Properties

Label 882.2.m.b.293.6
Level $882$
Weight $2$
Character 882.293
Analytic conductor $7.043$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(293,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.6
Root \(-1.70672 - 0.295146i\) of defining polynomial
Character \(\chi\) \(=\) 882.293
Dual form 882.2.m.b.587.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.991125 - 1.42045i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.483662 - 0.837727i) q^{5} +(-1.56856 - 0.734581i) q^{6} -1.00000i q^{8} +(-1.03534 + 2.81568i) q^{9} -0.967324i q^{10} +(-4.82689 + 2.78681i) q^{11} +(-1.72571 + 0.148116i) q^{12} +(-3.76893 - 2.17600i) q^{13} +(-1.66932 + 0.143276i) q^{15} +(-0.500000 - 0.866025i) q^{16} -3.94535 q^{17} +(0.511208 + 2.95612i) q^{18} -4.46634i q^{19} +(-0.483662 - 0.837727i) q^{20} +(-2.78681 + 4.82689i) q^{22} +(-2.29786 - 1.32667i) q^{23} +(-1.42045 + 0.991125i) q^{24} +(2.03214 + 3.51977i) q^{25} -4.35199 q^{26} +(5.02568 - 1.32004i) q^{27} +(4.61157 - 2.66249i) q^{29} +(-1.37403 + 0.958739i) q^{30} +(-5.34038 - 3.08327i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(8.74256 + 4.09427i) q^{33} +(-3.41677 + 1.97267i) q^{34} +(1.92078 + 2.30447i) q^{36} -0.487217 q^{37} +(-2.23317 - 3.86796i) q^{38} +(0.644598 + 7.51026i) q^{39} +(-0.837727 - 0.483662i) q^{40} +(0.0818856 - 0.141830i) q^{41} +(-4.35045 - 7.53520i) q^{43} +5.57361i q^{44} +(1.85802 + 2.22917i) q^{45} -2.65334 q^{46} +(4.74500 + 8.21859i) q^{47} +(-0.734581 + 1.56856i) q^{48} +(3.51977 + 2.03214i) q^{50} +(3.91033 + 5.60416i) q^{51} +(-3.76893 + 2.17600i) q^{52} -2.01518i q^{53} +(3.69235 - 3.65603i) q^{54} +5.39149i q^{55} +(-6.34420 + 4.42670i) q^{57} +(2.66249 - 4.61157i) q^{58} +(-0.836931 + 1.44961i) q^{59} +(-0.710578 + 1.51731i) q^{60} +(-4.47927 + 2.58611i) q^{61} -6.16655 q^{62} -1.00000 q^{64} +(-3.64578 + 2.10489i) q^{65} +(9.61842 - 0.825539i) q^{66} +(2.72126 - 4.71336i) q^{67} +(-1.97267 + 3.41677i) q^{68} +(0.393002 + 4.57889i) q^{69} +3.64006i q^{71} +(2.81568 + 1.03534i) q^{72} -2.48801i q^{73} +(-0.421942 + 0.243608i) q^{74} +(2.98555 - 6.37509i) q^{75} +(-3.86796 - 2.23317i) q^{76} +(4.31337 + 6.18177i) q^{78} +(-2.30121 - 3.98581i) q^{79} -0.967324 q^{80} +(-6.85613 - 5.83039i) q^{81} -0.163771i q^{82} +(-4.20979 - 7.29158i) q^{83} +(-1.90821 + 3.30512i) q^{85} +(-7.53520 - 4.35045i) q^{86} +(-8.35257 - 3.91163i) q^{87} +(2.78681 + 4.82689i) q^{88} +4.11622 q^{89} +(2.72368 + 1.00151i) q^{90} +(-2.29786 + 1.32667i) q^{92} +(0.913362 + 10.6416i) q^{93} +(8.21859 + 4.74500i) q^{94} +(-3.74157 - 2.16020i) q^{95} +(0.148116 + 1.72571i) q^{96} +(10.2669 - 5.92762i) q^{97} +(-2.84928 - 16.4763i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{9} - 12 q^{11} + 6 q^{13} - 18 q^{15} - 8 q^{16} + 36 q^{17} + 6 q^{23} - 6 q^{24} - 8 q^{25} - 24 q^{26} + 36 q^{27} + 6 q^{29} + 18 q^{30} + 6 q^{31} + 18 q^{33} + 4 q^{37} + 42 q^{39}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.991125 1.42045i −0.572226 0.820096i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.483662 0.837727i 0.216300 0.374643i −0.737374 0.675485i \(-0.763934\pi\)
0.953674 + 0.300842i \(0.0972677\pi\)
\(6\) −1.56856 0.734581i −0.640363 0.299892i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.03534 + 2.81568i −0.345114 + 0.938561i
\(10\) 0.967324i 0.305895i
\(11\) −4.82689 + 2.78681i −1.45536 + 0.840254i −0.998778 0.0494264i \(-0.984261\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(12\) −1.72571 + 0.148116i −0.498168 + 0.0427573i
\(13\) −3.76893 2.17600i −1.04531 0.603512i −0.123980 0.992285i \(-0.539566\pi\)
−0.921334 + 0.388772i \(0.872899\pi\)
\(14\) 0 0
\(15\) −1.66932 + 0.143276i −0.431016 + 0.0369937i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.94535 −0.956887 −0.478443 0.878118i \(-0.658799\pi\)
−0.478443 + 0.878118i \(0.658799\pi\)
\(18\) 0.511208 + 2.95612i 0.120493 + 0.696765i
\(19\) 4.46634i 1.02465i −0.858792 0.512324i \(-0.828785\pi\)
0.858792 0.512324i \(-0.171215\pi\)
\(20\) −0.483662 0.837727i −0.108150 0.187322i
\(21\) 0 0
\(22\) −2.78681 + 4.82689i −0.594149 + 1.02910i
\(23\) −2.29786 1.32667i −0.479137 0.276630i 0.240920 0.970545i \(-0.422551\pi\)
−0.720057 + 0.693915i \(0.755884\pi\)
\(24\) −1.42045 + 0.991125i −0.289948 + 0.202313i
\(25\) 2.03214 + 3.51977i 0.406428 + 0.703955i
\(26\) −4.35199 −0.853496
\(27\) 5.02568 1.32004i 0.967193 0.254042i
\(28\) 0 0
\(29\) 4.61157 2.66249i 0.856347 0.494412i −0.00644015 0.999979i \(-0.502050\pi\)
0.862787 + 0.505567i \(0.168717\pi\)
\(30\) −1.37403 + 0.958739i −0.250863 + 0.175041i
\(31\) −5.34038 3.08327i −0.959161 0.553772i −0.0632466 0.997998i \(-0.520145\pi\)
−0.895915 + 0.444226i \(0.853479\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 8.74256 + 4.09427i 1.52189 + 0.712721i
\(34\) −3.41677 + 1.97267i −0.585971 + 0.338311i
\(35\) 0 0
\(36\) 1.92078 + 2.30447i 0.320130 + 0.384079i
\(37\) −0.487217 −0.0800980 −0.0400490 0.999198i \(-0.512751\pi\)
−0.0400490 + 0.999198i \(0.512751\pi\)
\(38\) −2.23317 3.86796i −0.362268 0.627466i
\(39\) 0.644598 + 7.51026i 0.103218 + 1.20260i
\(40\) −0.837727 0.483662i −0.132456 0.0764737i
\(41\) 0.0818856 0.141830i 0.0127884 0.0221501i −0.859560 0.511034i \(-0.829263\pi\)
0.872349 + 0.488884i \(0.162596\pi\)
\(42\) 0 0
\(43\) −4.35045 7.53520i −0.663437 1.14911i −0.979707 0.200437i \(-0.935764\pi\)
0.316270 0.948669i \(-0.397570\pi\)
\(44\) 5.57361i 0.840254i
\(45\) 1.85802 + 2.22917i 0.276977 + 0.332306i
\(46\) −2.65334 −0.391214
\(47\) 4.74500 + 8.21859i 0.692130 + 1.19880i 0.971139 + 0.238516i \(0.0766609\pi\)
−0.279009 + 0.960289i \(0.590006\pi\)
\(48\) −0.734581 + 1.56856i −0.106028 + 0.226403i
\(49\) 0 0
\(50\) 3.51977 + 2.03214i 0.497771 + 0.287388i
\(51\) 3.91033 + 5.60416i 0.547556 + 0.784739i
\(52\) −3.76893 + 2.17600i −0.522657 + 0.301756i
\(53\) 2.01518i 0.276807i −0.990376 0.138403i \(-0.955803\pi\)
0.990376 0.138403i \(-0.0441970\pi\)
\(54\) 3.69235 3.65603i 0.502465 0.497523i
\(55\) 5.39149i 0.726988i
\(56\) 0 0
\(57\) −6.34420 + 4.42670i −0.840310 + 0.586331i
\(58\) 2.66249 4.61157i 0.349602 0.605529i
\(59\) −0.836931 + 1.44961i −0.108959 + 0.188723i −0.915349 0.402662i \(-0.868085\pi\)
0.806390 + 0.591384i \(0.201418\pi\)
\(60\) −0.710578 + 1.51731i −0.0917352 + 0.195884i
\(61\) −4.47927 + 2.58611i −0.573512 + 0.331117i −0.758551 0.651614i \(-0.774092\pi\)
0.185039 + 0.982731i \(0.440759\pi\)
\(62\) −6.16655 −0.783152
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.64578 + 2.10489i −0.452203 + 0.261080i
\(66\) 9.61842 0.825539i 1.18395 0.101617i
\(67\) 2.72126 4.71336i 0.332455 0.575828i −0.650538 0.759474i \(-0.725456\pi\)
0.982993 + 0.183645i \(0.0587898\pi\)
\(68\) −1.97267 + 3.41677i −0.239222 + 0.414344i
\(69\) 0.393002 + 4.57889i 0.0473118 + 0.551234i
\(70\) 0 0
\(71\) 3.64006i 0.431996i 0.976394 + 0.215998i \(0.0693005\pi\)
−0.976394 + 0.215998i \(0.930700\pi\)
\(72\) 2.81568 + 1.03534i 0.331831 + 0.122016i
\(73\) 2.48801i 0.291200i −0.989344 0.145600i \(-0.953489\pi\)
0.989344 0.145600i \(-0.0465112\pi\)
