Properties

Label 1008.2.t.k.961.5
Level $1008$
Weight $2$
Character 1008.961
Analytic conductor $8.049$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(193,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.5
Character \(\chi\) \(=\) 1008.961
Dual form 1008.2.t.k.193.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.444471 - 1.67405i) q^{3} -3.52959 q^{5} +(-1.16715 - 2.37440i) q^{7} +(-2.60489 + 1.48813i) q^{9} +O(q^{10})\) \(q+(-0.444471 - 1.67405i) q^{3} -3.52959 q^{5} +(-1.16715 - 2.37440i) q^{7} +(-2.60489 + 1.48813i) q^{9} +2.32073 q^{11} +(-2.35884 - 4.08563i) q^{13} +(1.56880 + 5.90871i) q^{15} +(-0.636946 - 1.10322i) q^{17} +(-2.78386 + 4.82178i) q^{19} +(-3.45610 + 3.00922i) q^{21} +3.29710 q^{23} +7.45798 q^{25} +(3.64901 + 3.69929i) q^{27} +(-4.32116 + 7.48447i) q^{29} +(4.25821 - 7.37543i) q^{31} +(-1.03150 - 3.88502i) q^{33} +(4.11956 + 8.38064i) q^{35} +(-2.84024 + 4.91943i) q^{37} +(-5.79111 + 5.76476i) q^{39} +(1.66553 + 2.88478i) q^{41} +(-0.0444165 + 0.0769317i) q^{43} +(9.19419 - 5.25250i) q^{45} +(3.52607 + 6.10733i) q^{47} +(-4.27552 + 5.54256i) q^{49} +(-1.56375 + 1.55663i) q^{51} +(3.41816 + 5.92042i) q^{53} -8.19121 q^{55} +(9.30925 + 2.51717i) q^{57} +(-3.99745 + 6.92378i) q^{59} +(-6.67764 - 11.5660i) q^{61} +(6.57372 + 4.44817i) q^{63} +(8.32572 + 14.4206i) q^{65} +(3.06402 - 5.30704i) q^{67} +(-1.46546 - 5.51951i) q^{69} -1.30202 q^{71} +(6.64529 + 11.5100i) q^{73} +(-3.31486 - 12.4850i) q^{75} +(-2.70864 - 5.51033i) q^{77} +(-5.01403 - 8.68455i) q^{79} +(4.57091 - 7.75286i) q^{81} +(5.90243 - 10.2233i) q^{83} +(2.24815 + 3.89392i) q^{85} +(14.4500 + 3.90721i) q^{87} +(0.561496 - 0.972540i) q^{89} +(-6.94778 + 10.3694i) q^{91} +(-14.2395 - 3.85029i) q^{93} +(9.82586 - 17.0189i) q^{95} +(-3.50818 + 6.07635i) q^{97} +(-6.04525 + 3.45356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 2 q^{3} - 6 q^{5} - 7 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 2 q^{3} - 6 q^{5} - 7 q^{7} - 8 q^{9} - 6 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} + q^{19} - 15 q^{21} + 4 q^{23} + 20 q^{25} + 4 q^{27} + 9 q^{29} + 4 q^{31} - 31 q^{33} - 14 q^{35} + 2 q^{37} - 8 q^{39} + 16 q^{41} + 22 q^{45} - 5 q^{47} - 15 q^{49} - 7 q^{51} + 11 q^{53} - 22 q^{55} + 7 q^{57} + 19 q^{59} - 13 q^{61} - 21 q^{63} + 13 q^{65} - 26 q^{67} - 4 q^{69} + 48 q^{71} - 35 q^{73} + 8 q^{75} - 4 q^{77} - 10 q^{79} - 8 q^{81} + 28 q^{83} - 20 q^{85} - 9 q^{87} + 6 q^{89} + 37 q^{91} - 32 q^{93} - 12 q^{95} - 29 q^{97} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.444471 1.67405i −0.256616 0.966514i
\(4\) 0 0
\(5\) −3.52959 −1.57848 −0.789239 0.614086i \(-0.789525\pi\)
−0.789239 + 0.614086i \(0.789525\pi\)
\(6\) 0 0
\(7\) −1.16715 2.37440i −0.441141 0.897438i
\(8\) 0 0
\(9\) −2.60489 + 1.48813i −0.868297 + 0.496045i
\(10\) 0 0
\(11\) 2.32073 0.699726 0.349863 0.936801i \(-0.386228\pi\)
0.349863 + 0.936801i \(0.386228\pi\)
\(12\) 0 0
\(13\) −2.35884 4.08563i −0.654224 1.13315i −0.982088 0.188424i \(-0.939662\pi\)
0.327864 0.944725i \(-0.393671\pi\)
\(14\) 0 0
\(15\) 1.56880 + 5.90871i 0.405062 + 1.52562i
\(16\) 0 0
\(17\) −0.636946 1.10322i −0.154482 0.267571i 0.778388 0.627783i \(-0.216038\pi\)
−0.932870 + 0.360212i \(0.882704\pi\)
\(18\) 0 0
\(19\) −2.78386 + 4.82178i −0.638661 + 1.10619i 0.347066 + 0.937841i \(0.387178\pi\)
−0.985727 + 0.168352i \(0.946155\pi\)
\(20\) 0 0
\(21\) −3.45610 + 3.00922i −0.754182 + 0.656666i
\(22\) 0 0
\(23\) 3.29710 0.687492 0.343746 0.939063i \(-0.388304\pi\)
0.343746 + 0.939063i \(0.388304\pi\)
\(24\) 0 0
\(25\) 7.45798 1.49160
\(26\) 0 0
\(27\) 3.64901 + 3.69929i 0.702253 + 0.711928i
\(28\) 0 0
\(29\) −4.32116 + 7.48447i −0.802419 + 1.38983i 0.115601 + 0.993296i \(0.463121\pi\)
−0.918020 + 0.396535i \(0.870213\pi\)
\(30\) 0 0
\(31\) 4.25821 7.37543i 0.764797 1.32467i −0.175557 0.984469i \(-0.556173\pi\)
0.940354 0.340197i \(-0.110494\pi\)
\(32\) 0 0
\(33\) −1.03150 3.88502i −0.179561 0.676295i
\(34\) 0 0
\(35\) 4.11956 + 8.38064i 0.696332 + 1.41659i
\(36\) 0 0
\(37\) −2.84024 + 4.91943i −0.466932 + 0.808750i −0.999286 0.0377716i \(-0.987974\pi\)
0.532354 + 0.846522i \(0.321307\pi\)
\(38\) 0 0
\(39\) −5.79111 + 5.76476i −0.927320 + 0.923100i
\(40\) 0 0
\(41\) 1.66553 + 2.88478i 0.260112 + 0.450528i 0.966272 0.257525i \(-0.0829071\pi\)
−0.706159 + 0.708053i \(0.749574\pi\)
\(42\) 0 0
\(43\) −0.0444165 + 0.0769317i −0.00677346 + 0.0117320i −0.869392 0.494123i \(-0.835489\pi\)
0.862619 + 0.505855i \(0.168823\pi\)
\(44\) 0 0
\(45\) 9.19419 5.25250i 1.37059 0.782996i
\(46\) 0 0
\(47\) 3.52607 + 6.10733i 0.514330 + 0.890845i 0.999862 + 0.0166264i \(0.00529258\pi\)
−0.485532 + 0.874219i \(0.661374\pi\)
\(48\) 0 0
\(49\) −4.27552 + 5.54256i −0.610789 + 0.791794i
\(50\) 0 0
\(51\) −1.56375 + 1.55663i −0.218968 + 0.217972i
\(52\) 0 0
\(53\) 3.41816 + 5.92042i 0.469520 + 0.813233i 0.999393 0.0348444i \(-0.0110936\pi\)
−0.529873 + 0.848077i \(0.677760\pi\)
\(54\) 0 0
\(55\) −8.19121 −1.10450
\(56\) 0 0
\(57\) 9.30925 + 2.51717i 1.23304 + 0.333408i
