −2.58611 + 4.47927i −0.117068 + 0.202767i
\(489\) 0 0
\(490\) 5.15963 4.38501i 0.233088 0.198095i
\(491\) 37.3463i 1.68541i 0.538373 + 0.842707i \(0.319039\pi\)
−0.538373 + 0.842707i \(0.680961\pi\)
\(492\) 0 0
\(493\) −18.1942 + 10.5044i −0.819427 + 0.473097i
\(494\) −16.8333 + 9.71873i −0.757368 + 0.437266i
\(495\) 0 0
\(496\) 6.16655i 0.276886i
\(497\) −9.59137 + 0.869525i −0.430232 + 0.0390035i
\(498\) 0 0
\(499\) −13.7099 + 23.7462i −0.613738 + 1.06303i 0.376867 + 0.926267i \(0.377001\pi\)
−0.990605 + 0.136758i \(0.956332\pi\)
\(500\) −4.38405 7.59340i −0.196061 0.339587i
\(501\) 0 0
\(502\) −6.80065 3.92635i −0.303528 0.175242i
\(503\) 11.2791 0.502909 0.251454 0.967869i \(-0.419091\pi\)
0.251454 + 0.967869i \(0.419091\pi\)
\(504\) 0 0
\(505\) 5.14255 0.228840
\(506\) 12.8074 + 7.39435i 0.569358 + 0.328719i
\(507\) 0 0
\(508\) 1.65941 + 2.87419i 0.0736246 + 0.127522i
\(509\) −9.31667 + 16.1370i −0.412954 + 0.715258i −0.995211 0.0977470i \(-0.968836\pi\)
0.582257 + 0.813005i \(0.302170\pi\)
\(510\) 0 0
\(511\) 3.79259 + 5.38031i 0.167774 + 0.238011i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 2.97164 1.71568i 0.131074 0.0756753i
\(515\) 7.49305 4.32611i 0.330183 0.190631i
\(516\) 0 0
\(517\) 52.8936i 2.32626i
\(518\) −0.742687 1.05360i −0.0326318 0.0462926i
\(519\) 0 0
\(520\) 2.10489 3.64578i 0.0923056 0.159878i
\(521\) 7.64255 + 13.2373i 0.334826 + 0.579936i 0.983451 0.181172i \(-0.0579891\pi\)
−0.648625 + 0.761108i \(0.724656\pi\)
\(522\) 0 0
\(523\) −31.5991 18.2437i −1.38173 0.797743i −0.389368 0.921082i \(-0.627306\pi\)
−0.992365 + 0.123339i \(0.960640\pi\)
\(524\) 18.7467 0.818954
\(525\) 0 0
\(526\) −3.66132 −0.159641
\(527\) −21.0697 12.1646i −0.917809 0.529897i
\(528\) 0 0
\(529\) −7.97989 13.8216i −0.346952 0.600938i
\(530\) −0.974668 + 1.68817i −0.0423369 + 0.0733296i
\(531\) 0 0
\(532\) 11.7686 1.06690i 0.510232 0.0462561i
\(533\) 0.712731i 0.0308718i
\(534\) 0 0
\(535\) 16.0477 9.26516i 0.693803 0.400568i
\(536\) −4.71336 + 2.72126i −0.203586 + 0.117540i
\(537\) 0 0
\(538\) 12.6861i 0.546935i
\(539\) −29.7292 + 25.2659i −1.28053 + 1.08828i
\(540\) 0 0
\(541\) 2.63647 4.56649i 0.113351 0.196329i −0.803769 0.594942i \(-0.797175\pi\)
0.917119 + 0.398613i \(0.130508\pi\)
\(542\) −9.93828 17.2136i −0.426886 0.739388i
\(543\) 0 0
\(544\) 3.41677 + 1.97267i 0.146493 + 0.0845776i
\(545\) 18.6146 0.797361
\(546\) 0 0
\(547\) 18.5966 0.795134 0.397567 0.917573i \(-0.369855\pi\)
0.397567 + 0.917573i \(0.369855\pi\)
\(548\) 14.6656 + 8.46717i 0.626482 + 0.361700i
\(549\) 0 0
\(550\) 11.3264 + 19.6179i 0.482958 + 0.836508i
\(551\) 11.8916 20.5968i 0.506599 0.877455i
\(552\) 0 0
\(553\) 11.0521 + 5.11144i 0.469983 + 0.217361i
\(554\) 7.46605i 0.317202i
\(555\) 0 0
\(556\) −10.5033 + 6.06406i −0.445438 + 0.257174i
\(557\) −23.8694 + 13.7810i −1.01138 + 0.583920i −0.911595 0.411089i \(-0.865149\pi\)
−0.0997845 + 0.995009i \(0.531815\pi\)
\(558\) 0 0
\(559\) 37.8662i 1.60157i
\(560\) −2.09183 + 1.47454i −0.0883960 + 0.0623105i
\(561\) 0 0