\(74\) −0.421942 + 0.243608i −0.0490498 + 0.0283189i
\(75\) 2.98555 6.37509i 0.344741 0.736132i
\(76\) −3.86796 2.23317i −0.443686 0.256162i
\(77\) 0 0
\(78\) 4.31337 + 6.18177i 0.488393 + 0.699948i
\(79\) −2.30121 3.98581i −0.258906 0.448438i 0.707043 0.707170i \(-0.250029\pi\)
−0.965949 + 0.258732i \(0.916695\pi\)
\(80\) −0.967324 −0.108150
\(81\) −6.85613 5.83039i −0.761792 0.647821i
\(82\) 0.163771i 0.0180855i
\(83\) −4.20979 7.29158i −0.462085 0.800355i 0.536980 0.843595i \(-0.319565\pi\)
−0.999065 + 0.0432405i \(0.986232\pi\)
\(84\) 0 0
\(85\) −1.90821 + 3.30512i −0.206975 + 0.358491i
\(86\) −7.53520 4.35045i −0.812541 0.469121i
\(87\) −8.35257 3.91163i −0.895490 0.419371i
\(88\) 2.78681 + 4.82689i 0.297075 + 0.514548i
\(89\) 4.11622 0.436318 0.218159 0.975913i \(-0.429995\pi\)
0.218159 + 0.975913i \(0.429995\pi\)
\(90\) 2.72368 + 1.00151i 0.287101 + 0.105569i
\(91\) 0 0
\(92\) −2.29786 + 1.32667i −0.239569 + 0.138315i
\(93\) 0.913362 + 10.6416i 0.0947112 + 1.10349i
\(94\) 8.21859 + 4.74500i 0.847683 + 0.489410i
\(95\) −3.74157 2.16020i −0.383877 0.221632i
\(96\) 0.148116 + 1.72571i 0.0151170 + 0.176129i
\(97\) 10.2669 5.92762i 1.04245 0.601859i 0.121924 0.992539i \(-0.461094\pi\)
0.920526 + 0.390681i \(0.127760\pi\)
\(98\) 0 0
\(99\) −2.84928 16.4763i −0.286363 1.65593i
\(100\) 4.06428 0.406428
\(101\) 2.65813 + 4.60402i 0.264494 + 0.458117i 0.967431 0.253135i \(-0.0814618\pi\)
−0.702937 + 0.711252i \(0.748128\pi\)
\(102\) 6.18852 + 2.89818i 0.612755 + 0.286962i
\(103\) −7.74616 4.47225i −0.763252 0.440664i 0.0672102 0.997739i \(-0.478590\pi\)
−0.830462 + 0.557075i \(0.811924\pi\)
\(104\) −2.17600 + 3.76893i −0.213374 + 0.369574i
\(105\) 0 0
\(106\) −1.00759 1.74520i −0.0978659 0.169509i
\(107\) 19.1563i 1.85191i −0.377639 0.925953i \(-0.623264\pi\)
0.377639 0.925953i \(-0.376736\pi\)
\(108\) 1.36965 5.01239i 0.131795 0.482317i
\(109\) 19.2434 1.84318 0.921590 0.388164i \(-0.126891\pi\)
0.921590 + 0.388164i \(0.126891\pi\)
\(110\) 2.69574 + 4.66917i 0.257029 + 0.445188i
\(111\) 0.482893 + 0.692066i 0.0458342 + 0.0656880i
\(112\) 0 0
\(113\) 7.31199 + 4.22158i 0.687854 + 0.397133i 0.802808 0.596238i \(-0.203339\pi\)
−0.114953 + 0.993371i \(0.536672\pi\)
\(114\) −3.28089 + 7.00573i −0.307283 + 0.656147i
\(115\) −2.22278 + 1.28332i −0.207275 + 0.119670i
\(116\) 5.32498i 0.494412i
\(117\) 10.0290 8.35922i 0.927186 0.772810i
\(118\) 1.67386i 0.154091i
\(119\) 0 0
\(120\) 0.143276 + 1.66932i 0.0130792 + 0.152387i
\(121\) 10.0326 17.3769i 0.912053 1.57972i
\(122\) −2.58611 + 4.47927i −0.234135 + 0.405534i
\(123\) −0.282621 + 0.0242571i −0.0254831 + 0.00218719i
\(124\) −5.34038 + 3.08327i −0.479581 + 0.276886i
\(125\) 8.76810 0.784243
\(126\) 0 0
\(127\) 3.31883 0.294498 0.147249 0.989099i \(-0.452958\pi\)
0.147249 + 0.989099i \(0.452958\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −6.39151 + 13.6479i −0.562741 + 1.20163i
\(130\) −2.10489 + 3.64578i −0.184611 + 0.319756i
\(131\) −9.37335 + 16.2351i −0.818954 + 1.41847i 0.0875000 + 0.996165i \(0.472112\pi\)
−0.906454 + 0.422305i \(0.861221\pi\)
\(132\) 7.91702 5.52415i 0.689089 0.480815i
\(133\) 0 0
\(134\) 5.44252i 0.470162i
\(135\) 1.32490 4.84861i 0.114029 0.417302i
\(136\) 3.94535i 0.338311i
\(137\) −14.6656 + 8.46717i −1.25296 + 0.723399i −0.971697 0.236230i \(-0.924088\pi\)
−0.281267 + 0.959630i \(0.590755\pi\)
\(138\) 2.62979 + 3.76893i 0.223863 + 0.320833i
\(139\) −10.5033 6.06406i −0.890875 0.514347i −0.0166466 0.999861i \(-0.505299\pi\)
−0.874229 + 0.485514i \(0.838632\pi\)
\(140\) 0 0
\(141\) 6.97118 14.8857i 0.587079 1.25360i
\(142\) 1.82003 + 3.15239i 0.152734 + 0.264543i
\(143\) 24.2563 2.02841
\(144\) 2.95612 0.511208i 0.246344 0.0426007i
\(145\) 5.15098i 0.427766i
\(146\) −1.24401 2.15468i −0.102955 0.178323i
\(147\) 0 0
\(148\) −0.243608 + 0.421942i −0.0200245 + 0.0346834i
\(149\) 7.56951 + 4.37026i 0.620118 + 0.358025i 0.776915 0.629606i \(-0.216783\pi\)
−0.156797 + 0.987631i \(0.550117\pi\)
\(150\) −0.601984 7.01376i −0.0491518 0.572671i
\(151\) −11.0471 19.1341i −0.898997 1.55711i −0.828778 0.559578i \(-0.810963\pi\)
−0.0702195 0.997532i \(-0.522370\pi\)
\(152\) −4.46634 −0.362268
\(153\) 4.08478 11.1088i 0.330235 0.898096i
\(154\) 0 0
\(155\) −5.16588 + 2.98252i −0.414934 + 0.239562i
\(156\) 6.82637 + 3.19689i 0.546547 + 0.255956i
\(157\) 1.23372 + 0.712287i 0.0984614 + 0.0568467i 0.548422 0.836202i \(-0.315229\pi\)
−0.449961 + 0.893048i \(0.648562\pi\)
\(158\) −3.98581 2.30121i −0.317094 0.183074i
\(159\) −2.86246 + 1.99730i −0.227008 + 0.158396i
\(160\) −0.837727 + 0.483662i −0.0662282 + 0.0382368i
\(161\) 0 0
\(162\) −8.85278 1.62120i −0.695540 0.127374i
\(163\) 7.44296 0.582977 0.291489 0.956574i \(-0.405849\pi\)
0.291489 + 0.956574i \(0.405849\pi\)
\(164\) −0.0818856 0.141830i −0.00639419 0.0110751i
\(165\) 7.65833 5.34364i 0.596200 0.416002i
\(166\) −7.29158 4.20979i −0.565936 0.326743i
\(167\) −3.24855 + 5.62665i −0.251380 + 0.435404i −0.963906 0.266242i \(-0.914218\pi\)
0.712526 + 0.701646i \(0.247551\pi\)
\(168\) 0 0
\(169\) 2.96991 + 5.14404i 0.228455 + 0.395695i
\(170\) 3.81643i 0.292707i
\(171\) 12.5758 + 4.62419i 0.961695 + 0.353621i
\(172\) −8.70089 −0.663437
\(173\) −5.90938 10.2354i −0.449282 0.778179i 0.549057 0.835785i \(-0.314987\pi\)
−0.998339 + 0.0576053i \(0.981654\pi\)
\(174\) −9.18936 + 0.788713i −0.696643 + 0.0597922i
\(175\) 0 0
\(176\) 4.82689 + 2.78681i 0.363841 + 0.210063i
\(177\) 2.88859 0.247925i 0.217120 0.0186352i
\(178\) 3.56475 2.05811i 0.267189 0.154262i
\(179\) 2.43370i 0.181903i −0.995855 0.0909515i \(-0.971009\pi\)
0.995855 0.0909515i \(-0.0289908\pi\)
\(180\) 2.85953 0.494504i 0.213137 0.0368581i
\(181\) 11.5342i 0.857327i 0.903464 + 0.428663i \(0.141015\pi\)
−0.903464 + 0.428663i \(0.858985\pi\)
\(182\) 0 0
\(183\) 8.11294 + 3.79941i 0.599726 + 0.280861i
\(184\) −1.32667 + 2.29786i −0.0978035 + 0.169401i
\(185\) −0.235648 + 0.408155i −0.0173252 + 0.0300081i
\(186\) 6.11182 + 8.75925i 0.448140 + 0.642260i
\(187\) 19.0438 10.9949i 1.39262 0.804028i
\(188\) 9.49001 0.692130
\(189\) 0 0
\(190\) −4.32040 −0.313435
\(191\) −19.1122 + 11.0345i −1.38291 + 0.798425i −0.992503 0.122216i \(-0.961000\pi\)
−0.390409 + 0.920641i \(0.627666\pi\)
\(192\) 0.991125 + 1.42045i 0.0715283 + 0.102512i
\(193\) 9.96979 17.2682i 0.717641 1.24299i −0.244291 0.969702i \(-0.578555\pi\)
0.961932 0.273289i \(-0.0881116\pi\)
\(194\) 5.92762 10.2669i 0.425578 0.737123i
\(195\) 6.60331 + 3.09243i 0.472873 + 0.221453i
\(196\) 0 0
\(197\) 4.62560i 0.329560i −0.986330 0.164780i \(-0.947309\pi\)
0.986330 0.164780i \(-0.0526914\pi\)
\(198\) −10.7057 12.8442i −0.760820 0.912801i
\(199\) 20.9028i 1.48176i −0.671635 0.740882i \(-0.734408\pi\)
0.671635 0.740882i \(-0.265592\pi\)
\(200\) 3.51977 2.03214i 0.248886 0.143694i
\(201\) −9.39219 + 0.806122i −0.662474 + 0.0568595i
\(202\) 4.60402 + 2.65813i 0.323938 + 0.187025i
\(203\) 0 0
\(204\) 6.80851 0.584367i 0.476691 0.0409139i
\(205\) −0.0792099 0.137196i −0.00553226 0.00958215i
\(206\) −8.94450 −0.623193