\(58\) 0 0
\(59\) −3.99745 + 6.92378i −0.520423 + 0.901400i 0.479295 + 0.877654i \(0.340893\pi\)
−0.999718 + 0.0237457i \(0.992441\pi\)
\(60\) 0 0
\(61\) −6.67764 11.5660i −0.854985 1.48088i −0.876659 0.481112i \(-0.840233\pi\)
0.0216747 0.999765i \(-0.493100\pi\)
\(62\) 0 0
\(63\) 6.57372 + 4.44817i 0.828211 + 0.560416i
\(64\) 0 0
\(65\) 8.32572 + 14.4206i 1.03268 + 1.78865i
\(66\) 0 0
\(67\) 3.06402 5.30704i 0.374330 0.648358i −0.615897 0.787827i \(-0.711206\pi\)
0.990226 + 0.139469i \(0.0445394\pi\)
\(68\) 0 0
\(69\) −1.46546 5.51951i −0.176421 0.664471i
\(70\) 0 0
\(71\) −1.30202 −0.154522 −0.0772609 0.997011i \(-0.524617\pi\)
−0.0772609 + 0.997011i \(0.524617\pi\)
\(72\) 0 0
\(73\) 6.64529 + 11.5100i 0.777772 + 1.34714i 0.933223 + 0.359297i \(0.116984\pi\)
−0.155451 + 0.987844i \(0.549683\pi\)
\(74\) 0 0
\(75\) −3.31486 12.4850i −0.382767 1.44165i
\(76\) 0 0
\(77\) −2.70864 5.51033i −0.308678 0.627961i
\(78\) 0 0
\(79\) −5.01403 8.68455i −0.564122 0.977088i −0.997131 0.0756985i \(-0.975881\pi\)
0.433009 0.901390i \(-0.357452\pi\)
\(80\) 0 0
\(81\) 4.57091 7.75286i 0.507879 0.861428i
\(82\) 0 0
\(83\) 5.90243 10.2233i 0.647876 1.12215i −0.335753 0.941950i \(-0.608991\pi\)
0.983629 0.180204i \(-0.0576758\pi\)
\(84\) 0 0
\(85\) 2.24815 + 3.89392i 0.243847 + 0.422355i
\(86\) 0 0
\(87\) 14.4500 + 3.90721i 1.54920 + 0.418897i
\(88\) 0 0
\(89\) 0.561496 0.972540i 0.0595185 0.103089i −0.834731 0.550658i \(-0.814377\pi\)
0.894249 + 0.447569i \(0.147710\pi\)
\(90\) 0 0
\(91\) −6.94778 + 10.3694i −0.728325 + 1.08700i
\(92\) 0 0
\(93\) −14.2395 3.85029i −1.47657 0.399256i
\(94\) 0 0
\(95\) 9.82586 17.0189i 1.00811 1.74610i
\(96\) 0 0
\(97\) −3.50818 + 6.07635i −0.356202 + 0.616960i −0.987323 0.158724i \(-0.949262\pi\)
0.631121 + 0.775685i \(0.282595\pi\)
\(98\) 0 0
\(99\) −6.04525 + 3.45356i −0.607570 + 0.347096i
\(100\) 0 0
\(101\) −9.74111 −0.969277 −0.484638 0.874715i \(-0.661049\pi\)
−0.484638 + 0.874715i \(0.661049\pi\)
\(102\) 0 0
\(103\) −10.2856 −1.01347 −0.506734 0.862103i \(-0.669147\pi\)
−0.506734 + 0.862103i \(0.669147\pi\)
\(104\) 0 0
\(105\) 12.1986 10.6213i 1.19046 1.03653i
\(106\) 0 0
\(107\) −2.72201 + 4.71465i −0.263146 + 0.455783i −0.967076 0.254487i \(-0.918094\pi\)
0.703930 + 0.710269i \(0.251427\pi\)
\(108\) 0 0
\(109\) 0.417404 + 0.722965i 0.0399800 + 0.0692475i 0.885323 0.464977i \(-0.153937\pi\)
−0.845343 + 0.534224i \(0.820604\pi\)
\(110\) 0 0
\(111\) 9.49778 + 2.56815i 0.901490 + 0.243758i
\(112\) 0 0
\(113\) 5.44881 + 9.43761i 0.512581 + 0.887815i 0.999894 + 0.0145882i \(0.00464372\pi\)
−0.487313 + 0.873227i \(0.662023\pi\)
\(114\) 0 0
\(115\) −11.6374 −1.08519
\(116\) 0 0
\(117\) 12.2245 + 7.13234i 1.13015 + 0.659385i
\(118\) 0 0
\(119\) −1.87608 + 2.79999i −0.171980 + 0.256674i
\(120\) 0 0
\(121\) −5.61421 −0.510383
\(122\) 0 0
\(123\) 4.08900 4.07039i 0.368692 0.367014i
\(124\) 0 0
\(125\) −8.67565 −0.775974
\(126\) 0 0
\(127\) 9.90354 0.878797 0.439399 0.898292i \(-0.355192\pi\)
0.439399 + 0.898292i \(0.355192\pi\)
\(128\) 0 0
\(129\) 0.148529 + 0.0401616i 0.0130773 + 0.00353603i
\(130\) 0 0
\(131\) −17.1844 −1.50141 −0.750704 0.660639i \(-0.770285\pi\)
−0.750704 + 0.660639i \(0.770285\pi\)
\(132\) 0 0
\(133\) 14.6980 + 0.982238i 1.27448 + 0.0851708i
\(134\) 0 0
\(135\) −12.8795 13.0569i −1.10849 1.12376i
\(136\) 0 0
\(137\) −16.0939 −1.37500 −0.687498 0.726186i \(-0.741291\pi\)
−0.687498 + 0.726186i \(0.741291\pi\)
\(138\) 0 0
\(139\) −1.11151 1.92519i −0.0942768 0.163292i 0.815030 0.579419i \(-0.196721\pi\)
−0.909307 + 0.416127i \(0.863387\pi\)
\(140\) 0 0
\(141\) 8.65674 8.61735i 0.729029 0.725711i
\(142\) 0 0
\(143\) −5.47422 9.48163i −0.457778 0.792894i
\(144\) 0 0
\(145\) 15.2519 26.4171i 1.26660 2.19382i
\(146\) 0 0
\(147\) 11.1789 + 4.69393i 0.922017 + 0.387149i
\(148\) 0 0
\(149\) 6.93692 0.568295 0.284147 0.958781i \(-0.408290\pi\)
0.284147 + 0.958781i \(0.408290\pi\)
\(150\) 0 0
\(151\) −15.5167 −1.26273 −0.631365 0.775486i \(-0.717505\pi\)
−0.631365 + 0.775486i \(0.717505\pi\)
\(152\) 0 0
\(153\) 3.30092 + 1.92591i 0.266863 + 0.155701i
\(154\) 0 0
\(155\) −15.0297 + 26.0322i −1.20722 + 2.09096i
\(156\) 0 0
\(157\) −0.401055 + 0.694648i −0.0320077 + 0.0554389i −0.881586 0.472024i \(-0.843523\pi\)
0.849578 + 0.527463i \(0.176857\pi\)
\(158\) 0 0
\(159\) 8.39182 8.35363i 0.665514 0.662486i
\(160\) 0 0
\(161\) −3.84821 7.82862i −0.303281 0.616982i
\(162\) 0 0
\(163\) −1.77500 + 3.07438i −0.139028 + 0.240804i −0.927129 0.374742i \(-0.877731\pi\)
0.788101 + 0.615546i \(0.211065\pi\)
\(164\) 0 0
\(165\) 3.64076 + 13.7125i 0.283433 + 1.06752i
\(166\) 0 0
\(167\) −0.865131 1.49845i −0.0669459 0.115954i 0.830610 0.556855i \(-0.187992\pi\)
−0.897556 + 0.440901i \(0.854659\pi\)
\(168\) 0 0
\(169\) −4.62823 + 8.01633i −0.356018 + 0.616641i
\(170\) 0 0
\(171\) 0.0761836 16.7030i 0.00582590 1.27731i
\(172\) 0 0
\(173\) −1.11729 1.93521i −0.0849462 0.147131i 0.820422 0.571758i \(-0.193738\pi\)
−0.905368 + 0.424627i \(0.860405\pi\)
\(174\) 0 0