\(562\) −11.1282 + 19.2746i −0.469416 + 0.813052i
\(563\) −9.42577 16.3259i −0.397249 0.688055i 0.596137 0.802883i \(-0.296702\pi\)
−0.993385 + 0.114828i \(0.963368\pi\)
\(564\) 0 0
\(565\) −7.07306 4.08364i −0.297566 0.171800i
\(566\) −16.1802 −0.680106
\(567\) 0 0
\(568\) 3.64006 0.152734
\(569\) −3.87103 2.23494i −0.162282 0.0936936i 0.416659 0.909063i \(-0.363201\pi\)
−0.578942 + 0.815369i \(0.696534\pi\)
\(570\) 0 0
\(571\) −9.31245 16.1296i −0.389714 0.675004i 0.602697 0.797970i \(-0.294093\pi\)
−0.992411 + 0.122966i \(0.960759\pi\)
\(572\) −12.1282 + 21.0066i −0.507104 + 0.878329i
\(573\) 0 0
\(574\) 0.181884 0.393275i 0.00759170 0.0164150i
\(575\) 10.7839i 0.449721i
\(576\) 0 0
\(577\) 31.9418 18.4416i 1.32976 0.767735i 0.344495 0.938788i \(-0.388050\pi\)
0.985262 + 0.171053i \(0.0547170\pi\)
\(578\) 1.24210 0.717124i 0.0516644 0.0298284i
\(579\) 0 0
\(580\) 5.15098i 0.213883i
\(581\) 2.01124 + 22.1852i 0.0834403 + 0.920395i
\(582\) 0 0
\(583\) 5.61593 9.72707i 0.232588 0.402854i
\(584\) −1.24401 2.15468i −0.0514773 0.0891614i
\(585\) 0 0
\(586\) −7.68002 4.43406i −0.317259 0.183170i
\(587\) 26.4589 1.09208 0.546039 0.837760i \(-0.316135\pi\)
0.546039 + 0.837760i \(0.316135\pi\)
\(588\) 0 0
\(589\) 27.5419 1.13484
\(590\) −1.40224 0.809584i −0.0577293 0.0333300i
\(591\) 0 0
\(592\) 0.243608 + 0.421942i 0.0100122 + 0.0173417i
\(593\) 17.3351 30.0254i 0.711869 1.23299i −0.252285 0.967653i \(-0.581182\pi\)
0.964155 0.265341i \(-0.0854845\pi\)
\(594\) 0 0
\(595\) −0.911654 10.0561i −0.0373742 0.412259i
\(596\) 8.74051i 0.358025i
\(597\) 0 0
\(598\) −10.0003 + 5.77366i −0.408942 + 0.236103i
\(599\) −21.2079 + 12.2444i −0.866530 + 0.500291i −0.866193 0.499709i \(-0.833440\pi\)
−0.000336253 1.00000i \(0.500107\pi\)
\(600\) 0 0
\(601\) 22.3795i 0.912880i −0.889754 0.456440i \(-0.849124\pi\)
0.889754 0.456440i \(-0.150876\pi\)
\(602\) 9.66321 20.8940i 0.393843 0.851578i
\(603\) 0 0
\(604\) 11.0471 19.1341i 0.449499 0.778555i
\(605\) 9.70476 + 16.8091i 0.394554 + 0.683388i
\(606\) 0 0
\(607\) 28.2180 + 16.2917i 1.14533 + 0.661259i 0.947746 0.319026i \(-0.103356\pi\)
0.197589 + 0.980285i \(0.436689\pi\)
\(608\) −4.46634 −0.181134
\(609\) 0 0
\(610\) −5.00321 −0.202574
\(611\) −35.7672 20.6502i −1.44699 0.835418i
\(612\) 0 0
\(613\) 5.86931 + 10.1659i 0.237059 + 0.410598i 0.959869 0.280449i \(-0.0904832\pi\)
−0.722810 + 0.691047i \(0.757150\pi\)
\(614\) 13.5714 23.5063i 0.547696 0.948637i
\(615\) 0 0
\(616\) 12.0529 8.49611i 0.485625 0.342318i
\(617\) 44.1035i 1.77554i −0.460288 0.887770i \(-0.652254\pi\)
0.460288 0.887770i \(-0.347746\pi\)
\(618\) 0 0
\(619\) 4.28374 2.47322i 0.172178 0.0994070i −0.411434 0.911439i \(-0.634972\pi\)
0.583612 + 0.812032i \(0.301639\pi\)
\(620\) −5.16588 + 2.98252i −0.207467 + 0.119781i
\(621\) 0 0
\(622\) 16.8955i 0.677447i
\(623\) −9.88455 4.57147i −0.396016 0.183152i
\(624\) 0 0
\(625\) −5.91991 + 10.2536i −0.236797 + 0.410144i
\(626\) −2.13870 3.70433i −0.0854795 0.148055i
\(627\) 0 0
\(628\) −1.23372 0.712287i −0.0492307 0.0284233i