\(207\) 6.11456 5.09649i 0.424991 0.354231i
\(208\) 4.35199i 0.301756i
\(209\) 12.4468 + 21.5585i 0.860965 + 1.49123i
\(210\) 0 0
\(211\) −3.34310 + 5.79042i −0.230148 + 0.398629i −0.957852 0.287263i \(-0.907254\pi\)
0.727703 + 0.685892i \(0.240588\pi\)
\(212\) −1.74520 1.00759i −0.119861 0.0692017i
\(213\) 5.17052 3.60776i 0.354278 0.247200i
\(214\) −9.57813 16.5898i −0.654747 1.13406i
\(215\) −8.41658 −0.574006
\(216\) −1.32004 5.02568i −0.0898176 0.341954i
\(217\) 0 0
\(218\) 16.6652 9.62168i 1.12871 0.651663i
\(219\) −3.53409 + 2.46593i −0.238812 + 0.166632i
\(220\) 4.66917 + 2.69574i 0.314795 + 0.181747i
\(221\) 14.8697 + 8.58505i 1.00025 + 0.577493i
\(222\) 0.764231 + 0.357900i 0.0512918 + 0.0240207i
\(223\) 7.08622 4.09123i 0.474528 0.273969i −0.243605 0.969875i \(-0.578330\pi\)
0.718133 + 0.695905i \(0.244997\pi\)
\(224\) 0 0
\(225\) −12.0145 + 2.07770i −0.800968 + 0.138513i
\(226\) 8.44316 0.561631
\(227\) −5.34688 9.26106i −0.354885 0.614678i 0.632214 0.774794i \(-0.282147\pi\)
−0.987098 + 0.160116i \(0.948813\pi\)
\(228\) 0.661535 + 7.70759i 0.0438112 + 0.510447i
\(229\) −25.2942 14.6036i −1.67149 0.965034i −0.966806 0.255510i \(-0.917757\pi\)
−0.704682 0.709524i \(-0.748910\pi\)
\(230\) −1.28332 + 2.22278i −0.0846197 + 0.146566i
\(231\) 0 0
\(232\) −2.66249 4.61157i −0.174801 0.302764i
\(233\) 6.43935i 0.421856i −0.977502 0.210928i \(-0.932352\pi\)
0.977502 0.210928i \(-0.0676485\pi\)
\(234\) 4.50580 12.2538i 0.294553 0.801057i
\(235\) 9.17991 0.598832
\(236\) 0.836931 + 1.44961i 0.0544796 + 0.0943614i
\(237\) −3.38085 + 7.21918i −0.219610 + 0.468936i
\(238\) 0 0
\(239\) −4.01452 2.31778i −0.259678 0.149925i 0.364510 0.931200i \(-0.381237\pi\)
−0.624187 + 0.781275i \(0.714570\pi\)
\(240\) 0.958739 + 1.37403i 0.0618863 + 0.0886935i
\(241\) −9.08846 + 5.24722i −0.585439 + 0.338003i −0.763292 0.646054i \(-0.776418\pi\)
0.177853 + 0.984057i \(0.443085\pi\)
\(242\) 20.0652i 1.28984i
\(243\) −1.48648 + 15.5174i −0.0953578 + 0.995443i
\(244\) 5.17221i 0.331117i
\(245\) 0 0
\(246\) −0.232628 + 0.162318i −0.0148318 + 0.0103490i
\(247\) −9.71873 + 16.8333i −0.618388 + 1.07108i
\(248\) −3.08327 + 5.34038i −0.195788 + 0.339115i
\(249\) −6.18487 + 13.2067i −0.391950 + 0.836938i
\(250\) 7.59340 4.38405i 0.480249 0.277272i
\(251\) 7.85271 0.495659 0.247829 0.968804i \(-0.420283\pi\)
0.247829 + 0.968804i \(0.420283\pi\)
\(252\) 0 0
\(253\) 14.7887 0.929758
\(254\) 2.87419 1.65941i 0.180343 0.104121i
\(255\) 6.58603 0.565273i 0.412433 0.0353987i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.71568 + 2.97164i −0.107021 + 0.185366i −0.914562 0.404445i \(-0.867465\pi\)
0.807541 + 0.589811i \(0.200798\pi\)
\(258\) 1.28874 + 15.0152i 0.0802334 + 0.934805i
\(259\) 0 0
\(260\) 4.20979i 0.261080i
\(261\) 2.72217 + 15.7413i 0.168498 + 0.974363i
\(262\) 18.7467i 1.15818i
\(263\) 3.17080 1.83066i 0.195520 0.112883i −0.399044 0.916932i \(-0.630658\pi\)
0.594564 + 0.804048i \(0.297325\pi\)
\(264\) 4.09427 8.74256i 0.251985 0.538068i
\(265\) −1.68817 0.974668i −0.103704 0.0598734i
\(266\) 0 0
\(267\) −4.07969 5.84687i −0.249673 0.357823i
\(268\) −2.72126 4.71336i −0.166227 0.287914i
\(269\) 12.6861 0.773483 0.386741 0.922188i \(-0.373601\pi\)
0.386741 + 0.922188i \(0.373601\pi\)
\(270\) −1.27691 4.86146i −0.0777102 0.295859i
\(271\) 19.8766i 1.20742i 0.797206 + 0.603708i \(0.206311\pi\)
−0.797206 + 0.603708i \(0.793689\pi\)
\(272\) 1.97267 + 3.41677i 0.119611 + 0.207172i
\(273\) 0 0
\(274\) −8.46717 + 14.6656i −0.511520 + 0.885979i
\(275\) −19.6179 11.3264i −1.18300 0.683006i
\(276\) 4.16194 + 1.94910i 0.250519 + 0.117322i
\(277\) 3.73302 + 6.46579i 0.224296 + 0.388491i 0.956108 0.293015i \(-0.0946585\pi\)
−0.731812 + 0.681506i \(0.761325\pi\)
\(278\) −12.1281 −0.727397
\(279\) 14.2106 11.8446i 0.850769 0.709117i
\(280\) 0 0
\(281\) −19.2746 + 11.1282i −1.14983 + 0.663854i −0.948845 0.315741i \(-0.897747\pi\)
−0.200983 + 0.979595i \(0.564414\pi\)
\(282\) −1.40562 16.3770i −0.0837034 0.975234i
\(283\) 14.0125 + 8.09012i 0.832957 + 0.480908i 0.854864 0.518852i \(-0.173641\pi\)
−0.0219073 + 0.999760i \(0.506974\pi\)
\(284\) 3.15239 + 1.82003i 0.187060 + 0.107999i
\(285\) 0.639918 + 7.45573i 0.0379055 + 0.441640i
\(286\) 21.0066 12.1282i 1.24215 0.717153i
\(287\) 0 0
\(288\) 2.30447 1.92078i 0.135792 0.113183i
\(289\) −1.43425 −0.0843675
\(290\) −2.57549 4.46088i −0.151238 0.261952i
\(291\) −18.5957 8.70864i −1.09010 0.510509i
\(292\) −2.15468 1.24401i −0.126093 0.0727999i
\(293\) −4.43406 + 7.68002i −0.259041 + 0.448672i −0.965985 0.258597i \(-0.916740\pi\)
0.706944 + 0.707269i \(0.250073\pi\)
\(294\) 0 0
\(295\) 0.809584 + 1.40224i 0.0471358 + 0.0816416i
\(296\) 0.487217i 0.0283189i
\(297\) −20.5797 + 20.3773i −1.19416 + 1.18241i
\(298\) 8.74051 0.506324
\(299\) 5.77366 + 10.0003i 0.333899 + 0.578331i
\(300\) −4.02821 5.77310i −0.232569 0.333310i
\(301\) 0 0
\(302\) −19.1341 11.0471i −1.10104 0.635687i
\(303\) 3.90523 8.33889i 0.224349 0.479057i
\(304\) −3.86796 + 2.23317i −0.221843 + 0.128081i
\(305\) 5.00321i 0.286483i
\(306\) −2.01689 11.6629i −0.115298 0.666725i
\(307\) 27.1427i 1.54912i −0.632501 0.774559i \(-0.717972\pi\)
0.632501 0.774559i \(-0.282028\pi\)
\(308\) 0 0
\(309\) 1.32482 + 15.4356i 0.0753664 + 0.878099i
\(310\) −2.98252 + 5.16588i −0.169396 + 0.293402i
\(311\) −8.44774 + 14.6319i −0.479028 + 0.829700i −0.999711 0.0240499i \(-0.992344\pi\)
0.520683 + 0.853750i \(0.325677\pi\)
\(312\) 7.51026 0.644598i 0.425185 0.0364932i
\(313\) 3.70433 2.13870i 0.209381 0.120886i −0.391643 0.920117i \(-0.628093\pi\)
0.601024 + 0.799231i \(0.294760\pi\)
\(314\) 1.42457 0.0803934
\(315\) 0 0
\(316\) −4.60242 −0.258906
\(317\) 5.74123 3.31470i 0.322460 0.186172i −0.330029 0.943971i \(-0.607058\pi\)
0.652488 + 0.757799i \(0.273725\pi\)
\(318\) −1.48032 + 3.16094i −0.0830120 + 0.177257i
\(319\) −14.8397 + 25.7031i −0.830864 + 1.43910i
\(320\) −0.483662 + 0.837727i −0.0270375 + 0.0468304i
\(321\) −27.2105 + 18.9862i −1.51874 + 1.05971i
\(322\) 0 0
\(323\) 17.6212i 0.980472i
\(324\) −8.47733 + 3.02239i −0.470963 + 0.167910i
\(325\) 17.6877i 0.981138i
\(326\) 6.44579 3.72148i 0.356999 0.206114i
\(327\) −19.0726 27.3342i −1.05472 1.51158i
\(328\) −0.141830 0.0818856i −0.00783125 0.00452137i
\(329\) 0 0
\(330\) 3.96049 8.45689i 0.218018 0.465537i
\(331\) 0.378896 + 0.656267i 0.0208260 + 0.0360717i 0.876251 0.481856i \(-0.160037\pi\)
−0.855425 + 0.517927i \(0.826704\pi\)
\(332\) −8.41959 −0.462085
\(333\) 0.504436 1.37185i 0.0276429 0.0751768i
\(334\) 6.49710i 0.355506i
\(335\) −2.63234 4.55935i −0.143820 0.249104i
\(336\) 0 0
\(337\) 1.01088 1.75089i 0.0550660 0.0953772i −0.837178 0.546930i \(-0.815796\pi\)
0.892244 + 0.451553i \(0.149130\pi\)
\(338\) 5.14404 + 2.96991i 0.279799 + 0.161542i
\(339\) −1.25056 14.5704i −0.0679213 0.791356i
\(340\) 1.90821 + 3.30512i 0.103487 + 0.179245i
\(341\) 34.3699 1.86124
\(342\) 13.2030 2.28323i 0.713939 0.123463i
\(343\) 0 0
\(344\) −7.53520 + 4.35045i −0.406271 + 0.234560i
\(345\) 4.02594 + 1.88541i 0.216749 + 0.101507i