\(175\) −8.70458 17.7082i −0.658005 1.33861i
\(176\) 0 0
\(177\) 13.3675 + 3.61451i 1.00476 + 0.271683i
\(178\) 0 0
\(179\) 0.350412 + 0.606931i 0.0261910 + 0.0453641i 0.878824 0.477146i \(-0.158329\pi\)
−0.852633 + 0.522511i \(0.824996\pi\)
\(180\) 0 0
\(181\) −19.6339 −1.45938 −0.729688 0.683780i \(-0.760335\pi\)
−0.729688 + 0.683780i \(0.760335\pi\)
\(182\) 0 0
\(183\) −16.3941 + 16.3195i −1.21189 + 1.20637i
\(184\) 0 0
\(185\) 10.0249 17.3636i 0.737042 1.27659i
\(186\) 0 0
\(187\) −1.47818 2.56028i −0.108095 0.187226i
\(188\) 0 0
\(189\) 4.52463 12.9818i 0.329118 0.944289i
\(190\) 0 0
\(191\) 8.04289 + 13.9307i 0.581963 + 1.00799i 0.995247 + 0.0973872i \(0.0310485\pi\)
−0.413284 + 0.910602i \(0.635618\pi\)
\(192\) 0 0
\(193\) 0.292732 0.507026i 0.0210713 0.0364965i −0.855297 0.518137i \(-0.826626\pi\)
0.876369 + 0.481641i \(0.159959\pi\)
\(194\) 0 0
\(195\) 20.4402 20.3472i 1.46375 1.45709i
\(196\) 0 0
\(197\) −17.2923 −1.23203 −0.616014 0.787735i \(-0.711254\pi\)
−0.616014 + 0.787735i \(0.711254\pi\)
\(198\) 0 0
\(199\) 12.2119 + 21.1517i 0.865681 + 1.49940i 0.866369 + 0.499404i \(0.166448\pi\)
−0.000687656 1.00000i \(0.500219\pi\)
\(200\) 0 0
\(201\) −10.2461 2.77050i −0.722706 0.195416i
\(202\) 0 0
\(203\) 22.8145 + 1.52465i 1.60127 + 0.107009i
\(204\) 0 0
\(205\) −5.87864 10.1821i −0.410582 0.711149i
\(206\) 0 0
\(207\) −8.58858 + 4.90653i −0.596948 + 0.341027i
\(208\) 0 0
\(209\) −6.46058 + 11.1900i −0.446888 + 0.774032i
\(210\) 0 0
\(211\) 5.58733 + 9.67754i 0.384648 + 0.666230i 0.991720 0.128417i \(-0.0409895\pi\)
−0.607072 + 0.794647i \(0.707656\pi\)
\(212\) 0 0
\(213\) 0.578712 + 2.17965i 0.0396527 + 0.149347i
\(214\) 0 0
\(215\) 0.156772 0.271537i 0.0106918 0.0185187i
\(216\) 0 0
\(217\) −22.4822 1.50244i −1.52619 0.101992i
\(218\) 0 0
\(219\) 16.3146 16.2404i 1.10244 1.09742i
\(220\) 0 0
\(221\) −3.00490 + 5.20464i −0.202132 + 0.350102i
\(222\) 0 0
\(223\) 1.32951 2.30277i 0.0890303 0.154205i −0.818071 0.575117i \(-0.804957\pi\)
0.907101 + 0.420912i \(0.138290\pi\)
\(224\) 0 0
\(225\) −19.4272 + 11.0985i −1.29515 + 0.739898i
\(226\) 0 0
\(227\) −11.9157 −0.790874 −0.395437 0.918493i \(-0.629407\pi\)
−0.395437 + 0.918493i \(0.629407\pi\)
\(228\) 0 0
\(229\) −29.6128 −1.95687 −0.978434 0.206561i \(-0.933773\pi\)
−0.978434 + 0.206561i \(0.933773\pi\)
\(230\) 0 0
\(231\) −8.02066 + 6.98358i −0.527721 + 0.459486i
\(232\) 0 0
\(233\) 1.84417 3.19420i 0.120816 0.209259i −0.799274 0.600967i \(-0.794782\pi\)
0.920090 + 0.391708i \(0.128116\pi\)
\(234\) 0 0
\(235\) −12.4456 21.5563i −0.811859 1.40618i
\(236\) 0 0
\(237\) −12.3098 + 12.2538i −0.799607 + 0.795968i
\(238\) 0 0
\(239\) −8.03590 13.9186i −0.519799 0.900319i −0.999735 0.0230153i \(-0.992673\pi\)
0.479936 0.877304i \(-0.340660\pi\)
\(240\) 0 0
\(241\) 4.49867 0.289785 0.144892 0.989447i \(-0.453716\pi\)
0.144892 + 0.989447i \(0.453716\pi\)
\(242\) 0 0
\(243\) −15.0103 4.20602i −0.962912 0.269816i
\(244\) 0 0
\(245\) 15.0908 19.5629i 0.964117 1.24983i
\(246\) 0 0
\(247\) 26.2667 1.67131
\(248\) 0 0
\(249\) −19.7378 5.33700i −1.25083 0.338219i
\(250\) 0 0
\(251\) 17.2696 1.09005 0.545023 0.838421i \(-0.316521\pi\)
0.545023 + 0.838421i \(0.316521\pi\)
\(252\) 0 0
\(253\) 7.65167 0.481057
\(254\) 0 0
\(255\) 5.51938 5.49426i 0.345637 0.344064i
\(256\) 0 0
\(257\) 4.82173 0.300771 0.150386 0.988627i \(-0.451948\pi\)
0.150386 + 0.988627i \(0.451948\pi\)
\(258\) 0 0
\(259\) 14.9957 + 1.00213i 0.931786 + 0.0622693i
\(260\) 0 0
\(261\) 0.118254 25.9267i 0.00731972 1.60482i
\(262\) 0 0
\(263\) −28.0903 −1.73212 −0.866062 0.499936i \(-0.833357\pi\)
−0.866062 + 0.499936i \(0.833357\pi\)
\(264\) 0 0
\(265\) −12.0647 20.8966i −0.741128 1.28367i
\(266\) 0 0
\(267\) −1.87765 0.507707i −0.114910 0.0310712i
\(268\) 0 0
\(269\) 12.4126 + 21.4993i 0.756810 + 1.31083i 0.944469 + 0.328599i \(0.106577\pi\)
−0.187659 + 0.982234i \(0.560090\pi\)
\(270\) 0 0
\(271\) 4.79671 8.30815i 0.291379 0.504684i −0.682757 0.730646i \(-0.739219\pi\)
0.974136 + 0.225962i \(0.0725524\pi\)
\(272\) 0 0
\(273\) 20.4469 + 7.02206i 1.23750 + 0.424994i
\(274\) 0 0
\(275\) 17.3080 1.04371
\(276\) 0 0
\(277\) 16.9383 1.01772 0.508862 0.860848i \(-0.330067\pi\)
0.508862 + 0.860848i \(0.330067\pi\)
\(278\) 0 0
\(279\) −0.116531 + 25.5490i −0.00697653 + 1.52958i
\(280\) 0 0
\(281\) 11.4291 19.7958i 0.681805 1.18092i −0.292625 0.956227i \(-0.594529\pi\)
0.974430 0.224693i \(-0.0721379\pi\)
\(282\) 0 0
\(283\) 4.17811 7.23669i 0.248363 0.430177i −0.714709 0.699422i \(-0.753441\pi\)
0.963072 + 0.269245i \(0.0867742\pi\)
\(284\) 0 0
\(285\) −32.8578 8.88458i −1.94633 0.526277i
\(286\) 0 0
\(287\) 4.90570 7.32161i 0.289574 0.432181i
\(288\) 0 0
\(289\) 7.68860 13.3170i 0.452271 0.783356i
\(290\) 0 0
\(291\) 11.7314 + 3.17211i 0.687708 + 0.185953i
\(292\) 0 0
\(293\) −2.16141 3.74368i −0.126271 0.218708i 0.795958 0.605352i \(-0.206968\pi\)
−0.922229 + 0.386644i \(0.873634\pi\)
\(294\) 0 0
\(295\) 14.1093 24.4381i 0.821477 1.42284i
\(296\) 0 0
\(297\) 8.46837 + 8.58504i 0.491385 + 0.498155i