\(629\) −1.92224 −0.0766447
\(630\) 0 0
\(631\) −9.08478 −0.361659 −0.180830 0.983514i \(-0.557878\pi\)
−0.180830 + 0.983514i \(0.557878\pi\)
\(632\) −3.98581 2.30121i −0.158547 0.0915371i
\(633\) 0 0
\(634\) 3.31470 + 5.74123i 0.131644 + 0.228013i
\(635\) −1.60519 + 2.78027i −0.0637001 + 0.110332i
\(636\) 0 0
\(637\) −5.47851 29.9673i −0.217066 1.18735i
\(638\) 29.6794i 1.17502i
\(639\) 0 0
\(640\) 0.837727 0.483662i 0.0331141 0.0191184i
\(641\) −12.1954 + 7.04105i −0.481691 + 0.278105i −0.721121 0.692809i \(-0.756373\pi\)
0.239430 + 0.970914i \(0.423040\pi\)
\(642\) 0 0
\(643\) 8.46577i 0.333857i −0.985969 0.166929i \(-0.946615\pi\)
0.985969 0.166929i \(-0.0533850\pi\)
\(644\) 6.99141 0.633821i 0.275500 0.0249760i
\(645\) 0 0
\(646\) 8.81062 15.2604i 0.346649 0.600414i
\(647\) 12.1662 + 21.0725i 0.478304 + 0.828446i 0.999691 0.0248742i \(-0.00791854\pi\)
−0.521387 + 0.853320i \(0.674585\pi\)
\(648\) 0 0
\(649\) 8.07955 + 4.66473i 0.317150 + 0.183107i
\(650\) −17.6877 −0.693770
\(651\) 0 0
\(652\) −7.44296 −0.291489
\(653\) −36.0653 20.8223i −1.41134 0.814840i −0.415829 0.909443i \(-0.636509\pi\)
−0.995515 + 0.0946029i \(0.969842\pi\)
\(654\) 0 0
\(655\) 9.06707 + 15.7046i 0.354280 + 0.613631i
\(656\) −0.0818856 + 0.141830i −0.00319709 + 0.00553753i
\(657\) 0 0
\(658\) 14.4661 + 20.5221i 0.563946 + 0.800033i
\(659\) 10.5062i 0.409265i 0.978839 + 0.204632i \(0.0655999\pi\)
−0.978839 + 0.204632i \(0.934400\pi\)
\(660\) 0 0
\(661\) 16.8988 9.75655i 0.657289 0.379486i −0.133954 0.990987i \(-0.542768\pi\)
0.791243 + 0.611502i \(0.209434\pi\)
\(662\) 0.656267 0.378896i 0.0255065 0.0147262i
\(663\) 0 0
\(664\) 8.41959i 0.326743i
\(665\) 6.58578 + 9.34282i 0.255386 + 0.362299i
\(666\) 0 0
\(667\) 7.06450 12.2361i 0.273539 0.473783i
\(668\) −3.24855 5.62665i −0.125690 0.217702i
\(669\) 0 0
\(670\) −4.55935 2.63234i −0.176143 0.101696i
\(671\) 28.8279 1.11289
\(672\) 0 0
\(673\) 6.20554 0.239206 0.119603 0.992822i \(-0.461838\pi\)
0.119603 + 0.992822i \(0.461838\pi\)
\(674\) −1.75089 1.01088i −0.0674419 0.0389376i
\(675\) 0 0
\(676\) −2.96991 5.14404i −0.114227 0.197848i
\(677\) 12.3765 21.4368i 0.475669 0.823883i −0.523942 0.851754i \(-0.675539\pi\)
0.999612 + 0.0278703i \(0.00887255\pi\)
\(678\) 0 0
\(679\) 31.2379 2.83194i 1.19880 0.108680i
\(680\) 3.81643i 0.146353i
\(681\) 0 0
\(682\) 29.7652 17.1850i 1.13977 0.658046i
\(683\) 18.3119 10.5724i 0.700687 0.404542i −0.106916 0.994268i \(-0.534098\pi\)
0.807603 + 0.589726i \(0.200764\pi\)
\(684\) 0 0
\(685\) 16.3810i 0.625886i
\(686\) −4.62449 + 17.9336i −0.176564 + 0.684708i
\(687\) 0 0
\(688\) −4.35045 + 7.53520i −0.165859 + 0.287277i
\(689\) 4.38503 + 7.59509i 0.167056 + 0.289350i
\(690\) 0 0
\(691\) −5.58127 3.22235i −0.212322 0.122584i 0.390068 0.920786i \(-0.372451\pi\)
−0.602390 + 0.798202i \(0.705785\pi\)
\(692\) 11.8188 0.449282
\(693\) 0 0
\(694\) −20.9661 −0.795864
\(695\) −10.1601 5.86591i −0.385393 0.222507i
\(696\) 0 0
\(697\) −0.323067 0.559568i −0.0122370 0.0211952i
\(698\) 3.09694 5.36406i 0.117221 0.203033i
\(699\) 0 0