\(346\) −10.2354 5.90938i −0.550256 0.317690i
\(347\) −18.1572 10.4831i −0.974730 0.562761i −0.0740550 0.997254i \(-0.523594\pi\)
−0.900675 + 0.434494i \(0.856927\pi\)
\(348\) −7.56386 + 5.27772i −0.405465 + 0.282916i
\(349\) −5.36406 + 3.09694i −0.287132 + 0.165776i −0.636648 0.771155i \(-0.719679\pi\)
0.349516 + 0.936930i \(0.386346\pi\)
\(350\) 0 0
\(351\) −21.8139 5.96071i −1.16434 0.318159i
\(352\) 5.57361 0.297075
\(353\) 9.41889 + 16.3140i 0.501317 + 0.868306i 0.999999 + 0.00152110i \(0.000484180\pi\)
−0.498682 + 0.866785i \(0.666182\pi\)
\(354\) 2.37763 1.65901i 0.126370 0.0881752i
\(355\) 3.04938 + 1.76056i 0.161844 + 0.0934409i
\(356\) 2.05811 3.56475i 0.109080 0.188931i
\(357\) 0 0
\(358\) −1.21685 2.10764i −0.0643124 0.111392i
\(359\) 27.7977i 1.46711i 0.679633 + 0.733553i \(0.262139\pi\)
−0.679633 + 0.733553i \(0.737861\pi\)
\(360\) 2.22917 1.85802i 0.117488 0.0979261i
\(361\) −0.948177 −0.0499041
\(362\) 5.76708 + 9.98887i 0.303111 + 0.525003i
\(363\) −34.6266 + 2.97196i −1.81742 + 0.155988i
\(364\) 0 0
\(365\) −2.08428 1.20336i −0.109096 0.0629866i
\(366\) 8.92572 0.766086i 0.466555 0.0400439i
\(367\) 18.8390 10.8767i 0.983388 0.567759i 0.0800968 0.996787i \(-0.474477\pi\)
0.903291 + 0.429028i \(0.141144\pi\)
\(368\) 2.65334i 0.138315i
\(369\) 0.314569 + 0.377406i 0.0163758 + 0.0196470i
\(370\) 0.471297i 0.0245016i
\(371\) 0 0
\(372\) 9.67262 + 4.52983i 0.501502 + 0.234861i
\(373\) −5.86560 + 10.1595i −0.303709 + 0.526040i −0.976973 0.213362i \(-0.931558\pi\)
0.673264 + 0.739402i \(0.264892\pi\)
\(374\) 10.9949 19.0438i 0.568533 0.984729i
\(375\) −8.69028 12.4546i −0.448764 0.643154i
\(376\) 8.21859 4.74500i 0.423841 0.244705i
\(377\) −23.1743 −1.19354
\(378\) 0 0
\(379\) 34.8881 1.79208 0.896041 0.443971i \(-0.146431\pi\)
0.896041 + 0.443971i \(0.146431\pi\)
\(380\) −3.74157 + 2.16020i −0.191939 + 0.110816i
\(381\) −3.28937 4.71422i −0.168520 0.241517i
\(382\) −11.0345 + 19.1122i −0.564572 + 0.977867i
\(383\) 5.92412 10.2609i 0.302708 0.524306i −0.674040 0.738695i \(-0.735443\pi\)
0.976748 + 0.214389i \(0.0687759\pi\)
\(384\) 1.56856 + 0.734581i 0.0800454 + 0.0374864i
\(385\) 0 0
\(386\) 19.9396i 1.01490i
\(387\) 25.7209 4.44797i 1.30747 0.226103i
\(388\) 11.8552i 0.601859i
\(389\) 5.50224 3.17672i 0.278975 0.161066i −0.353984 0.935251i \(-0.615173\pi\)
0.632959 + 0.774185i \(0.281840\pi\)
\(390\) 7.26485 0.623535i 0.367870 0.0315739i
\(391\) 9.06586 + 5.23418i 0.458480 + 0.264704i
\(392\) 0 0
\(393\) 32.3513 2.77668i 1.63191 0.140065i
\(394\) −2.31280 4.00588i −0.116517 0.201814i
\(395\) −4.45203 −0.224006
\(396\) −15.6935 5.77060i −0.788629 0.289983i
\(397\) 8.57535i 0.430385i 0.976572 + 0.215192i \(0.0690378\pi\)
−0.976572 + 0.215192i \(0.930962\pi\)
\(398\) −10.4514 18.1024i −0.523883 0.907391i
\(399\) 0 0
\(400\) 2.03214 3.51977i 0.101607 0.175989i
\(401\) 20.0216 + 11.5595i 0.999833 + 0.577254i 0.908199 0.418539i \(-0.137458\pi\)
0.0916343 + 0.995793i \(0.470791\pi\)
\(402\) −7.73081 + 5.39422i −0.385578 + 0.269039i
\(403\) 13.4184 + 23.2413i 0.668417 + 1.15773i
\(404\) 5.31626 0.264494
\(405\) −8.20033 + 2.92363i −0.407478 + 0.145276i
\(406\) 0 0
\(407\) 2.35174 1.35778i 0.116572 0.0673026i
\(408\) 5.60416 3.91033i 0.277447 0.193590i
\(409\) −1.35091 0.779947i −0.0667981 0.0385659i 0.466229 0.884664i \(-0.345612\pi\)
−0.533027 + 0.846098i \(0.678946\pi\)
\(410\) −0.137196 0.0792099i −0.00677561 0.00391190i
\(411\) 26.5626 + 12.4396i 1.31024 + 0.613603i
\(412\) −7.74616 + 4.47225i −0.381626 + 0.220332i
\(413\) 0 0
\(414\) 2.74712 7.47097i 0.135014 0.367178i
\(415\) −8.14447 −0.399796
\(416\) 2.17600 + 3.76893i 0.106687 + 0.184787i
\(417\) 1.79637 + 20.9296i 0.0879684 + 1.02493i
\(418\) 21.5585 + 12.4468i 1.05446 + 0.608794i
\(419\) 3.40822 5.90321i 0.166502 0.288391i −0.770685 0.637216i \(-0.780086\pi\)
0.937188 + 0.348825i \(0.113419\pi\)
\(420\) 0 0
\(421\) −6.75727 11.7039i −0.329329 0.570415i 0.653050 0.757315i \(-0.273489\pi\)
−0.982379 + 0.186900i \(0.940156\pi\)
\(422\) 6.68620i 0.325479i
\(423\) −28.0536 + 4.85137i −1.36401 + 0.235882i
\(424\) −2.01518 −0.0978659
\(425\) −8.01750 13.8867i −0.388906 0.673605i
\(426\) 2.67392 5.70967i 0.129552 0.276634i
\(427\) 0 0
\(428\) −16.5898 9.57813i −0.801899 0.462976i
\(429\) −24.0410 34.4548i −1.16071 1.66349i
\(430\) −7.28898 + 4.20829i −0.351506 + 0.202942i
\(431\) 14.1598i 0.682054i 0.940053 + 0.341027i \(0.110775\pi\)
−0.940053 + 0.341027i \(0.889225\pi\)
\(432\) −3.65603 3.69235i −0.175901 0.177648i
\(433\) 23.4830i 1.12852i 0.825597 + 0.564260i \(0.190839\pi\)
−0.825597 + 0.564260i \(0.809161\pi\)
\(434\) 0 0
\(435\) −7.31670 + 5.10527i −0.350809 + 0.244779i
\(436\) 9.62168 16.6652i 0.460795 0.798121i
\(437\) −5.92536 + 10.2630i −0.283449 + 0.490947i
\(438\) −1.82765 + 3.90260i −0.0873283 + 0.186474i
\(439\) 3.66398 2.11540i 0.174872 0.100963i −0.410009 0.912081i \(-0.634474\pi\)
0.584881 + 0.811119i \(0.301141\pi\)
\(440\) 5.39149 0.257029
\(441\) 0 0
\(442\) 17.1701 0.816699
\(443\) 25.8161 14.9049i 1.22656 0.708154i 0.260250 0.965541i \(-0.416195\pi\)
0.966308 + 0.257388i \(0.0828618\pi\)
\(444\) 0.840793 0.0721645i 0.0399023 0.00342477i
\(445\) 1.99086 3.44827i 0.0943757 0.163464i
\(446\) 4.09123 7.08622i 0.193725 0.335542i
\(447\) −1.29461 15.0836i −0.0612328 0.713428i
\(448\) 0 0
\(449\) 8.41716i 0.397230i 0.980078 + 0.198615i \(0.0636444\pi\)
−0.980078 + 0.198615i \(0.936356\pi\)
\(450\) −9.36604 + 7.80660i −0.441519 + 0.368007i
\(451\) 0.912797i 0.0429819i
\(452\) 7.31199 4.22158i 0.343927 0.198566i
\(453\) −16.2299 + 34.6560i −0.762549 + 1.62828i
\(454\) −9.26106 5.34688i −0.434643 0.250941i
\(455\) 0 0
\(456\) 4.42670 + 6.34420i 0.207299 + 0.297094i
\(457\) 1.94109 + 3.36207i 0.0908006 + 0.157271i 0.907848 0.419299i \(-0.137724\pi\)
−0.817048 + 0.576570i \(0.804391\pi\)
\(458\) −29.2072 −1.36476
\(459\) −19.8281 + 5.20803i −0.925494 + 0.243090i
\(460\) 2.56664i 0.119670i
\(461\) −17.0423 29.5181i −0.793739 1.37480i −0.923637 0.383269i \(-0.874798\pi\)
0.129898 0.991527i \(-0.458535\pi\)
\(462\) 0 0
\(463\) −6.10962 + 10.5822i −0.283938 + 0.491796i −0.972351 0.233523i \(-0.924974\pi\)
0.688413 + 0.725319i \(0.258308\pi\)
\(464\) −4.61157 2.66249i −0.214087 0.123603i
\(465\) 9.35655 + 4.38181i 0.433900 + 0.203202i
\(466\) −3.21967 5.57664i −0.149148 0.258333i
\(467\) −30.8115 −1.42579 −0.712893 0.701273i \(-0.752615\pi\)
−0.712893 + 0.701273i \(0.752615\pi\)
\(468\) −2.22477 12.8650i −0.102840 0.594686i
\(469\) 0 0
\(470\) 7.95004 4.58996i 0.366708 0.211719i
\(471\) −0.211002 2.45840i −0.00972244 0.113277i
\(472\) 1.44961 + 0.836931i 0.0667236 + 0.0385229i
\(473\) 41.9983 + 24.2477i 1.93108 + 1.11491i
\(474\) 0.681690 + 7.94242i 0.0313110 + 0.364807i
\(475\) 15.7205 9.07623i 0.721306 0.416446i
\(476\) 0 0
\(477\) 5.67412 + 2.08640i 0.259800 + 0.0955299i
\(478\) −4.63557 −0.212026
\(479\) −20.8747 36.1560i −0.953788 1.65201i −0.737118 0.675764i \(-0.763814\pi\)
−0.216670 0.976245i \(-0.569519\pi\)
\(480\) 1.51731 + 0.710578i 0.0692554 + 0.0324333i
\(481\) 1.83629 + 1.06018i 0.0837276 + 0.0483401i