\(298\) 0 0
\(299\) −7.77732 13.4707i −0.449774 0.779031i
\(300\) 0 0
\(301\) 0.234507 + 0.0156716i 0.0135168 + 0.000903298i
\(302\) 0 0
\(303\) 4.32964 + 16.3071i 0.248731 + 0.936819i
\(304\) 0 0
\(305\) 23.5693 + 40.8233i 1.34958 + 2.33753i
\(306\) 0 0
\(307\) 9.22888 0.526720 0.263360 0.964698i \(-0.415169\pi\)
0.263360 + 0.964698i \(0.415169\pi\)
\(308\) 0 0
\(309\) 4.57164 + 17.2186i 0.260072 + 0.979530i
\(310\) 0 0
\(311\) −9.55365 + 16.5474i −0.541738 + 0.938317i 0.457067 + 0.889432i \(0.348900\pi\)
−0.998804 + 0.0488847i \(0.984433\pi\)
\(312\) 0 0
\(313\) −2.83951 4.91818i −0.160499 0.277992i 0.774549 0.632514i \(-0.217977\pi\)
−0.935048 + 0.354522i \(0.884644\pi\)
\(314\) 0 0
\(315\) −23.2025 15.7002i −1.30731 0.884606i
\(316\) 0 0
\(317\) 14.1341 + 24.4809i 0.793848 + 1.37499i 0.923568 + 0.383434i \(0.125259\pi\)
−0.129720 + 0.991551i \(0.541408\pi\)
\(318\) 0 0
\(319\) −10.0282 + 17.3694i −0.561474 + 0.972501i
\(320\) 0 0
\(321\) 9.10242 + 2.46125i 0.508048 + 0.137373i
\(322\) 0 0
\(323\) 7.09266 0.394646
\(324\) 0 0
\(325\) −17.5922 30.4705i −0.975838 1.69020i
\(326\) 0 0
\(327\) 1.02476 1.02009i 0.0566691 0.0564112i
\(328\) 0 0
\(329\) 10.3858 15.5005i 0.572586 0.854568i
\(330\) 0 0
\(331\) −3.34045 5.78584i −0.183608 0.318018i 0.759499 0.650509i \(-0.225444\pi\)
−0.943107 + 0.332491i \(0.892111\pi\)
\(332\) 0 0
\(333\) 0.0777265 17.0412i 0.00425938 0.933854i
\(334\) 0 0
\(335\) −10.8147 + 18.7317i −0.590872 + 1.02342i
\(336\) 0 0
\(337\) −3.49421 6.05215i −0.190342 0.329681i 0.755022 0.655700i \(-0.227626\pi\)
−0.945363 + 0.326018i \(0.894293\pi\)
\(338\) 0 0
\(339\) 13.3772 13.3163i 0.726550 0.723243i
\(340\) 0 0
\(341\) 9.88215 17.1164i 0.535148 0.926904i
\(342\) 0 0
\(343\) 18.1504 + 3.68279i 0.980030 + 0.198852i
\(344\) 0 0
\(345\) 5.17249 + 19.4816i 0.278477 + 1.04885i
\(346\) 0 0
\(347\) 4.14410 7.17780i 0.222467 0.385324i −0.733089 0.680132i \(-0.761922\pi\)
0.955557 + 0.294808i \(0.0952557\pi\)
\(348\) 0 0
\(349\) 3.05373 5.28921i 0.163462 0.283125i −0.772646 0.634837i \(-0.781067\pi\)
0.936108 + 0.351712i \(0.114400\pi\)
\(350\) 0 0
\(351\) 6.50648 23.6345i 0.347290 1.26152i
\(352\) 0 0
\(353\) −26.7208 −1.42221 −0.711104 0.703087i \(-0.751804\pi\)
−0.711104 + 0.703087i \(0.751804\pi\)
\(354\) 0 0
\(355\) 4.59561 0.243909
\(356\) 0 0
\(357\) 5.52118 + 1.89613i 0.292212 + 0.100354i
\(358\) 0 0
\(359\) −2.45603 + 4.25397i −0.129624 + 0.224516i −0.923531 0.383523i \(-0.874711\pi\)
0.793907 + 0.608040i \(0.208044\pi\)
\(360\) 0 0
\(361\) −5.99972 10.3918i −0.315775 0.546938i
\(362\) 0 0
\(363\) 2.49536 + 9.39848i 0.130972 + 0.493292i
\(364\) 0 0
\(365\) −23.4551 40.6255i −1.22770 2.12643i
\(366\) 0 0
\(367\) 30.7064 1.60286 0.801430 0.598089i \(-0.204073\pi\)
0.801430 + 0.598089i \(0.204073\pi\)
\(368\) 0 0
\(369\) −8.63147 5.03601i −0.449337 0.262164i
\(370\) 0 0
\(371\) 10.0679 15.0261i 0.522701 0.780116i
\(372\) 0 0
\(373\) 16.5838 0.858676 0.429338 0.903144i \(-0.358747\pi\)
0.429338 + 0.903144i \(0.358747\pi\)
\(374\) 0 0
\(375\) 3.85608 + 14.5235i 0.199127 + 0.749989i
\(376\) 0 0
\(377\) 40.7716 2.09985
\(378\) 0 0
\(379\) −4.08857 −0.210016 −0.105008 0.994471i \(-0.533487\pi\)
−0.105008 + 0.994471i \(0.533487\pi\)
\(380\) 0 0
\(381\) −4.40184 16.5790i −0.225513 0.849370i
\(382\) 0 0
\(383\) −30.3538 −1.55101 −0.775503 0.631344i \(-0.782504\pi\)
−0.775503 + 0.631344i \(0.782504\pi\)
\(384\) 0 0
\(385\) 9.56038 + 19.4492i 0.487242 + 0.991223i
\(386\) 0 0
\(387\) 0.00121551 0.266496i 6.17879e−5 0.0135468i
\(388\) 0 0
\(389\) −3.46764 −0.175816 −0.0879082 0.996129i \(-0.528018\pi\)
−0.0879082 + 0.996129i \(0.528018\pi\)
\(390\) 0 0
\(391\) −2.10007 3.63743i −0.106205 0.183953i
\(392\) 0 0
\(393\) 7.63797 + 28.7675i 0.385285 + 1.45113i
\(394\) 0 0
\(395\) 17.6974 + 30.6529i 0.890455 + 1.54231i
\(396\) 0 0
\(397\) −7.04243 + 12.1979i −0.353450 + 0.612193i −0.986851 0.161630i \(-0.948325\pi\)
0.633402 + 0.773823i \(0.281658\pi\)
\(398\) 0 0
\(399\) −4.88852 25.0418i −0.244732 1.25366i
\(400\) 0 0
\(401\) −10.9319 −0.545911 −0.272955 0.962027i \(-0.588001\pi\)
−0.272955 + 0.962027i \(0.588001\pi\)
\(402\) 0 0
\(403\) −40.1777 −2.00139
\(404\) 0 0
\(405\) −16.1334 + 27.3644i −0.801676 + 1.35975i
\(406\) 0 0
\(407\) −6.59142 + 11.4167i −0.326725 + 0.565904i
\(408\) 0 0
\(409\) −7.99397 + 13.8460i −0.395276 + 0.684639i −0.993136 0.116962i \(-0.962685\pi\)
0.597860 + 0.801600i \(0.296018\pi\)
\(410\) 0 0
\(411\) 7.15328 + 26.9420i 0.352845 + 1.32895i
\(412\) 0 0
\(413\) 21.1054 + 1.41043i 1.03853 + 0.0694029i
\(414\) 0 0
\(415\) −20.8331 + 36.0841i −1.02266 + 1.77130i
\(416\) 0 0
\(417\) −2.72883 + 2.71641i −0.133631 + 0.133023i
\(418\) 0 0
\(419\) 3.56197 + 6.16951i 0.174014 + 0.301400i 0.939819 0.341671i \(-0.110993\pi\)
−0.765806 + 0.643072i \(0.777660\pi\)
\(420\) 0 0
\(421\) −16.6326 + 28.8086i −0.810625 + 1.40404i 0.101802 + 0.994805i \(0.467539\pi\)
−0.912427 + 0.409239i \(0.865794\pi\)
\(422\) 0 0
\(423\) −18.2735 10.6617i −0.888490 0.518388i