\(700\) 9.75984 + 4.51379i 0.368887 + 0.170605i
\(701\) 24.5717i 0.928061i 0.885819 + 0.464031i \(0.153597\pi\)
−0.885819 + 0.464031i \(0.846403\pi\)
\(702\) 0 0
\(703\) 1.88454 1.08804i 0.0710767 0.0410361i
\(704\) −4.82689 + 2.78681i −0.181920 + 0.105032i
\(705\) 0 0
\(706\) 18.8378i 0.708969i
\(707\) −11.4964 + 8.10382i −0.432366 + 0.304776i
\(708\) 0 0
\(709\) −22.1370 + 38.3424i −0.831373 + 1.43998i 0.0655765 + 0.997848i \(0.479111\pi\)
−0.896950 + 0.442133i \(0.854222\pi\)
\(710\) 1.76056 + 3.04938i 0.0660727 + 0.114441i
\(711\) 0 0
\(712\) 3.56475 + 2.05811i 0.133595 + 0.0771309i
\(713\) 16.3620 0.612760
\(714\) 0 0
\(715\) −23.4637 −0.877493
\(716\) 2.10764 + 1.21685i 0.0787663 + 0.0454757i
\(717\) 0 0
\(718\) 13.8988 + 24.0735i 0.518700 + 0.898415i
\(719\) −2.22433 + 3.85266i −0.0829537 + 0.143680i −0.904517 0.426437i \(-0.859769\pi\)
0.821564 + 0.570117i \(0.193102\pi\)
\(720\) 0 0
\(721\) −9.93376 + 21.4790i −0.369952 + 0.799921i
\(722\) 0.948177i 0.0352875i
\(723\) 0 0
\(724\) −9.98887 + 5.76708i −0.371233 + 0.214332i
\(725\) 18.7427 10.8211i 0.696088 0.401886i
\(726\) 0 0
\(727\) 35.1341i 1.30305i 0.758627 + 0.651525i \(0.225871\pi\)
−0.758627 + 0.651525i \(0.774129\pi\)
\(728\) 1.03959 + 11.4673i 0.0385297 + 0.425005i
\(729\) 0 0
\(730\) 1.20336 2.08428i 0.0445382 0.0771425i
\(731\) −17.1640 29.7289i −0.634834 1.09956i
\(732\) 0 0
\(733\) 5.03789 + 2.90863i 0.186079 + 0.107433i 0.590145 0.807297i \(-0.299070\pi\)
−0.404067 + 0.914729i \(0.632404\pi\)
\(734\) 21.7534 0.802933
\(735\) 0 0
\(736\) −2.65334 −0.0978035
\(737\) 26.2704 + 15.1672i 0.967684 + 0.558693i
\(738\) 0 0
\(739\) −5.51675 9.55529i −0.202937 0.351497i 0.746537 0.665344i \(-0.231715\pi\)
−0.949473 + 0.313847i \(0.898382\pi\)
\(740\) −0.235648 + 0.408155i −0.00866261 + 0.0150041i
\(741\) 0 0
\(742\) −0.481379 5.30990i −0.0176720 0.194932i
\(743\) 0.627229i 0.0230108i −0.999934 0.0115054i \(-0.996338\pi\)
0.999934 0.0115054i \(-0.00366236\pi\)
\(744\) 0 0
\(745\) 7.32216 4.22745i 0.268263 0.154882i
\(746\) −10.1595 + 5.86560i −0.371966 + 0.214755i
\(747\) 0 0
\(748\) 21.9898i 0.804028i
\(749\) −21.2749 + 46.0012i −0.777369 + 1.68085i
\(750\) 0 0
\(751\) −2.23529 + 3.87163i −0.0815668 + 0.141278i −0.903923 0.427695i \(-0.859326\pi\)
0.822356 + 0.568973i \(0.192659\pi\)
\(752\) −4.74500 8.21859i −0.173033 0.299701i
\(753\) 0 0
\(754\) 20.0695 + 11.5871i 0.730889 + 0.421979i
\(755\) 21.3722 0.777813
\(756\) 0 0
\(757\) 5.75624 0.209214 0.104607 0.994514i \(-0.466642\pi\)
0.104607 + 0.994514i \(0.466642\pi\)
\(758\) 30.2140 + 17.4441i 1.09742 + 0.633597i
\(759\) 0 0
\(760\) −2.16020 3.74157i −0.0783586 0.135721i
\(761\) 10.4970 18.1813i 0.380516 0.659073i −0.610620 0.791924i \(-0.709080\pi\)
0.991136 + 0.132851i \(0.0424131\pi\)
\(762\) 0 0
\(763\) −41.6136 + 29.3335i −1.50651 + 1.06195i
\(764\) 22.0689i 0.798425i
\(765\) 0 0
\(766\) −10.2609 + 5.92412i −0.370740 + 0.214047i
\(767\) −6.30868 + 3.64232i −0.227793 + 0.131516i
\(768\) 0 0
\(769\) 39.4595i 1.42295i −0.702713 0.711473i \(-0.748028\pi\)