\(482\) −5.24722 + 9.08846i −0.239004 + 0.413968i
\(483\) 0 0
\(484\) −10.0326 17.3769i −0.456026 0.789861i
\(485\) 11.4679i 0.520729i
\(486\) 6.47138 + 14.1817i 0.293548 + 0.643296i
\(487\) −21.1663 −0.959137 −0.479568 0.877504i \(-0.659207\pi\)
−0.479568 + 0.877504i \(0.659207\pi\)
\(488\) 2.58611 + 4.47927i 0.117068 + 0.202767i
\(489\) −7.37690 10.5723i −0.333595 0.478097i
\(490\) 0 0
\(491\) 32.3428 + 18.6731i 1.45961 + 0.842707i 0.998992 0.0448915i \(-0.0142942\pi\)
0.460619 + 0.887598i \(0.347628\pi\)
\(492\) −0.120303 + 0.256885i −0.00542369 + 0.0115813i
\(493\) −18.1942 + 10.5044i −0.819427 + 0.473097i
\(494\) 19.4375i 0.874533i
\(495\) −15.1807 5.58204i −0.682323 0.250894i
\(496\) 6.16655i 0.276886i
\(497\) 0 0
\(498\) 1.24707 + 14.5297i 0.0558827 + 0.651093i
\(499\) −13.7099 + 23.7462i −0.613738 + 1.06303i 0.376867 + 0.926267i \(0.377001\pi\)
−0.990605 + 0.136758i \(0.956332\pi\)
\(500\) 4.38405 7.59340i 0.196061 0.339587i
\(501\) 11.2121 0.962322i 0.500919 0.0429934i
\(502\) 6.80065 3.92635i 0.303528 0.175242i
\(503\) −11.2791 −0.502909 −0.251454 0.967869i \(-0.580909\pi\)
−0.251454 + 0.967869i \(0.580909\pi\)
\(504\) 0 0
\(505\) 5.14255 0.228840
\(506\) 12.8074 7.39435i 0.569358 0.328719i
\(507\) 4.36328 9.31698i 0.193780 0.413782i
\(508\) 1.65941 2.87419i 0.0736246 0.127522i
\(509\) 9.31667 16.1370i 0.412954 0.715258i −0.582257 0.813005i \(-0.697830\pi\)
0.995211 + 0.0977470i \(0.0311636\pi\)
\(510\) 5.42104 3.78256i 0.240047 0.167494i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −5.89576 22.4464i −0.260304 0.991033i
\(514\) 3.43136i 0.151351i
\(515\) −7.49305 + 4.32611i −0.330183 + 0.190631i
\(516\) 8.62367 + 12.3592i 0.379636 + 0.544082i
\(517\) −45.8072 26.4468i −2.01460 1.16313i
\(518\) 0 0
\(519\) −8.68184 + 18.5385i −0.381091 + 0.813749i
\(520\) 2.10489 + 3.64578i 0.0923056 + 0.159878i
\(521\) 15.2851 0.669652 0.334826 0.942280i \(-0.391322\pi\)
0.334826 + 0.942280i \(0.391322\pi\)
\(522\) 10.2281 + 12.2713i 0.447673 + 0.537100i
\(523\) 36.4875i 1.59549i 0.602997 + 0.797743i \(0.293973\pi\)
−0.602997 + 0.797743i \(0.706027\pi\)
\(524\) 9.37335 + 16.2351i 0.409477 + 0.709235i
\(525\) 0 0
\(526\) 1.83066 3.17080i 0.0798207 0.138253i
\(527\) 21.0697 + 12.1646i 0.917809 + 0.529897i
\(528\) −0.825539 9.61842i −0.0359270 0.418588i
\(529\) −7.97989 13.8216i −0.346952 0.600938i
\(530\) −1.94934 −0.0846737
\(531\) −3.21512 3.85737i −0.139524 0.167396i
\(532\) 0 0
\(533\) −0.617243 + 0.356365i −0.0267358 + 0.0154359i
\(534\) −6.45655 3.02370i −0.279402 0.130848i
\(535\) −16.0477 9.26516i −0.693803 0.400568i
\(536\) −4.71336 2.72126i −0.203586 0.117540i
\(537\) −3.45694 + 2.41210i −0.149178 + 0.104090i
\(538\) 10.9865 6.34303i 0.473660 0.273467i
\(539\) 0 0
\(540\) −3.53657 3.57170i −0.152190 0.153701i
\(541\) −5.27293 −0.226701 −0.113351 0.993555i \(-0.536158\pi\)
−0.113351 + 0.993555i \(0.536158\pi\)
\(542\) 9.93828 + 17.2136i 0.426886 + 0.739388i
\(543\) 16.3837 11.4318i 0.703090 0.490585i
\(544\) 3.41677 + 1.97267i 0.146493 + 0.0845776i
\(545\) 9.30729 16.1207i 0.398680 0.690535i
\(546\) 0 0
\(547\) −9.29831 16.1051i −0.397567 0.688606i 0.595858 0.803090i \(-0.296812\pi\)
−0.993425 + 0.114484i \(0.963479\pi\)
\(548\) 16.9343i 0.723399i
\(549\) −2.64408 15.2897i −0.112846 0.652549i
\(550\) −22.6527 −0.965916
\(551\) −11.8916 20.5968i −0.506599 0.877455i
\(552\) 4.57889 0.393002i 0.194890 0.0167273i
\(553\) 0 0
\(554\) 6.46579 + 3.73302i 0.274705 + 0.158601i
\(555\) 0.813320 0.0698064i 0.0345235 0.00296312i
\(556\) −10.5033 + 6.06406i −0.445438 + 0.257174i
\(557\) 27.5620i 1.16784i 0.811811 + 0.583920i \(0.198482\pi\)
−0.811811 + 0.583920i \(0.801518\pi\)
\(558\) 6.38449 17.3630i 0.270277 0.735036i
\(559\) 37.8662i 1.60157i
\(560\) 0 0
\(561\) −34.4924 16.1533i −1.45627 0.681993i
\(562\) −11.1282 + 19.2746i −0.469416 + 0.813052i
\(563\) 9.42577 16.3259i 0.397249 0.688055i −0.596137 0.802883i \(-0.703298\pi\)
0.993385 + 0.114828i \(0.0366317\pi\)
\(564\) −9.40579 13.4801i −0.396055 0.567613i
\(565\) 7.07306 4.08364i 0.297566 0.171800i
\(566\) 16.1802 0.680106
\(567\) 0 0
\(568\) 3.64006 0.152734
\(569\) −3.87103 + 2.23494i −0.162282 + 0.0936936i −0.578942 0.815369i \(-0.696534\pi\)
0.416659 + 0.909063i \(0.363201\pi\)
\(570\) 4.28205 + 6.13690i 0.179355 + 0.257046i
\(571\) −9.31245 + 16.1296i −0.389714 + 0.675004i −0.992411 0.122966i \(-0.960759\pi\)
0.602697 + 0.797970i \(0.294093\pi\)
\(572\) 12.1282 21.0066i 0.507104 0.878329i
\(573\) 34.6165 + 16.2114i 1.44612 + 0.677241i
\(574\) 0 0
\(575\) 10.7839i 0.449721i
\(576\) 1.03534 2.81568i 0.0431393 0.117320i
\(577\) 36.8833i 1.53547i 0.640767 + 0.767735i \(0.278616\pi\)
−0.640767 + 0.767735i \(0.721384\pi\)
\(578\) −1.24210 + 0.717124i −0.0516644 + 0.0298284i
\(579\) −34.4099 + 2.95336i −1.43003 + 0.122738i
\(580\) −4.46088 2.57549i −0.185228 0.106941i
\(581\) 0 0
\(582\) −20.4587 + 1.75595i −0.848039 + 0.0727863i
\(583\) 5.61593 + 9.72707i 0.232588 + 0.402854i
\(584\) −2.48801 −0.102955
\(585\) −2.15208 12.4446i −0.0889774 0.514523i
\(586\) 8.86813i 0.366339i
\(587\) 13.2295 + 22.9141i 0.546039 + 0.945766i 0.998541 + 0.0540032i \(0.0171981\pi\)
−0.452502 + 0.891763i \(0.649469\pi\)
\(588\) 0 0
\(589\) −13.7709 + 23.8520i −0.567422 + 0.982803i
\(590\) 1.40224 + 0.809584i 0.0577293 + 0.0333300i
\(591\) −6.57042 + 4.58454i −0.270271 + 0.188583i
\(592\) 0.243608 + 0.421942i 0.0100122 + 0.0173417i
\(593\) 34.6703 1.42374 0.711869 0.702312i \(-0.247849\pi\)
0.711869 + 0.702312i \(0.247849\pi\)
\(594\) −7.63390 + 27.9371i −0.313223 + 1.14627i
\(595\) 0 0
\(596\) 7.56951 4.37026i 0.310059 0.179013i
\(597\) −29.6914 + 20.7173i −1.21519 + 0.847904i
\(598\) 10.0003 + 5.77366i 0.408942 + 0.236103i
\(599\) −21.2079 12.2444i −0.866530 0.500291i −0.000336253 1.00000i \(-0.500107\pi\)
−0.866193 + 0.499709i \(0.833440\pi\)
\(600\) −6.37509 2.98555i −0.260262 0.121884i
\(601\) −19.3812 + 11.1898i −0.790577 + 0.456440i −0.840166 0.542330i \(-0.817542\pi\)
0.0495885 + 0.998770i \(0.484209\pi\)
\(602\) 0 0
\(603\) 10.4539 + 12.5421i 0.425715 + 0.510755i
\(604\) −22.0941 −0.898997
\(605\) −9.70476 16.8091i −0.394554 0.683388i
\(606\) −0.787421 9.17430i −0.0319868 0.372681i
\(607\) 28.2180 + 16.2917i 1.14533 + 0.661259i 0.947746 0.319026i \(-0.103356\pi\)
0.197589 + 0.980285i \(0.436689\pi\)
\(608\) −2.23317 + 3.86796i −0.0905670 + 0.156867i
\(609\) 0 0
\(610\) 2.50160 + 4.33290i 0.101287 + 0.175434i
\(611\) 41.3004i 1.67084i
\(612\) −7.57814 9.09195i −0.306328 0.367520i
\(613\) −11.7386 −0.474118 −0.237059 0.971495i \(-0.576183\pi\)
−0.237059 + 0.971495i \(0.576183\pi\)
\(614\) −13.5714 23.5063i −0.547696 0.948637i
\(615\) −0.116372 + 0.248491i −0.00469258 + 0.0100201i
\(616\) 0 0
\(617\) −38.1947 22.0517i −1.53766 0.887770i −0.998975 0.0452639i \(-0.985587\pi\)
−0.538687 0.842506i \(-0.681080\pi\)
\(618\) 8.86511 + 12.7052i 0.356607 + 0.511078i
\(619\) 4.28374 2.47322i 0.172178 0.0994070i −0.411434 0.911439i \(-0.634972\pi\)
0.583612 + 0.812032i \(0.301639\pi\)
\(620\) 5.96505i 0.239562i