\(424\) 0 0
\(425\) −4.75033 8.22781i −0.230425 0.399107i
\(426\) 0 0
\(427\) −19.6685 + 29.3547i −0.951826 + 1.42057i
\(428\) 0 0
\(429\) −13.4396 + 13.3784i −0.648870 + 0.645917i
\(430\) 0 0
\(431\) 2.62382 + 4.54459i 0.126385 + 0.218905i 0.922273 0.386538i \(-0.126329\pi\)
−0.795889 + 0.605443i \(0.792996\pi\)
\(432\) 0 0
\(433\) 22.1053 1.06231 0.531156 0.847274i \(-0.321758\pi\)
0.531156 + 0.847274i \(0.321758\pi\)
\(434\) 0 0
\(435\) −51.0025 13.7908i −2.44538 0.661220i
\(436\) 0 0
\(437\) −9.17865 + 15.8979i −0.439074 + 0.760499i
\(438\) 0 0
\(439\) 17.3083 + 29.9788i 0.826079 + 1.43081i 0.901092 + 0.433628i \(0.142767\pi\)
−0.0750132 + 0.997183i \(0.523900\pi\)
\(440\) 0 0
\(441\) 2.88920 20.8003i 0.137581 0.990491i
\(442\) 0 0
\(443\) −2.20461 3.81850i −0.104744 0.181423i 0.808889 0.587961i \(-0.200069\pi\)
−0.913634 + 0.406538i \(0.866736\pi\)
\(444\) 0 0
\(445\) −1.98185 + 3.43266i −0.0939486 + 0.162724i
\(446\) 0 0
\(447\) −3.08326 11.6128i −0.145833 0.549265i
\(448\) 0 0
\(449\) −19.6336 −0.926568 −0.463284 0.886210i \(-0.653329\pi\)
−0.463284 + 0.886210i \(0.653329\pi\)
\(450\) 0 0
\(451\) 3.86525 + 6.69481i 0.182007 + 0.315246i
\(452\) 0 0
\(453\) 6.89672 + 25.9757i 0.324036 + 1.22045i
\(454\) 0 0
\(455\) 24.5228 36.5995i 1.14965 1.71581i
\(456\) 0 0
\(457\) 15.4196 + 26.7075i 0.721297 + 1.24932i 0.960480 + 0.278349i \(0.0897872\pi\)
−0.239183 + 0.970975i \(0.576879\pi\)
\(458\) 0 0
\(459\) 1.75691 6.38191i 0.0820057 0.297882i
\(460\) 0 0
\(461\) −13.6297 + 23.6074i −0.634800 + 1.09951i 0.351757 + 0.936091i \(0.385584\pi\)
−0.986557 + 0.163415i \(0.947749\pi\)
\(462\) 0 0
\(463\) 0.959750 + 1.66234i 0.0446034 + 0.0772553i 0.887465 0.460875i \(-0.152464\pi\)
−0.842862 + 0.538130i \(0.819131\pi\)
\(464\) 0 0
\(465\) 50.2595 + 13.5899i 2.33073 + 0.630218i
\(466\) 0 0
\(467\) −4.88655 + 8.46376i −0.226123 + 0.391656i −0.956656 0.291221i \(-0.905938\pi\)
0.730533 + 0.682877i \(0.239272\pi\)
\(468\) 0 0
\(469\) −16.1772 1.08109i −0.746994 0.0499201i
\(470\) 0 0
\(471\) 1.34113 + 0.362636i 0.0617962 + 0.0167094i
\(472\) 0 0
\(473\) −0.103079 + 0.178538i −0.00473957 + 0.00820917i
\(474\) 0 0
\(475\) −20.7619 + 35.9607i −0.952623 + 1.64999i
\(476\) 0 0
\(477\) −17.7143 10.3354i −0.811083 0.473225i
\(478\) 0 0
\(479\) −15.3762 −0.702556 −0.351278 0.936271i \(-0.614253\pi\)
−0.351278 + 0.936271i \(0.614253\pi\)
\(480\) 0 0
\(481\) 26.7986 1.22191
\(482\) 0 0
\(483\) −11.3951 + 9.92169i −0.518494 + 0.451453i
\(484\) 0 0
\(485\) 12.3824 21.4470i 0.562258 0.973859i
\(486\) 0 0
\(487\) −5.18342 8.97794i −0.234883 0.406829i 0.724356 0.689427i \(-0.242137\pi\)
−0.959239 + 0.282597i \(0.908804\pi\)
\(488\) 0 0
\(489\) 5.93561 + 1.60496i 0.268418 + 0.0725788i
\(490\) 0 0
\(491\) 6.94718 + 12.0329i 0.313522 + 0.543035i 0.979122 0.203273i \(-0.0651578\pi\)
−0.665600 + 0.746308i \(0.731825\pi\)
\(492\) 0 0
\(493\) 11.0094 0.495837
\(494\) 0 0
\(495\) 21.3372 12.1896i 0.959037 0.547883i
\(496\) 0 0
\(497\) 1.51966 + 3.09152i 0.0681660 + 0.138674i
\(498\) 0 0
\(499\) 3.40977 0.152642 0.0763210 0.997083i \(-0.475683\pi\)
0.0763210 + 0.997083i \(0.475683\pi\)
\(500\) 0 0
\(501\) −2.12396 + 2.11429i −0.0948914 + 0.0944596i
\(502\) 0 0
\(503\) −43.8911 −1.95701 −0.978504 0.206227i \(-0.933881\pi\)
−0.978504 + 0.206227i \(0.933881\pi\)
\(504\) 0 0
\(505\) 34.3821 1.52998
\(506\) 0 0
\(507\) 15.4769 + 4.18486i 0.687351 + 0.185856i
\(508\) 0 0
\(509\) 39.3348 1.74348 0.871742 0.489966i \(-0.162991\pi\)
0.871742 + 0.489966i \(0.162991\pi\)
\(510\) 0 0
\(511\) 19.5732 29.2124i 0.865868 1.29228i
\(512\) 0 0
\(513\) −27.9955 + 7.29645i −1.23603 + 0.322146i
\(514\) 0 0
\(515\) 36.3038 1.59974
\(516\) 0 0
\(517\) 8.18305 + 14.1735i 0.359890 + 0.623348i
\(518\) 0 0
\(519\) −2.74303 + 2.73055i −0.120406 + 0.119858i
\(520\) 0 0
\(521\) 12.4779 + 21.6124i 0.546669 + 0.946858i 0.998500 + 0.0547547i \(0.0174377\pi\)
−0.451831 + 0.892104i \(0.649229\pi\)
\(522\) 0 0
\(523\) 15.1575 26.2536i 0.662792 1.14799i −0.317086 0.948397i \(-0.602704\pi\)
0.979879 0.199594i \(-0.0639622\pi\)
\(524\) 0 0
\(525\) −25.7755 + 22.4427i −1.12493 + 0.979480i
\(526\) 0 0
\(527\) −10.8490 −0.472589
\(528\) 0 0
\(529\) −12.1291 −0.527354
\(530\) 0 0
\(531\) 0.109395 23.9844i 0.00474734 1.04084i
\(532\) 0 0
\(533\) 7.85744 13.6095i 0.340343 0.589492i
\(534\) 0 0
\(535\) 9.60755 16.6408i 0.415371 0.719443i
\(536\) 0 0
\(537\) 0.860285 0.856370i 0.0371240 0.0369551i
\(538\) 0 0
\(539\) −9.92233 + 12.8628i −0.427385 + 0.554039i
\(540\) 0 0
\(541\) −14.2812 + 24.7357i −0.613996 + 1.06347i 0.376563 + 0.926391i \(0.377106\pi\)
−0.990560 + 0.137082i \(0.956228\pi\)
\(542\) 0 0
\(543\) 8.72671 + 32.8682i 0.374499 + 1.41051i
\(544\) 0 0
\(545\) −1.47326 2.55177i −0.0631077 0.109306i
\(546\) 0 0
\(547\) −3.89233 + 6.74171i −0.166424 + 0.288255i −0.937160 0.348900i \(-0.886555\pi\)
0.770736 + 0.637154i \(0.219889\pi\)
\(548\) 0 0
\(549\) 34.6063 + 20.1910i 1.47696 + 0.861730i
\(550\) 0 0
\(551\) −24.0590 41.6714i −1.02495 1.77526i
\(552\) 0 0