0.702713 0.711473i \(-0.251972\pi\)
\(770\) 12.9470 + 5.98779i 0.466576 + 0.215785i
\(771\) 0 0
\(772\) −9.96979 + 17.2682i −0.358821 + 0.621496i
\(773\) −17.3164 29.9929i −0.622829 1.07877i −0.988956 0.148206i \(-0.952650\pi\)
0.366128 0.930565i \(-0.380683\pi\)
\(774\) 0 0
\(775\) 21.7048 + 12.5313i 0.779661 + 0.450137i
\(776\) −11.8552 −0.425578
\(777\) 0 0
\(778\) −6.35344 −0.227782
\(779\) 0.633461 + 0.365729i 0.0226961 + 0.0131036i
\(780\) 0 0
\(781\) −10.1442 17.5702i −0.362986 0.628711i
\(782\) 5.23418 9.06586i 0.187174 0.324195i
\(783\) 0 0
\(784\) 2.35274 6.59277i 0.0840264 0.235456i
\(785\) 1.37802i 0.0491838i
\(786\) 0 0
\(787\) −30.5793 + 17.6550i −1.09003 + 0.629332i −0.933586 0.358355i \(-0.883338\pi\)
−0.156449 + 0.987686i \(0.550005\pi\)
\(788\) −4.00588 + 2.31280i −0.142704 + 0.0823900i
\(789\) 0 0
\(790\) 4.45203i 0.158396i
\(791\) 22.2473 2.01687i 0.791022 0.0717116i
\(792\) 0 0
\(793\) −11.2547 + 19.4937i −0.399667 + 0.692243i
\(794\) −4.28768 7.42647i −0.152164 0.263556i
\(795\) 0 0
\(796\) −18.1024 10.4514i −0.641622 0.370441i
\(797\) 19.2198 0.680802 0.340401 0.940280i \(-0.389437\pi\)
0.340401 + 0.940280i \(0.389437\pi\)
\(798\) 0 0
\(799\) 37.4414 1.32458
\(800\) −3.51977 2.03214i −0.124443 0.0718471i
\(801\) 0 0
\(802\) −11.5595 20.0216i −0.408180 0.706989i
\(803\) −6.93361 + 12.0094i −0.244682 + 0.423801i
\(804\) 0 0
\(805\) 3.91245 + 5.55034i 0.137896 + 0.195624i
\(806\) 26.8367i 0.945284i
\(807\) 0 0
\(808\) 4.60402 2.65813i 0.161969 0.0935127i
\(809\) 34.0157 19.6390i 1.19593 0.690469i 0.236283 0.971684i \(-0.424071\pi\)
0.959645 + 0.281215i \(0.0907374\pi\)
\(810\) 0 0
\(811\) 9.68436i 0.340064i −0.985439 0.170032i \(-0.945613\pi\)
0.985439 0.170032i \(-0.0543871\pi\)
\(812\) −8.11712 11.5152i −0.284855 0.404105i
\(813\) 0 0
\(814\) 1.35778 2.35174i 0.0475901 0.0824285i
\(815\) −3.59987 6.23517i −0.126098 0.218408i
\(816\) 0 0
\(817\) 33.6547 + 19.4306i 1.17743 + 0.679790i
\(818\) 1.55989 0.0545404
\(819\) 0 0
\(820\) −0.158420 −0.00553226
\(821\) −10.9919 6.34620i −0.383621 0.221484i 0.295771 0.955259i \(-0.404423\pi\)
−0.679393 + 0.733775i \(0.737757\pi\)
\(822\) 0 0
\(823\) −8.73837 15.1353i −0.304600 0.527583i 0.672572 0.740032i \(-0.265190\pi\)
−0.977172 + 0.212448i \(0.931856\pi\)
\(824\) 4.47225 7.74616i 0.155798 0.269850i
\(825\) 0 0
\(826\) 4.41054 0.399846i 0.153462 0.0139124i
\(827\) 46.9482i 1.63255i 0.577665 + 0.816274i \(0.303964\pi\)
−0.577665 + 0.816274i \(0.696036\pi\)
\(828\) 0 0
\(829\) −1.99797 + 1.15353i −0.0693924 + 0.0400637i −0.534295 0.845298i \(-0.679423\pi\)
0.464902 + 0.885362i \(0.346089\pi\)
\(830\) 7.05332 4.07224i 0.244824 0.141349i
\(831\) 0 0
\(832\) 4.35199i 0.150878i
\(833\) 17.8848 + 21.0441i 0.619671 + 0.729137i
\(834\) 0 0
\(835\) 3.14240 5.44280i 0.108747 0.188356i
\(836\) 12.4468 + 21.5585i 0.430482 + 0.745617i
\(837\) 0 0
\(838\) 5.90321 + 3.40822i 0.203923 + 0.117735i
\(839\) 17.0333 0.588054 0.294027 0.955797i \(-0.405004\pi\)
0.294027 + 0.955797i \(0.405004\pi\)
\(840\) 0 0