\(621\) −13.2996 3.63415i −0.533694 0.145833i
\(622\) 16.8955i 0.677447i
\(623\) 0 0
\(624\) 6.18177 4.31337i 0.247469 0.172673i
\(625\) −5.91991 + 10.2536i −0.236797 + 0.410144i
\(626\) 2.13870 3.70433i 0.0854795 0.148055i
\(627\) 18.2864 39.0472i 0.730288 1.55940i
\(628\) 1.23372 0.712287i 0.0492307 0.0284233i
\(629\) 1.92224 0.0766447
\(630\) 0 0
\(631\) −9.08478 −0.361659 −0.180830 0.983514i \(-0.557878\pi\)
−0.180830 + 0.983514i \(0.557878\pi\)
\(632\) −3.98581 + 2.30121i −0.158547 + 0.0915371i
\(633\) 11.5384 0.990330i 0.458611 0.0393621i
\(634\) 3.31470 5.74123i 0.131644 0.228013i
\(635\) 1.60519 2.78027i 0.0637001 0.110332i
\(636\) 0.298480 + 3.47761i 0.0118355 + 0.137896i
\(637\) 0 0
\(638\) 29.6794i 1.17502i
\(639\) −10.2493 3.76871i −0.405455 0.149088i
\(640\) 0.967324i 0.0382368i
\(641\) 12.1954 7.04105i 0.481691 0.278105i −0.239430 0.970914i \(-0.576960\pi\)
0.721121 + 0.692809i \(0.243627\pi\)
\(642\) −14.0718 + 30.0478i −0.555371 + 1.18589i
\(643\) 7.33157 + 4.23288i 0.289129 + 0.166929i 0.637549 0.770410i \(-0.279948\pi\)
−0.348420 + 0.937339i \(0.613282\pi\)
\(644\) 0 0
\(645\) 8.34189 + 11.9553i 0.328461 + 0.470740i
\(646\) 8.81062 + 15.2604i 0.346649 + 0.600414i
\(647\) 24.3324 0.956607 0.478304 0.878195i \(-0.341252\pi\)
0.478304 + 0.878195i \(0.341252\pi\)
\(648\) −5.83039 + 6.85613i −0.229039 + 0.269334i
\(649\) 9.32946i 0.366213i
\(650\) −8.84386 15.3180i −0.346885 0.600822i
\(651\) 0 0
\(652\) 3.72148 6.44579i 0.145744 0.252437i
\(653\) 36.0653 + 20.8223i 1.41134 + 0.814840i 0.995515 0.0946029i \(-0.0301581\pi\)
0.415829 + 0.909443i \(0.363491\pi\)
\(654\) −30.1844 14.1358i −1.18030 0.552754i
\(655\) 9.06707 + 15.7046i 0.354280 + 0.613631i
\(656\) −0.163771 −0.00639419
\(657\) 7.00545 + 2.57594i 0.273309 + 0.100497i
\(658\) 0 0
\(659\) −9.09866 + 5.25312i −0.354434 + 0.204632i −0.666636 0.745383i \(-0.732267\pi\)
0.312203 + 0.950016i \(0.398933\pi\)
\(660\) −0.798564 9.30413i −0.0310841 0.362163i
\(661\) −16.8988 9.75655i −0.657289 0.379486i 0.133954 0.990987i \(-0.457232\pi\)
−0.791243 + 0.611502i \(0.790566\pi\)
\(662\) 0.656267 + 0.378896i 0.0255065 + 0.0147262i
\(663\) −2.54316 29.6306i −0.0987682 1.15076i
\(664\) −7.29158 + 4.20979i −0.282968 + 0.163372i
\(665\) 0 0
\(666\) −0.249069 1.44027i −0.00965124 0.0558095i
\(667\) −14.1290 −0.547077
\(668\) 3.24855 + 5.62665i 0.125690 + 0.217702i
\(669\) −12.8347 6.01068i −0.496219 0.232386i
\(670\) −4.55935 2.63234i −0.176143 0.101696i
\(671\) 14.4140 24.9657i 0.556445 0.963790i
\(672\) 0 0
\(673\) −3.10277 5.37415i −0.119603 0.207158i 0.800007 0.599990i \(-0.204829\pi\)
−0.919610 + 0.392832i \(0.871495\pi\)
\(674\) 2.02176i 0.0778751i
\(675\) 14.8592 + 15.0067i 0.571929 + 0.577610i
\(676\) 5.93982 0.228455
\(677\) −12.3765 21.4368i −0.475669 0.823883i 0.523942 0.851754i \(-0.324461\pi\)
−0.999612 + 0.0278703i \(0.991127\pi\)
\(678\) −8.36823 11.9931i −0.321380 0.460591i
\(679\) 0 0
\(680\) 3.30512 + 1.90821i 0.126746 + 0.0731767i
\(681\) −7.85543 + 16.7738i −0.301021 + 0.642774i
\(682\) 29.7652 17.1850i 1.13977 0.658046i
\(683\) 21.1448i 0.809083i −0.914520 0.404542i \(-0.867431\pi\)
0.914520 0.404542i \(-0.132569\pi\)
\(684\) 10.2926 8.57886i 0.393546 0.328021i
\(685\) 16.3810i 0.625886i
\(686\) 0 0
\(687\) 4.32605 + 50.4031i 0.165049 + 1.92300i
\(688\) −4.35045 + 7.53520i −0.165859 + 0.287277i
\(689\) −4.38503 + 7.59509i −0.167056 + 0.289350i
\(690\) 4.42927 0.380160i 0.168619 0.0144724i
\(691\) 5.58127 3.22235i 0.212322 0.122584i −0.390068 0.920786i \(-0.627549\pi\)
0.602390 + 0.798202i \(0.294215\pi\)
\(692\) −11.8188 −0.449282
\(693\) 0 0
\(694\) −20.9661 −0.795864
\(695\) −10.1601 + 5.86591i −0.385393 + 0.222507i
\(696\) −3.91163 + 8.35257i −0.148270 + 0.316603i
\(697\) −0.323067 + 0.559568i −0.0122370 + 0.0211952i
\(698\) −3.09694 + 5.36406i −0.117221 + 0.203033i
\(699\) −9.14675 + 6.38220i −0.345962 + 0.241397i
\(700\) 0 0
\(701\) 24.5717i 0.928061i −0.885819 0.464031i \(-0.846403\pi\)
0.885819 0.464031i \(-0.153597\pi\)
\(702\) −21.8717 + 5.74482i −0.825495 + 0.216824i
\(703\) 2.17608i 0.0820723i
\(704\) 4.82689 2.78681i 0.181920 0.105032i
\(705\) −9.09844 13.0396i −0.342667 0.491099i
\(706\) 16.3140 + 9.41889i 0.613985 + 0.354484i
\(707\) 0 0
\(708\) 1.22959 2.62556i 0.0462107 0.0986745i
\(709\) −22.1370 38.3424i −0.831373 1.43998i −0.896950 0.442133i \(-0.854222\pi\)
0.0655765 0.997848i \(-0.479111\pi\)
\(710\) 3.52112 0.132145
\(711\) 13.6053 2.35279i 0.510239 0.0882366i
\(712\) 4.11622i 0.154262i
\(713\) 8.18098 + 14.1699i 0.306380 + 0.530666i
\(714\) 0 0
\(715\) 11.7319 20.3202i 0.438747 0.759931i
\(716\) −2.10764 1.21685i −0.0787663 0.0454757i
\(717\) 0.686600 + 7.99962i 0.0256415 + 0.298751i
\(718\) 13.8988 + 24.0735i 0.518700 + 0.898415i
\(719\) −4.44867 −0.165907 −0.0829537 0.996553i \(-0.526435\pi\)
−0.0829537 + 0.996553i \(0.526435\pi\)
\(720\) 1.00151 2.72368i 0.0373241 0.101505i
\(721\) 0 0
\(722\) −0.821146 + 0.474089i −0.0305599 + 0.0176438i
\(723\) 16.4612 + 7.70902i 0.612199 + 0.286702i
\(724\) 9.98887 + 5.76708i 0.371233 + 0.214332i
\(725\) 18.7427 + 10.8211i 0.696088 + 0.401886i
\(726\) −28.5015 + 19.8871i −1.05779 + 0.738079i
\(727\) 30.4270 17.5670i 1.12848 0.651525i 0.184924 0.982753i \(-0.440796\pi\)
0.943551 + 0.331227i \(0.107463\pi\)
\(728\) 0 0
\(729\) 23.5150 13.2682i 0.870925 0.491416i
\(730\) −2.40671 −0.0890765
\(731\) 17.1640 + 29.7289i 0.634834 + 1.09956i
\(732\) 7.34686 5.12631i 0.271548 0.189474i
\(733\) 5.03789 + 2.90863i 0.186079 + 0.107433i 0.590145 0.807297i \(-0.299070\pi\)
−0.404067 + 0.914729i \(0.632404\pi\)
\(734\) 10.8767 18.8390i 0.401467 0.695360i
\(735\) 0 0
\(736\) 1.32667 + 2.29786i 0.0489018 + 0.0847003i
\(737\) 30.3345i 1.11739i
\(738\) 0.461128 + 0.169559i 0.0169743 + 0.00624156i
\(739\) 11.0335 0.405874 0.202937 0.979192i \(-0.434951\pi\)
0.202937 + 0.979192i \(0.434951\pi\)
\(740\) 0.235648 + 0.408155i 0.00866261 + 0.0150041i
\(741\) 33.5433 2.87899i 1.23225 0.105762i
\(742\) 0 0
\(743\) −0.543196 0.313615i −0.0199279 0.0115054i 0.490003 0.871721i \(-0.336996\pi\)
−0.509931 + 0.860215i \(0.670329\pi\)
\(744\) 10.6416 0.913362i 0.390142 0.0334855i
\(745\) 7.32216 4.22745i 0.268263 0.154882i
\(746\) 11.7312i 0.429510i
\(747\) 24.8893 4.30416i 0.910653 0.157481i
\(748\) 21.9898i 0.804028i
\(749\) 0 0
\(750\) −13.7533 6.44088i −0.502200 0.235188i
\(751\) −2.23529 + 3.87163i −0.0815668 + 0.141278i −0.903923 0.427695i \(-0.859326\pi\)
0.822356 + 0.568973i \(0.192659\pi\)
\(752\) 4.74500 8.21859i 0.173033 0.299701i
\(753\) −7.78302 11.1544i −0.283629 0.406488i
\(754\) −20.0695 + 11.5871i −0.730889 + 0.421979i
\(755\) −21.3722 −0.777813
\(756\) 0 0
\(757\) 5.75624 0.209214 0.104607 0.994514i \(-0.466642\pi\)
0.104607 + 0.994514i \(0.466642\pi\)
\(758\) 30.2140 17.4441i 1.09742 0.633597i
\(759\) −14.6575 21.0066i −0.532032 0.762491i
\(760\) −2.16020 + 3.74157i −0.0783586 + 0.135721i
\(761\) −10.4970 + 18.1813i −0.380516 + 0.659073i −0.991136 0.132851i \(-0.957587\pi\)
0.610620 + 0.791924i \(0.290920\pi\)