\(553\) −14.7684 + 22.0415i −0.628018 + 0.937299i
\(554\) 0 0
\(555\) −33.5232 9.06452i −1.42298 0.384767i
\(556\) 0 0
\(557\) −23.2470 40.2650i −0.985008 1.70608i −0.641900 0.766788i \(-0.721854\pi\)
−0.343108 0.939296i \(-0.611480\pi\)
\(558\) 0 0
\(559\) 0.419086 0.0177254
\(560\) 0 0
\(561\) −3.62903 + 3.61252i −0.153218 + 0.152521i
\(562\) 0 0
\(563\) 13.9913 24.2336i 0.589663 1.02133i −0.404614 0.914488i \(-0.632594\pi\)
0.994276 0.106838i \(-0.0340726\pi\)
\(564\) 0 0
\(565\) −19.2320 33.3109i −0.809098 1.40140i
\(566\) 0 0
\(567\) −23.7433 1.80441i −0.997125 0.0757781i
\(568\) 0 0
\(569\) −4.44979 7.70726i −0.186545 0.323105i 0.757551 0.652776i \(-0.226396\pi\)
−0.944096 + 0.329671i \(0.893062\pi\)
\(570\) 0 0
\(571\) −16.1652 + 27.9989i −0.676492 + 1.17172i 0.299539 + 0.954084i \(0.403167\pi\)
−0.976031 + 0.217634i \(0.930166\pi\)
\(572\) 0 0
\(573\) 19.7459 19.6560i 0.824895 0.821141i
\(574\) 0 0
\(575\) 24.5897 1.02546
\(576\) 0 0
\(577\) −16.8414 29.1701i −0.701115 1.21437i −0.968075 0.250659i \(-0.919353\pi\)
0.266960 0.963707i \(-0.413981\pi\)
\(578\) 0 0
\(579\) −0.978898 0.264689i −0.0406816 0.0110001i
\(580\) 0 0
\(581\) −31.1632 2.08257i −1.29287 0.0863997i
\(582\) 0 0
\(583\) 7.93262 + 13.7397i 0.328536 + 0.569040i
\(584\) 0 0
\(585\) −43.1473 25.1742i −1.78392 1.04083i
\(586\) 0 0
\(587\) 1.24076 2.14907i 0.0512118 0.0887015i −0.839283 0.543695i \(-0.817025\pi\)
0.890495 + 0.454993i \(0.150358\pi\)
\(588\) 0 0
\(589\) 23.7085 + 41.0643i 0.976891 + 1.69202i
\(590\) 0 0
\(591\) 7.68595 + 28.9483i 0.316158 + 1.19077i
\(592\) 0 0
\(593\) −15.0903 + 26.1371i −0.619684 + 1.07332i 0.369859 + 0.929088i \(0.379406\pi\)
−0.989543 + 0.144236i \(0.953928\pi\)
\(594\) 0 0
\(595\) 6.62177 9.88280i 0.271466 0.405155i
\(596\) 0 0
\(597\) 29.9812 29.8447i 1.22705 1.22146i
\(598\) 0 0
\(599\) −8.20414 + 14.2100i −0.335212 + 0.580604i −0.983526 0.180769i \(-0.942141\pi\)
0.648314 + 0.761373i \(0.275475\pi\)
\(600\) 0 0
\(601\) −2.96998 + 5.14416i −0.121148 + 0.209835i −0.920221 0.391400i \(-0.871991\pi\)
0.799073 + 0.601235i \(0.205324\pi\)
\(602\) 0 0
\(603\) −0.0838506 + 18.3839i −0.00341466 + 0.748652i
\(604\) 0 0
\(605\) 19.8159 0.805629
\(606\) 0 0
\(607\) 5.95146 0.241563 0.120781 0.992679i \(-0.461460\pi\)
0.120781 + 0.992679i \(0.461460\pi\)
\(608\) 0 0
\(609\) −7.58806 38.8703i −0.307484 1.57511i
\(610\) 0 0
\(611\) 16.6348 28.8124i 0.672974 1.16562i
\(612\) 0 0
\(613\) 15.5920 + 27.0062i 0.629756 + 1.09077i 0.987601 + 0.156988i \(0.0501783\pi\)
−0.357845 + 0.933781i \(0.616488\pi\)
\(614\) 0 0
\(615\) −14.4325 + 14.3668i −0.581973 + 0.579325i
\(616\) 0 0
\(617\) −11.1437 19.3014i −0.448627 0.777045i 0.549670 0.835382i \(-0.314754\pi\)
−0.998297 + 0.0583367i \(0.981420\pi\)
\(618\) 0 0
\(619\) −34.5887 −1.39024 −0.695118 0.718895i \(-0.744648\pi\)
−0.695118 + 0.718895i \(0.744648\pi\)
\(620\) 0 0
\(621\) 12.0311 + 12.1969i 0.482793 + 0.489445i
\(622\) 0 0
\(623\) −2.96454 0.198115i −0.118772 0.00793729i
\(624\) 0 0
\(625\) −6.66844 −0.266738
\(626\) 0 0
\(627\) 21.6043 + 5.84168i 0.862791 + 0.233294i
\(628\) 0 0
\(629\) 7.23631 0.288530
\(630\) 0 0
\(631\) 26.2933 1.04672 0.523360 0.852112i \(-0.324678\pi\)
0.523360 + 0.852112i \(0.324678\pi\)
\(632\) 0 0
\(633\) 13.7173 13.6549i 0.545213 0.542732i
\(634\) 0 0
\(635\) −34.9554 −1.38716
\(636\) 0 0
\(637\) 32.7301 + 4.39419i 1.29681 + 0.174104i
\(638\) 0 0
\(639\) 3.39163 1.93759i 0.134171 0.0766498i
\(640\) 0 0
\(641\) −32.5346 −1.28504 −0.642519 0.766269i \(-0.722111\pi\)
−0.642519 + 0.766269i \(0.722111\pi\)
\(642\) 0 0
\(643\) −5.21987 9.04107i −0.205851 0.356545i 0.744552 0.667564i \(-0.232663\pi\)
−0.950404 + 0.311019i \(0.899330\pi\)
\(644\) 0 0
\(645\) −0.524247 0.141754i −0.0206422 0.00558155i
\(646\) 0 0
\(647\) −0.685824 1.18788i −0.0269625 0.0467005i 0.852229 0.523168i \(-0.175250\pi\)
−0.879192 + 0.476468i \(0.841917\pi\)
\(648\) 0 0
\(649\) −9.27699 + 16.0682i −0.364154 + 0.630733i
\(650\) 0 0
\(651\) 7.47752 + 38.3041i 0.293067 + 1.50126i
\(652\) 0 0
\(653\) −7.25134 −0.283767 −0.141883 0.989883i \(-0.545316\pi\)
−0.141883 + 0.989883i \(0.545316\pi\)
\(654\) 0 0
\(655\) 60.6538 2.36994
\(656\) 0 0
\(657\) −34.4386 20.0931i −1.34358 0.783908i
\(658\) 0 0
\(659\) 13.3187 23.0686i 0.518822 0.898626i −0.480939 0.876754i \(-0.659704\pi\)
0.999761 0.0218722i \(-0.00696268\pi\)
\(660\) 0 0
\(661\) 17.4099 30.1549i 0.677168 1.17289i −0.298662 0.954359i \(-0.596540\pi\)
0.975830 0.218531i \(-0.0701265\pi\)
\(662\) 0 0
\(663\) 10.0484 + 2.71705i 0.390249 + 0.105521i
\(664\) 0 0
\(665\) −51.8779 3.46689i −2.01174 0.134440i
\(666\) 0 0
\(667\) −14.2473 + 24.6770i −0.551657 + 0.955498i
\(668\) 0 0
\(669\) −4.44588 1.20214i −0.171888 0.0464776i
\(670\) 0 0
\(671\) −15.4970 26.8416i −0.598255 1.03621i
\(672\) 0 0
\(673\) 8.23841 14.2693i 0.317567 0.550043i −0.662412 0.749139i \(-0.730467\pi\)
0.979980 + 0.199096i \(0.0638007\pi\)
\(674\) 0 0
\(675\) 27.2142 + 27.5892i 1.04748 + 1.06191i
\(676\) 0 0