\(841\) 0.644552 0.0222259
\(842\) 11.7039 + 6.75727i 0.403344 + 0.232871i
\(843\) 0 0
\(844\) 3.34310 + 5.79042i 0.115074 + 0.199314i
\(845\) 2.87287 4.97595i 0.0988296 0.171178i
\(846\) 0 0
\(847\) −48.1838 22.2844i −1.65562 0.765700i
\(848\) 2.01518i 0.0692017i
\(849\) 0 0
\(850\) 13.8867 8.01750i 0.476311 0.274998i
\(851\) 1.11956 0.646377i 0.0383779 0.0221575i
\(852\) 0 0
\(853\) 3.31581i 0.113531i 0.998388 + 0.0567656i \(0.0180788\pi\)
−0.998388 + 0.0567656i \(0.981921\pi\)
\(854\) 11.1849 7.88424i 0.382738 0.269793i
\(855\) 0 0
\(856\) 9.57813 16.5898i 0.327374 0.567028i
\(857\) 4.74512 + 8.21879i 0.162090 + 0.280748i 0.935618 0.353014i \(-0.114843\pi\)
−0.773528 + 0.633762i \(0.781510\pi\)
\(858\) 0 0
\(859\) 25.5104 + 14.7284i 0.870404 + 0.502528i 0.867482 0.497468i \(-0.165737\pi\)
0.00292142 + 0.999996i \(0.499070\pi\)
\(860\) −8.41658 −0.287003
\(861\) 0 0
\(862\) −14.1598 −0.482285
\(863\) −13.4610 7.77172i −0.458218 0.264553i 0.253076 0.967446i \(-0.418558\pi\)
−0.711295 + 0.702894i \(0.751891\pi\)
\(864\) 0 0
\(865\) 5.71629 + 9.90090i 0.194360 + 0.336641i
\(866\) −11.7415 + 20.3369i −0.398992 + 0.691075i
\(867\) 0 0
\(868\) 6.84856 14.8081i 0.232455 0.502621i
\(869\) 25.6521i 0.870187i
\(870\) 0 0
\(871\) −20.5125 + 11.8429i −0.695039 + 0.401281i
\(872\) 16.6652 9.62168i 0.564356 0.325831i
\(873\) 0 0
\(874\) 11.8507i 0.400857i
\(875\) 2.09449 + 23.1035i 0.0708067 + 0.781040i
\(876\) 0 0
\(877\) 22.7249 39.3606i 0.767364 1.32911i −0.171624 0.985163i \(-0.554901\pi\)
0.938988 0.343950i \(-0.111765\pi\)
\(878\) −2.11540 3.66398i −0.0713913 0.123653i
\(879\) 0 0
\(880\) −4.66917 2.69574i −0.157398 0.0908735i
\(881\) −15.6912 −0.528651 −0.264326 0.964433i \(-0.585149\pi\)
−0.264326 + 0.964433i \(0.585149\pi\)
\(882\) 0 0
\(883\) −10.5344 −0.354510 −0.177255 0.984165i \(-0.556722\pi\)
−0.177255 + 0.984165i \(0.556722\pi\)
\(884\) 14.8697 + 8.58505i 0.500124 + 0.288747i
\(885\) 0 0
\(886\) 14.9049 + 25.8161i 0.500740 + 0.867307i
\(887\) −0.0302741 + 0.0524362i −0.00101650 + 0.00176064i −0.866533 0.499119i \(-0.833657\pi\)
0.865517 + 0.500880i \(0.166990\pi\)
\(888\) 0 0
\(889\) −0.792789 8.74493i −0.0265893 0.293296i
\(890\) 3.98172i 0.133467i
\(891\) 0 0
\(892\) −7.08622 + 4.09123i −0.237264 + 0.136985i
\(893\) −36.7070 + 21.1928i −1.22835 + 0.709190i
\(894\) 0 0
\(895\) 2.35417i 0.0786913i
\(896\) −1.11060 + 2.40137i −0.0371025 + 0.0802241i
\(897\) 0 0
\(898\) 4.20858 7.28948i 0.140442 0.243253i
\(899\) −16.4184 28.4375i −0.547583 0.948442i
\(900\) 0 0
\(901\) −6.88542 3.97530i −0.229386 0.132436i
\(902\) 0.912797 0.0303928
\(903\) 0 0
\(904\) −8.44316 −0.280815
\(905\) −9.66247 5.57863i −0.321192 0.185440i
\(906\) 0 0
\(907\) −12.0490 20.8695i −0.400081 0.692961i 0.593654 0.804720i \(-0.297685\pi\)
−0.993735 + 0.111760i \(0.964351\pi\)
\(908\) −5.34688 + 9.26106i −0.177442 + 0.307339i
\(909\) 0 0
\(910\) −9.10363 + 6.41717i −0.301782 + 0.212727i
\(911\) 25.4604i 0.843541i −0.906703 0.421771i \(-0.861409\pi\)
0.906703 0.421771i \(-0.138591\pi\)
\(912\) 0 0