\(762\) −5.20579 2.43795i −0.188586 0.0883176i
\(763\) 0 0
\(764\) 22.0689i 0.798425i
\(765\) −7.33052 8.79486i −0.265036 0.317979i
\(766\) 11.8482i 0.428094i
\(767\) 6.30868 3.64232i 0.227793 0.131516i
\(768\) 1.72571 0.148116i 0.0622711 0.00534466i
\(769\) 34.1729 + 19.7298i 1.23231 + 0.711473i 0.967511 0.252831i \(-0.0813616\pi\)
0.264797 + 0.964304i \(0.414695\pi\)
\(770\) 0 0
\(771\) 5.92151 0.508238i 0.213258 0.0183037i
\(772\) −9.96979 17.2682i −0.358821 0.621496i
\(773\) −34.6328 −1.24566 −0.622829 0.782358i \(-0.714017\pi\)
−0.622829 + 0.782358i \(0.714017\pi\)
\(774\) 20.0510 16.7125i 0.720718 0.600719i
\(775\) 25.0626i 0.900275i
\(776\) −5.92762 10.2669i −0.212789 0.368562i
\(777\) 0 0
\(778\) 3.17672 5.50224i 0.113891 0.197265i
\(779\) −0.633461 0.365729i −0.0226961 0.0131036i
\(780\) 5.97978 4.17242i 0.214110 0.149397i
\(781\) −10.1442 17.5702i −0.362986 0.628711i
\(782\) 10.4684 0.374348
\(783\) 19.6617 19.4683i 0.702651 0.695741i
\(784\) 0 0
\(785\) 1.19340 0.689012i 0.0425944 0.0245919i
\(786\) 26.6287 18.5803i 0.949815 0.662738i
\(787\) 30.5793 + 17.6550i 1.09003 + 0.629332i 0.933586 0.358355i \(-0.116662\pi\)
0.156449 + 0.987686i \(0.449995\pi\)
\(788\) −4.00588 2.31280i −0.142704 0.0823900i
\(789\) −5.74302 2.68954i −0.204457 0.0957502i
\(790\) −3.85557 + 2.22601i −0.137175 + 0.0791980i
\(791\) 0 0
\(792\) −16.4763 + 2.84928i −0.585459 + 0.101245i
\(793\) 22.5094 0.799333
\(794\) 4.28768 + 7.42647i 0.152164 + 0.263556i
\(795\) 0.288727 + 3.36398i 0.0102401 + 0.119308i
\(796\) −18.1024 10.4514i −0.641622 0.370441i
\(797\) 9.60992 16.6449i 0.340401 0.589591i −0.644106 0.764936i \(-0.722771\pi\)
0.984507 + 0.175344i \(0.0561039\pi\)
\(798\) 0 0
\(799\) −18.7207 32.4252i −0.662290 1.14712i
\(800\) 4.06428i 0.143694i
\(801\) −4.26169 + 11.5900i −0.150580 + 0.409511i
\(802\) 23.1190 0.816360
\(803\) 6.93361 + 12.0094i 0.244682 + 0.423801i
\(804\) −3.99797 + 8.53693i −0.140998 + 0.301074i
\(805\) 0 0
\(806\) 23.2413 + 13.4184i 0.818640 + 0.472642i
\(807\) −12.5735 18.0199i −0.442607 0.634330i
\(808\) 4.60402 2.65813i 0.161969 0.0935127i
\(809\) 39.2779i 1.38094i −0.723362 0.690469i \(-0.757404\pi\)
0.723362 0.690469i \(-0.242596\pi\)
\(810\) −5.63988 + 6.63210i −0.198165 + 0.233028i
\(811\) 9.68436i 0.340064i −0.985439 0.170032i \(-0.945613\pi\)
0.985439 0.170032i \(-0.0543871\pi\)
\(812\) 0 0
\(813\) 28.2336 19.7002i 0.990196 0.690915i
\(814\) 1.35778 2.35174i 0.0475901 0.0824285i
\(815\) 3.59987 6.23517i 0.126098 0.218408i
\(816\) 2.89818 6.18852i 0.101456 0.216642i
\(817\) −33.6547 + 19.4306i −1.17743 + 0.679790i
\(818\) −1.55989 −0.0545404
\(819\) 0 0
\(820\) −0.158420 −0.00553226
\(821\) −10.9919 + 6.34620i −0.383621 + 0.221484i −0.679393 0.733775i \(-0.737757\pi\)
0.295771 + 0.955259i \(0.404423\pi\)
\(822\) 29.2237 2.50824i 1.01929 0.0874849i
\(823\) −8.73837 + 15.1353i −0.304600 + 0.527583i −0.977172 0.212448i \(-0.931856\pi\)
0.672572 + 0.740032i \(0.265190\pi\)
\(824\) −4.47225 + 7.74616i −0.155798 + 0.269850i
\(825\) 3.35523 + 39.0920i 0.116814 + 1.36101i
\(826\) 0 0
\(827\) 46.9482i 1.63255i −0.577665 0.816274i \(-0.696036\pi\)
0.577665 0.816274i \(-0.303964\pi\)
\(828\) −1.35641 7.84361i −0.0471385 0.272584i
\(829\) 2.30706i 0.0801275i −0.999197 0.0400637i \(-0.987244\pi\)
0.999197 0.0400637i \(-0.0127561\pi\)
\(830\) −7.05332 + 4.07224i −0.244824 + 0.141349i
\(831\) 5.48442 11.7110i 0.190252 0.406249i
\(832\) 3.76893 + 2.17600i 0.130664 + 0.0754391i
\(833\) 0 0
\(834\) 12.0205 + 17.2274i 0.416236 + 0.596535i
\(835\) 3.14240 + 5.44280i 0.108747 + 0.188356i
\(836\) 24.8936 0.860965
\(837\) −30.9091 8.44601i −1.06838 0.291937i
\(838\) 6.81644i 0.235470i
\(839\) 8.51664 + 14.7513i 0.294027 + 0.509270i 0.974758 0.223264i \(-0.0716711\pi\)
−0.680731 + 0.732533i \(0.738338\pi\)
\(840\) 0 0
\(841\) −0.322276 + 0.558199i −0.0111130 + 0.0192482i
\(842\) −11.7039 6.75727i −0.403344 0.232871i
\(843\) 34.9106 + 16.3492i 1.20239 + 0.563095i
\(844\) 3.34310 + 5.79042i 0.115074 + 0.199314i
\(845\) 5.74573 0.197659
\(846\) −21.8695 + 18.2282i −0.751888 + 0.626699i
\(847\) 0 0
\(848\) −1.74520 + 1.00759i −0.0599304 + 0.0346008i
\(849\) −2.39655 27.9223i −0.0822493 0.958292i
\(850\) −13.8867 8.01750i −0.476311 0.274998i
\(851\) 1.11956 + 0.646377i 0.0383779 + 0.0221575i
\(852\) −0.539150 6.28168i −0.0184710 0.215207i
\(853\) 2.87158 1.65791i 0.0983209 0.0567656i −0.450033 0.893012i \(-0.648588\pi\)
0.548354 + 0.836246i \(0.315255\pi\)
\(854\) 0 0
\(855\) 9.95624 8.29854i 0.340496 0.283804i
\(856\) −19.1563 −0.654747
\(857\) −4.74512 8.21879i −0.162090 0.280748i 0.773528 0.633762i \(-0.218490\pi\)
−0.935618 + 0.353014i \(0.885157\pi\)
\(858\) −38.0476 17.8182i −1.29892 0.608304i
\(859\) 25.5104 + 14.7284i 0.870404 + 0.502528i 0.867482 0.497468i \(-0.165737\pi\)
0.00292142 + 0.999996i \(0.499070\pi\)
\(860\) −4.20829 + 7.28898i −0.143502 + 0.248552i
\(861\) 0 0
\(862\) 7.07990 + 12.2628i 0.241143 + 0.417671i
\(863\) 15.5434i 0.529105i −0.964371 0.264553i \(-0.914776\pi\)
0.964371 0.264553i \(-0.0852243\pi\)
\(864\) −5.01239 1.36965i −0.170525 0.0465965i
\(865\) −11.4326 −0.388719
\(866\) 11.7415 + 20.3369i 0.398992 + 0.691075i
\(867\) 1.42152 + 2.03727i 0.0482773 + 0.0691895i
\(868\) 0 0
\(869\) 22.2154 + 12.8260i 0.753604 + 0.435094i
\(870\) −3.78382 + 8.07964i −0.128283 + 0.273926i
\(871\) −20.5125 + 11.8429i −0.695039 + 0.401281i
\(872\) 19.2434i 0.651663i
\(873\) 6.06050 + 35.0456i 0.205117 + 1.18611i
\(874\) 11.8507i 0.400857i
\(875\) 0 0
\(876\) 0.368514 + 4.29358i 0.0124509 + 0.145067i
\(877\) 22.7249 39.3606i 0.767364 1.32911i −0.171624 0.985163i \(-0.554901\pi\)
0.938988 0.343950i \(-0.111765\pi\)
\(878\) 2.11540 3.66398i 0.0713913 0.123653i
\(879\) 15.3038 1.31351i 0.516184 0.0443035i
\(880\) 4.66917 2.69574i 0.157398 0.0908735i
\(881\) 15.6912 0.528651 0.264326 0.964433i \(-0.414851\pi\)
0.264326 + 0.964433i \(0.414851\pi\)
\(882\) 0 0
\(883\) −10.5344 −0.354510 −0.177255 0.984165i \(-0.556722\pi\)
−0.177255 + 0.984165i \(0.556722\pi\)
\(884\) 14.8697 8.58505i 0.500124 0.288747i
\(885\) 1.18941 2.53977i 0.0399816 0.0853733i
\(886\) 14.9049 25.8161i 0.500740 0.867307i
\(887\) 0.0302741 0.0524362i 0.00101650 0.00176064i −0.865517 0.500880i \(-0.833010\pi\)
0.866533 + 0.499119i \(0.166343\pi\)
\(888\) 0.692066 0.482893i 0.0232242 0.0162048i
\(889\) 0 0
\(890\) 3.98172i 0.133467i
\(891\) 49.3420 + 9.03594i 1.65302 + 0.302716i
\(892\) 8.18246i 0.273969i
\(893\) 36.7070 21.1928i 1.22835 0.709190i
\(894\) −8.66294 12.4154i −0.289732 0.415234i
\(895\) −2.03877 1.17709i −0.0681487 0.0393456i
\(896\) 0 0
\(897\) 8.48245 18.1127i 0.283221 0.604766i
\(898\) 4.20858 + 7.28948i 0.140442 + 0.243253i
\(899\) −32.8368 −1.09517
\(900\) −4.20793 + 11.4437i −0.140264 + 0.381458i
\(901\) 7.95059i 0.264873i
\(902\) 0.456399 + 0.790505i 0.0151964 + 0.0263210i
\(903\) 0 0
\(904\) 4.22158 7.31199i 0.140408 0.243193i
\(905\) 9.66247 + 5.57863i 0.321192 + 0.185440i
\(906\) 3.27249 + 38.1280i 0.108721 + 1.26672i
\(907\) −12.0490 20.8695i −0.400081 0.692961i 0.593654 0.804720i \(-0.297685\pi\)