\(677\) 10.5827 + 18.3297i 0.406725 + 0.704469i 0.994521 0.104541i \(-0.0333373\pi\)
−0.587795 + 0.809010i \(0.700004\pi\)
\(678\) 0 0
\(679\) 18.5223 + 1.23780i 0.710819 + 0.0475026i
\(680\) 0 0
\(681\) 5.29619 + 19.9475i 0.202951 + 0.764390i
\(682\) 0 0
\(683\) −14.0756 24.3796i −0.538587 0.932859i −0.998980 0.0451447i \(-0.985625\pi\)
0.460394 0.887715i \(-0.347708\pi\)
\(684\) 0 0
\(685\) 56.8049 2.17040
\(686\) 0 0
\(687\) 13.1620 + 49.5733i 0.502163 + 1.89134i
\(688\) 0 0
\(689\) 16.1258 27.9306i 0.614343 1.06407i
\(690\) 0 0
\(691\) 9.53980 + 16.5234i 0.362911 + 0.628580i 0.988439 0.151622i \(-0.0484496\pi\)
−0.625528 + 0.780202i \(0.715116\pi\)
\(692\) 0 0
\(693\) 15.2558 + 10.3230i 0.579521 + 0.392138i
\(694\) 0 0
\(695\) 3.92316 + 6.79511i 0.148814 + 0.257753i
\(696\) 0 0
\(697\) 2.12171 3.67490i 0.0803653 0.139197i
\(698\) 0 0
\(699\) −6.16694 1.66751i −0.233255 0.0630710i
\(700\) 0 0
\(701\) 23.8508 0.900834 0.450417 0.892818i \(-0.351275\pi\)
0.450417 + 0.892818i \(0.351275\pi\)
\(702\) 0 0
\(703\) −15.8136 27.3900i −0.596422 1.03303i
\(704\) 0 0
\(705\) −30.5547 + 30.4157i −1.15076 + 1.14552i
\(706\) 0 0
\(707\) 11.3693 + 23.1293i 0.427588 + 0.869865i
\(708\) 0 0
\(709\) −10.0493 17.4059i −0.377409 0.653691i 0.613276 0.789869i \(-0.289851\pi\)
−0.990684 + 0.136178i \(0.956518\pi\)
\(710\) 0 0
\(711\) 25.9848 + 15.1608i 0.974505 + 0.568573i
\(712\) 0 0
\(713\) 14.0397 24.3175i 0.525792 0.910698i
\(714\) 0 0
\(715\) 19.3217 + 33.4662i 0.722592 + 1.25157i
\(716\) 0 0
\(717\) −19.7287 + 19.6389i −0.736782 + 0.733429i
\(718\) 0 0
\(719\) 3.29246 5.70270i 0.122788 0.212675i −0.798078 0.602554i \(-0.794150\pi\)
0.920866 + 0.389879i \(0.127483\pi\)
\(720\) 0 0
\(721\) 12.0048 + 24.4220i 0.447082 + 0.909524i
\(722\) 0 0
\(723\) −1.99953 7.53100i −0.0743632 0.280081i
\(724\) 0 0
\(725\) −32.2271 + 55.8190i −1.19688 + 2.07307i
\(726\) 0 0
\(727\) −18.2342 + 31.5826i −0.676269 + 1.17133i 0.299827 + 0.953994i \(0.403071\pi\)
−0.976096 + 0.217339i \(0.930262\pi\)
\(728\) 0 0
\(729\) −0.369433 + 26.9975i −0.0136827 + 0.999906i
\(730\) 0 0
\(731\) 0.113164 0.00418551
\(732\) 0 0
\(733\) 23.3647 0.862997 0.431498 0.902114i \(-0.357985\pi\)
0.431498 + 0.902114i \(0.357985\pi\)
\(734\) 0 0
\(735\) −39.4568 16.5676i −1.45538 0.611106i
\(736\) 0 0
\(737\) 7.11077 12.3162i 0.261928 0.453673i
\(738\) 0 0
\(739\) −14.4596 25.0448i −0.531906 0.921288i −0.999306 0.0372422i \(-0.988143\pi\)
0.467400 0.884046i \(-0.345191\pi\)
\(740\) 0 0
\(741\) −11.6748 43.9717i −0.428884 1.61534i
\(742\) 0 0
\(743\) −11.6794 20.2292i −0.428474 0.742139i 0.568264 0.822847i \(-0.307615\pi\)
−0.996738 + 0.0807074i \(0.974282\pi\)
\(744\) 0 0
\(745\) −24.4845 −0.897041
\(746\) 0 0
\(747\) −0.161527 + 35.4142i −0.00590997 + 1.29574i
\(748\) 0 0
\(749\) 14.3714 + 0.960415i 0.525121 + 0.0350928i
\(750\) 0 0
\(751\) 1.71323 0.0625167 0.0312584 0.999511i \(-0.490049\pi\)
0.0312584 + 0.999511i \(0.490049\pi\)
\(752\) 0 0
\(753\) −7.67583 28.9101i −0.279723 1.05354i
\(754\) 0 0
\(755\) 54.7675 1.99319
\(756\) 0 0
\(757\) 28.4587 1.03435 0.517175 0.855880i \(-0.326984\pi\)
0.517175 + 0.855880i \(0.326984\pi\)
\(758\) 0 0
\(759\) −3.40095 12.8093i −0.123447 0.464948i
\(760\) 0 0
\(761\) −34.1051 −1.23631 −0.618154 0.786057i \(-0.712119\pi\)
−0.618154 + 0.786057i \(0.712119\pi\)
\(762\) 0 0
\(763\) 1.22943 1.83489i 0.0445084 0.0664275i
\(764\) 0 0
\(765\) −11.6509 6.79768i −0.421238 0.245770i
\(766\) 0 0
\(767\) 37.7173 1.36189
\(768\) 0 0
\(769\) 2.48467 + 4.30357i 0.0895995 + 0.155191i 0.907342 0.420394i \(-0.138108\pi\)
−0.817742 + 0.575584i \(0.804775\pi\)
\(770\) 0 0
\(771\) −2.14312 8.07183i −0.0771826 0.290700i
\(772\) 0 0
\(773\) −5.74814 9.95607i −0.206746 0.358095i 0.743941 0.668245i \(-0.232954\pi\)
−0.950688 + 0.310150i \(0.899621\pi\)
\(774\) 0 0
\(775\) 31.7576 55.0058i 1.14077 1.97587i
\(776\) 0 0
\(777\) −4.98753 25.5489i −0.178927 0.916563i
\(778\) 0 0
\(779\) −18.5464 −0.664494
\(780\) 0 0
\(781\) −3.02165 −0.108123
\(782\) 0 0
\(783\) −43.4551 + 11.3257i −1.55296 + 0.404748i
\(784\) 0 0
\(785\) 1.41556 2.45182i 0.0505235 0.0875092i
\(786\) 0 0
\(787\) 24.3005 42.0898i 0.866221 1.50034i 0.000391003 1.00000i \(-0.499876\pi\)
0.865830 0.500339i \(-0.166791\pi\)
\(788\) 0 0
\(789\) 12.4853 + 47.0247i 0.444490 + 1.67412i
\(790\) 0 0
\(791\) 16.0491 23.9527i 0.570639 0.851661i
\(792\) 0 0
\(793\) −31.5030 + 54.5647i −1.11870 + 1.93765i
\(794\) 0 0
\(795\) −29.6196 + 29.4849i −1.05050 + 1.04572i
\(796\) 0 0
\(797\) 16.8556 + 29.1947i 0.597056 + 1.03413i 0.993253 + 0.115965i \(0.0369962\pi\)
−0.396198 + 0.918165i \(0.629670\pi\)
\(798\) 0 0
\(799\) 4.49183 7.78007i 0.158909 0.275239i
\(800\) 0 0
\(801\) −0.0153660 + 3.36894i −0.000542931 + 0.119036i
\(802\) 0 0
\(803\) 15.4219 + 26.7115i 0.544228 + 0.942630i
\(804\) 0 0
\(805\) 13.5826 + 27.6318i 0.478723 + 0.973892i
\(806\) 0 0
\(807\) 30.4738 30.3351i 1.07273 1.06785i
\(808\) 0 0
\(809\) −7.93617 13.7459i −0.279021 0.483278i 0.692121 0.721782i \(-0.256677\pi\)