\(913\) −40.6404 + 23.4638i −1.34500 + 0.776537i
\(914\) 3.36207 1.94109i 0.111208 0.0642057i
\(915\) 0 0
\(916\) 29.2072i 0.965034i
\(917\) −45.0177 20.8201i −1.48662 0.687540i
\(918\) 0 0
\(919\) 11.4534 19.8378i 0.377812 0.654389i −0.612932 0.790136i \(-0.710010\pi\)
0.990744 + 0.135747i \(0.0433433\pi\)
\(920\) −1.28332 2.22278i −0.0423098 0.0732828i
\(921\) 0 0
\(922\) −29.5181 17.0423i −0.972128 0.561258i
\(923\) 15.8415 0.521430
\(924\) 0 0
\(925\) 1.98019 0.0651082
\(926\) 10.5822 + 6.10962i 0.347752 + 0.200775i
\(927\) 0 0
\(928\) 2.66249 + 4.61157i 0.0874006 + 0.151382i
\(929\) 14.3986 24.9392i 0.472404 0.818228i −0.527097 0.849805i \(-0.676720\pi\)
0.999501 + 0.0315768i \(0.0100529\pi\)
\(930\) 0 0
\(931\) −29.4455 10.5081i −0.965039 0.344390i
\(932\) 6.43935i 0.210928i
\(933\) 0 0
\(934\) −26.6835 + 15.4057i −0.873112 + 0.504091i
\(935\) 18.4215 10.6356i 0.602447 0.347823i
\(936\) 0 0
\(937\) 53.6825i 1.75373i −0.480736 0.876865i \(-0.659631\pi\)
0.480736 0.876865i \(-0.340369\pi\)
\(938\) 14.3407 1.30009i 0.468242 0.0424494i
\(939\) 0 0
\(940\) 4.58996 7.95004i 0.149708 0.259302i
\(941\) −22.9511 39.7524i −0.748184 1.29589i −0.948693 0.316200i \(-0.897593\pi\)
0.200509 0.979692i \(-0.435740\pi\)
\(942\) 0 0
\(943\) 0.376324 + 0.217271i 0.0122548 + 0.00707530i
\(944\) −1.67386 −0.0544796
\(945\) 0 0
\(946\) 48.4954 1.57672
\(947\) 25.0440 + 14.4591i 0.813820 + 0.469859i 0.848281 0.529547i \(-0.177638\pi\)
−0.0344607 + 0.999406i \(0.510971\pi\)
\(948\) 0 0
\(949\) −5.41390 9.37715i −0.175743 0.304395i
\(950\) −9.07623 + 15.7205i −0.294472 + 0.510040i
\(951\) 0 0
\(952\) −6.01407 8.53178i −0.194917 0.276516i
\(953\) 12.8715i 0.416949i 0.978028 + 0.208475i \(0.0668498\pi\)
−0.978028 + 0.208475i \(0.933150\pi\)
\(954\) 0 0
\(955\) 18.4877 10.6739i 0.598249 0.345399i
\(956\) 4.01452 2.31778i 0.129839 0.0749624i
\(957\) 0 0
\(958\) 41.7493i 1.34886i
\(959\) −25.8138 36.6204i −0.833571 1.18253i
\(960\) 0 0
\(961\) 3.51314 6.08494i 0.113327 0.196288i
\(962\) 1.06018 + 1.83629i 0.0341816 + 0.0592043i
\(963\) 0 0
\(964\) −9.08846 5.24722i −0.292719 0.169002i
\(965\) −19.2880 −0.620904
\(966\) 0 0
\(967\) −6.23449 −0.200488 −0.100244 0.994963i \(-0.531962\pi\)
−0.100244 + 0.994963i \(0.531962\pi\)
\(968\) 17.3769 + 10.0326i 0.558516 + 0.322459i
\(969\) 0 0
\(970\) −5.73393 9.93146i −0.184105 0.318880i
\(971\) 19.6863 34.0977i 0.631764 1.09425i −0.355426 0.934704i \(-0.615664\pi\)
0.987191 0.159544i \(-0.0510023\pi\)
\(972\) 0 0
\(973\) 31.9570 2.89712i 1.02449 0.0928774i
\(974\) 21.1663i 0.678212i
\(975\) 0 0
\(976\) −4.47927 + 2.58611i −0.143378 + 0.0827793i
\(977\) −23.2474 + 13.4219i −0.743751 + 0.429405i −0.823431 0.567416i \(-0.807943\pi\)
0.0796807 + 0.996820i \(0.474610\pi\)
\(978\) 0 0
\(979\) 22.9422i 0.733236i
\(980\) 6.66087 1.21772i 0.212774 0.0388986i
\(981\) 0 0
\(982\) −18.6731 + 32.3428i −0.595884 + 1.03210i
\(983\) −5.98457 10.3656i −0.190878 0.330611i 0.754663 0.656112i \(-0.227800\pi\)
−0.945541 + 0.325502i \(0.894467\pi\)
\(984\) 0 0