−0.993735 + 0.111760i \(0.964351\pi\)
\(908\) −10.6938 −0.354885
\(909\) −15.7155 + 2.71772i −0.521251 + 0.0901410i
\(910\) 0 0
\(911\) 22.0494 12.7302i 0.730528 0.421771i −0.0880873 0.996113i \(-0.528075\pi\)
0.818615 + 0.574342i \(0.194742\pi\)
\(912\) 7.00573 + 3.28089i 0.231983 + 0.108641i
\(913\) 40.6404 + 23.4638i 1.34500 + 0.776537i
\(914\) 3.36207 + 1.94109i 0.111208 + 0.0642057i
\(915\) 7.10679 4.95880i 0.234943 0.163933i
\(916\) −25.2942 + 14.6036i −0.835744 + 0.482517i
\(917\) 0 0
\(918\) −14.5676 + 14.4243i −0.480802 + 0.476073i
\(919\) −22.9067 −0.755623 −0.377812 0.925882i \(-0.623323\pi\)
−0.377812 + 0.925882i \(0.623323\pi\)
\(920\) 1.28332 + 2.22278i 0.0423098 + 0.0732828i
\(921\) −38.5548 + 26.9019i −1.27043 + 0.886446i
\(922\) −29.5181 17.0423i −0.972128 0.561258i
\(923\) 7.92076 13.7192i 0.260715 0.451572i
\(924\) 0 0
\(925\) −0.990094 1.71489i −0.0325541 0.0563853i
\(926\) 12.2192i 0.401549i
\(927\) 20.6124 17.1804i 0.676999 0.564279i
\(928\) −5.32498 −0.174801
\(929\) −14.3986 24.9392i −0.472404 0.818228i 0.527097 0.849805i \(-0.323280\pi\)
−0.999501 + 0.0315768i \(0.989947\pi\)
\(930\) 10.2939 0.883517i 0.337551 0.0289717i
\(931\) 0 0
\(932\) −5.57664 3.21967i −0.182669 0.105464i
\(933\) 29.1566 2.50249i 0.954546 0.0819277i
\(934\) −26.6835 + 15.4057i −0.873112 + 0.504091i
\(935\) 21.2713i 0.695646i
\(936\) −8.35922 10.0290i −0.273230 0.327810i
\(937\) 53.6825i 1.75373i −0.480736 0.876865i \(-0.659631\pi\)
0.480736 0.876865i \(-0.340369\pi\)
\(938\) 0 0
\(939\) −6.70936 3.14209i −0.218952 0.102538i
\(940\) 4.58996 7.95004i 0.149708 0.259302i
\(941\) 22.9511 39.7524i 0.748184 1.29589i −0.200509 0.979692i \(-0.564260\pi\)
0.948693 0.316200i \(-0.102407\pi\)
\(942\) −1.41193 2.02353i −0.0460032 0.0659303i
\(943\) −0.376324 + 0.217271i −0.0122548 + 0.00707530i
\(944\) 1.67386 0.0544796
\(945\) 0 0
\(946\) 48.4954 1.57672
\(947\) 25.0440 14.4591i 0.813820 0.469859i −0.0344607 0.999406i \(-0.510971\pi\)
0.848281 + 0.529547i \(0.177638\pi\)
\(948\) 4.56157 + 6.53749i 0.148153 + 0.212328i
\(949\) −5.41390 + 9.37715i −0.175743 + 0.304395i
\(950\) 9.07623 15.7205i 0.294472 0.510040i
\(951\) −10.3986 4.86984i −0.337199 0.157915i
\(952\) 0 0
\(953\) 12.8715i 0.416949i −0.978028 0.208475i \(-0.933150\pi\)
0.978028 0.208475i \(-0.0668498\pi\)
\(954\) 5.95713 1.03018i 0.192869 0.0333532i
\(955\) 21.3478i 0.690798i
\(956\) −4.01452 + 2.31778i −0.129839 + 0.0749624i
\(957\) 51.2179 4.39598i 1.65564 0.142102i
\(958\) −36.1560 20.8747i −1.16815 0.674430i
\(959\) 0 0
\(960\) 1.66932 0.143276i 0.0538770 0.00462421i
\(961\) 3.51314 + 6.08494i 0.113327 + 0.196288i
\(962\) 2.12036 0.0683633
\(963\) 53.9379 + 19.8333i 1.73813 + 0.639119i
\(964\) 10.4944i 0.338003i
\(965\) −9.64402 16.7039i −0.310452 0.537719i
\(966\) 0 0
\(967\) 3.11725 5.39923i 0.100244 0.173627i −0.811541 0.584295i \(-0.801371\pi\)
0.911785 + 0.410668i \(0.134704\pi\)
\(968\) −17.3769 10.0326i −0.558516 0.322459i
\(969\) 25.0301 17.4649i 0.804081 0.561052i
\(970\) −5.73393 9.93146i −0.184105 0.318880i
\(971\) 39.3727 1.26353 0.631764 0.775160i \(-0.282331\pi\)
0.631764 + 0.775160i \(0.282331\pi\)
\(972\) 12.6952 + 9.04604i 0.407200 + 0.290152i
\(973\) 0 0
\(974\) −18.3306 + 10.5832i −0.587349 + 0.339106i
\(975\) −25.1245 + 17.5307i −0.804628 + 0.561433i
\(976\) 4.47927 + 2.58611i 0.143378 + 0.0827793i
\(977\) −23.2474 13.4219i −0.743751 0.429405i 0.0796807 0.996820i \(-0.474610\pi\)
−0.823431 + 0.567416i \(0.807943\pi\)
\(978\) −11.6747 5.46745i −0.373317 0.174830i
\(979\) −19.8685 + 11.4711i −0.635001 + 0.366618i
\(980\) 0 0
\(981\) −19.9235 + 54.1832i −0.636108 + 1.72994i
\(982\) 37.3463 1.19177
\(983\) 5.98457 + 10.3656i 0.190878 + 0.330611i 0.945541 0.325502i \(-0.105533\pi\)
−0.754663 + 0.656112i \(0.772200\pi\)
\(984\) 0.0242571 + 0.282621i 0.000773287 + 0.00900963i
\(985\) −3.87499 2.23723i −0.123467 0.0712839i
\(986\) −10.5044 + 18.1942i −0.334530 + 0.579423i
\(987\) 0 0
\(988\) 9.71873 + 16.8333i 0.309194 + 0.535540i
\(989\) 23.0865i 0.734107i
\(990\) −15.9379 + 2.75617i −0.506540 + 0.0875969i
\(991\) 10.8084 0.343340 0.171670 0.985154i \(-0.445084\pi\)
0.171670 + 0.985154i \(0.445084\pi\)
\(992\) 3.08327 + 5.34038i 0.0978940 + 0.169557i
\(993\) 0.556660 1.18864i 0.0176651 0.0377205i
\(994\) 0 0
\(995\) −17.5109 10.1099i −0.555132 0.320506i
\(996\) 8.34486 + 11.9596i 0.264417 + 0.378954i
\(997\) 11.6653 6.73498i 0.369445 0.213299i −0.303771 0.952745i \(-0.598246\pi\)
0.673216 + 0.739446i \(0.264912\pi\)
\(998\) 27.4197i 0.867956i
\(999\) −2.44860 + 0.643147i −0.0774702 + 0.0203483i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.m.b.293.6 16
3.2 odd 2 2646.2.m.b.881.2 16
7.2 even 3 882.2.t.a.815.4 16
7.3 odd 6 882.2.l.b.509.6 16
7.4 even 3 126.2.l.a.5.7 16
7.5 odd 6 126.2.t.a.59.1 yes 16
7.6 odd 2 882.2.m.a.293.7 16
9.2 odd 6 882.2.m.a.587.7 16
9.7 even 3 2646.2.m.a.1763.3 16
21.2 odd 6 2646.2.t.b.2285.7 16
21.5 even 6 378.2.t.a.17.6 16
21.11 odd 6 378.2.l.a.341.2 16
21.17 even 6 2646.2.l.a.1097.3 16
21.20 even 2 2646.2.m.a.881.3 16
28.11 odd 6 1008.2.ca.c.257.5 16
28.19 even 6 1008.2.df.c.689.7 16
63.2 odd 6 882.2.l.b.227.2 16
63.4 even 3 1134.2.k.a.971.3 16
63.5 even 6 1134.2.k.a.647.3 16
63.11 odd 6 126.2.t.a.47.1 yes 16
63.16 even 3 2646.2.l.a.521.7 16
63.20 even 6 inner 882.2.m.b.587.6 16
63.25 even 3 378.2.t.a.89.6 16
63.32 odd 6 1134.2.k.b.971.6 16
63.34 odd 6 2646.2.m.b.1763.2 16
63.38 even 6 882.2.t.a.803.4 16
63.40 odd 6 1134.2.k.b.647.6 16
63.47 even 6 126.2.l.a.101.3 yes 16
63.52 odd 6 2646.2.t.b.1979.7 16
63.61 odd 6 378.2.l.a.143.6 16
84.11 even 6 3024.2.ca.c.2609.4 16
84.47 odd 6 3024.2.df.c.17.4 16
252.11 even 6 1008.2.df.c.929.7 16
252.47 odd 6 1008.2.ca.c.353.5 16
252.151 odd 6 3024.2.df.c.1601.4 16
252.187 even 6 3024.2.ca.c.2033.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.7 16 7.4 even 3
126.2.l.a.101.3 yes 16 63.47 even 6
126.2.t.a.47.1 yes 16 63.11 odd 6
126.2.t.a.59.1 yes 16 7.5 odd 6
378.2.l.a.143.6 16 63.61 odd 6
378.2.l.a.341.2 16 21.11 odd 6
378.2.t.a.17.6 16 21.5 even 6
378.2.t.a.89.6 16 63.25 even 3
882.2.l.b.227.2 16 63.2 odd 6
882.2.l.b.509.6 16 7.3 odd 6
882.2.m.a.293.7 16 7.6 odd 2
882.2.m.a.587.7 16 9.2 odd 6
882.2.m.b.293.6 16 1.1 even 1 trivial
882.2.m.b.587.6 16 63.20 even 6 inner
882.2.t.a.803.4 16 63.38 even 6
882.2.t.a.815.4 16 7.2 even 3
1008.2.ca.c.257.5 16 28.11 odd 6
1008.2.ca.c.353.5 16 252.47 odd 6
1008.2.df.c.689.7 16 28.19 even 6
1008.2.df.c.929.7 16 252.11 even 6
1134.2.k.a.647.3 16 63.5 even 6
1134.2.k.a.971.3 16 63.4 even 3
1134.2.k.b.647.6 16 63.40 odd 6
1134.2.k.b.971.6 16 63.32 odd 6
2646.2.l.a.521.7 16 63.16 even 3
2646.2.l.a.1097.3 16 21.17 even 6
2646.2.m.a.881.3 16 21.20 even 2
2646.2.m.a.1763.3 16 9.7 even 3
2646.2.m.b.881.2 16 3.2 odd 2
2646.2.m.b.1763.2 16 63.34 odd 6
2646.2.t.b.1979.7 16 63.52 odd 6
2646.2.t.b.2285.7 16 21.2 odd 6
3024.2.ca.c.2033.4 16 252.187 even 6
3024.2.ca.c.2609.4 16 84.11 even 6
3024.2.df.c.17.4 16 84.47 odd 6
3024.2.df.c.1601.4 16 252.151 odd 6