\(985\) −3.87499 2.23723i −0.123467 0.0712839i
\(986\) −21.0089 −0.669060
\(987\) 0 0
\(988\) −19.4375 −0.618388
\(989\) 19.9935 + 11.5432i 0.635755 + 0.367053i
\(990\) 0 0
\(991\) −5.40420 9.36036i −0.171670 0.297342i 0.767334 0.641248i \(-0.221583\pi\)
−0.939004 + 0.343906i \(0.888250\pi\)
\(992\) −3.08327 + 5.34038i −0.0978940 + 0.169557i
\(993\) 0 0
\(994\) −8.74113 4.04266i −0.277252 0.128225i
\(995\) 20.2198i 0.641012i
\(996\) 0 0
\(997\) 11.6653 6.73498i 0.369445 0.213299i −0.303771 0.952745i \(-0.598246\pi\)
0.673216 + 0.739446i \(0.264912\pi\)
\(998\) −23.7462 + 13.7099i −0.751672 + 0.433978i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.k.b.971.6 16
3.2 odd 2 1134.2.k.a.971.3 16
7.3 odd 6 1134.2.k.a.647.3 16
9.2 odd 6 126.2.l.a.5.7 16
9.4 even 3 126.2.t.a.47.1 yes 16
9.5 odd 6 378.2.t.a.89.6 16
9.7 even 3 378.2.l.a.341.2 16
21.17 even 6 inner 1134.2.k.b.647.6 16
36.7 odd 6 3024.2.ca.c.2609.4 16
36.11 even 6 1008.2.ca.c.257.5 16
36.23 even 6 3024.2.df.c.1601.4 16
36.31 odd 6 1008.2.df.c.929.7 16
63.2 odd 6 882.2.m.b.293.6 16
63.4 even 3 882.2.l.b.227.2 16
63.5 even 6 2646.2.m.b.1763.2 16
63.11 odd 6 882.2.t.a.815.4 16
63.13 odd 6 882.2.t.a.803.4 16
63.16 even 3 2646.2.m.b.881.2 16
63.20 even 6 882.2.l.b.509.6 16
63.23 odd 6 2646.2.m.a.1763.3 16
63.25 even 3 2646.2.t.b.2285.7 16
63.31 odd 6 126.2.l.a.101.3 yes 16
63.32 odd 6 2646.2.l.a.521.7 16
63.34 odd 6 2646.2.l.a.1097.3 16
63.38 even 6 126.2.t.a.59.1 yes 16
63.40 odd 6 882.2.m.b.587.6 16
63.41 even 6 2646.2.t.b.1979.7 16
63.47 even 6 882.2.m.a.293.7 16
63.52 odd 6 378.2.t.a.17.6 16
63.58 even 3 882.2.m.a.587.7 16
63.59 even 6 378.2.l.a.143.6 16
63.61 odd 6 2646.2.m.a.881.3 16
252.31 even 6 1008.2.ca.c.353.5 16
252.59 odd 6 3024.2.ca.c.2033.4 16
252.115 even 6 3024.2.df.c.17.4 16
252.227 odd 6 1008.2.df.c.689.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.7 16 9.2 odd 6
126.2.l.a.101.3 yes 16 63.31 odd 6
126.2.t.a.47.1 yes 16 9.4 even 3
126.2.t.a.59.1 yes 16 63.38 even 6
378.2.l.a.143.6 16 63.59 even 6
378.2.l.a.341.2 16 9.7 even 3
378.2.t.a.17.6 16 63.52 odd 6
378.2.t.a.89.6 16 9.5 odd 6
882.2.l.b.227.2 16 63.4 even 3
882.2.l.b.509.6 16 63.20 even 6
882.2.m.a.293.7 16 63.47 even 6
882.2.m.a.587.7 16 63.58 even 3
882.2.m.b.293.6 16 63.2 odd 6
882.2.m.b.587.6 16 63.40 odd 6
882.2.t.a.803.4 16 63.13 odd 6
882.2.t.a.815.4 16 63.11 odd 6
1008.2.ca.c.257.5 16 36.11 even 6
1008.2.ca.c.353.5 16 252.31 even 6
1008.2.df.c.689.7 16 252.227 odd 6
1008.2.df.c.929.7 16 36.31 odd 6
1134.2.k.a.647.3 16 7.3 odd 6
1134.2.k.a.971.3 16 3.2 odd 2
1134.2.k.b.647.6 16 21.17 even 6 inner
1134.2.k.b.971.6 16 1.1 even 1 trivial
2646.2.l.a.521.7 16 63.32 odd 6
2646.2.l.a.1097.3 16 63.34 odd 6
2646.2.m.a.881.3 16 63.61 odd 6
2646.2.m.a.1763.3 16 63.23 odd 6
2646.2.m.b.881.2 16 63.16 even 3
2646.2.m.b.1763.2 16 63.5 even 6
2646.2.t.b.1979.7 16 63.41 even 6
2646.2.t.b.2285.7 16 63.25 even 3
3024.2.ca.c.2033.4 16 252.59 odd 6
3024.2.ca.c.2609.4 16 36.7 odd 6
3024.2.df.c.17.4 16 252.115 even 6
3024.2.df.c.1601.4 16 36.23 even 6