−0.971142 + 0.238503i \(0.923343\pi\)
\(810\) 0 0
\(811\) −27.2524 −0.956963 −0.478481 0.878098i \(-0.658813\pi\)
−0.478481 + 0.878098i \(0.658813\pi\)
\(812\) 0 0
\(813\) −16.0403 4.33720i −0.562556 0.152112i
\(814\) 0 0
\(815\) 6.26500 10.8513i 0.219454 0.380105i
\(816\) 0 0
\(817\) −0.247299 0.428334i −0.00865188 0.0149855i
\(818\) 0 0
\(819\) 2.66721 37.3503i 0.0932000 1.30512i
\(820\) 0 0
\(821\) −12.1694 21.0781i −0.424717 0.735631i 0.571677 0.820479i \(-0.306293\pi\)
−0.996394 + 0.0848477i \(0.972960\pi\)
\(822\) 0 0
\(823\) −5.76898 + 9.99217i −0.201094 + 0.348305i −0.948881 0.315633i \(-0.897783\pi\)
0.747787 + 0.663939i \(0.231116\pi\)
\(824\) 0 0
\(825\) −7.69289 28.9744i −0.267832 1.00876i
\(826\) 0 0
\(827\) 34.8582 1.21214 0.606069 0.795412i \(-0.292745\pi\)
0.606069 + 0.795412i \(0.292745\pi\)
\(828\) 0 0
\(829\) −7.64018 13.2332i −0.265354 0.459607i 0.702302 0.711879i \(-0.252156\pi\)
−0.967656 + 0.252272i \(0.918822\pi\)
\(830\) 0 0
\(831\) −7.52858 28.3556i −0.261164 0.983643i
\(832\) 0 0
\(833\) 8.83795 + 1.18654i 0.306217 + 0.0411113i
\(834\) 0 0
\(835\) 3.05356 + 5.28891i 0.105673 + 0.183030i
\(836\) 0 0
\(837\) 42.8221 11.1607i 1.48015 0.385770i
\(838\) 0 0
\(839\) 8.39990 14.5490i 0.289997 0.502289i −0.683812 0.729658i \(-0.739679\pi\)
0.973809 + 0.227369i \(0.0730125\pi\)
\(840\) 0 0
\(841\) −22.8448 39.5684i −0.787753 1.36443i
\(842\) 0 0
\(843\) −38.2191 10.3343i −1.31634 0.355931i
\(844\) 0 0
\(845\) 16.3357 28.2943i 0.561967 0.973355i
\(846\) 0 0
\(847\) 6.55263 + 13.3304i 0.225151 + 0.458037i
\(848\) 0 0
\(849\) −13.9716 3.77786i −0.479505 0.129656i
\(850\) 0 0
\(851\) −9.36454 + 16.2199i −0.321012 + 0.556009i
\(852\) 0 0
\(853\) −11.4270 + 19.7921i −0.391253 + 0.677670i −0.992615 0.121306i \(-0.961292\pi\)
0.601362 + 0.798977i \(0.294625\pi\)
\(854\) 0 0
\(855\) −0.268897 + 58.9546i −0.00919607 + 2.01620i
\(856\) 0 0
\(857\) −35.1743 −1.20153 −0.600765 0.799426i \(-0.705137\pi\)
−0.600765 + 0.799426i \(0.705137\pi\)
\(858\) 0 0
\(859\) −10.5704 −0.360658 −0.180329 0.983606i \(-0.557716\pi\)
−0.180329 + 0.983606i \(0.557716\pi\)
\(860\) 0 0
\(861\) −14.4372 4.95814i −0.492018 0.168973i
\(862\) 0 0
\(863\) 7.29326 12.6323i 0.248265 0.430008i −0.714779 0.699350i \(-0.753473\pi\)
0.963045 + 0.269342i \(0.0868061\pi\)
\(864\) 0 0
\(865\) 3.94358 + 6.83048i 0.134086 + 0.232243i
\(866\) 0 0
\(867\) −25.7108 6.95206i −0.873184 0.236104i
\(868\) 0 0
\(869\) −11.6362 20.1545i −0.394731 0.683694i
\(870\) 0 0
\(871\) −28.9101 −0.979582
\(872\) 0 0
\(873\) 0.0960057 21.0489i 0.00324930 0.712397i
\(874\) 0 0
\(875\) 10.1258 + 20.5994i 0.342314 + 0.696388i
\(876\) 0 0
\(877\) 11.3183 0.382191 0.191096 0.981571i \(-0.438796\pi\)
0.191096 + 0.981571i \(0.438796\pi\)
\(878\) 0 0
\(879\) −5.30642 + 5.28227i −0.178981 + 0.178167i
\(880\) 0 0
\(881\) −0.733220 −0.0247028 −0.0123514 0.999924i \(-0.503932\pi\)
−0.0123514 + 0.999924i \(0.503932\pi\)
\(882\) 0 0
\(883\) 14.1726 0.476944 0.238472 0.971149i \(-0.423353\pi\)
0.238472 + 0.971149i \(0.423353\pi\)
\(884\) 0 0
\(885\) −47.1818 12.7577i −1.58600 0.428846i
\(886\) 0 0
\(887\) 33.6325 1.12927 0.564634 0.825341i \(-0.309017\pi\)
0.564634 + 0.825341i \(0.309017\pi\)
\(888\) 0 0
\(889\) −11.5589 23.5149i −0.387674 0.788666i
\(890\) 0 0
\(891\) 10.6078 17.9923i 0.355376 0.602764i
\(892\) 0 0
\(893\) −39.2643 −1.31393
\(894\) 0 0
\(895\) −1.23681 2.14221i −0.0413419 0.0716063i
\(896\) 0 0
\(897\) −19.0939 + 19.0070i −0.637525 + 0.634624i
\(898\) 0 0
\(899\) 36.8008 + 63.7408i 1.22737 + 2.12588i
\(900\) 0 0
\(901\) 4.35436 7.54198i 0.145065 0.251260i
\(902\) 0 0
\(903\) −0.0779966 0.399542i −0.00259556 0.0132959i
\(904\) 0 0
\(905\) 69.2996 2.30360
\(906\) 0 0
\(907\) −9.58510 −0.318268 −0.159134 0.987257i \(-0.550870\pi\)
−0.159134 + 0.987257i \(0.550870\pi\)
\(908\) 0 0
\(909\) 25.3745 14.4961i 0.841620 0.480805i
\(910\) 0 0
\(911\) 9.37499 16.2380i 0.310607 0.537988i −0.667887 0.744263i \(-0.732801\pi\)
0.978494 + 0.206275i \(0.0661342\pi\)
\(912\) 0 0
\(913\) 13.6979 23.7255i 0.453336 0.785201i
\(914\) 0 0
\(915\) 57.8643 57.6010i 1.91294 1.90423i
\(916\) 0 0
\(917\) 20.0568 + 40.8026i 0.662333 + 1.34742i
\(918\) 0 0
\(919\) −21.2895 + 36.8745i −0.702276 + 1.21638i 0.265390 + 0.964141i \(0.414499\pi\)
−0.967666 + 0.252236i \(0.918834\pi\)
\(920\) 0 0
\(921\) −4.10197 15.4496i −0.135165 0.509082i
\(922\) 0 0
\(923\) 3.07126 + 5.31958i 0.101092 + 0.175096i
\(924\) 0 0
\(925\) −21.1824 + 36.6890i −0.696474 + 1.20633i
\(926\) 0 0
\(927\) 26.7928 15.3063i 0.879991 0.502725i
\(928\) 0 0
\(929\) −19.0762 33.0409i −0.625869 1.08404i −0.988372 0.152054i \(-0.951411\pi\)
0.362503 0.931983i \(-0.381922\pi\)
\(930\) 0 0
\(931\) −14.8226 36.0453i −0.485790 1.18134i
\(932\) 0 0
\(933\) 31.9475 + 8.63844i 1.04591 + 0.282810i
\(934\) 0 0
\(935\) 5.21736 + 9.03673i 0.170626 + 0.295533i
\(936\) 0 0
\(937\) 6.48960 0.212006 0.106003 0.994366i \(-0.466195\pi\)
0.106003 + 0.994366i \(0.466195\pi\)
\(938\) 0 0
\(939\) −6.97120 + 6.93948i −0.227497 + 0.226461i
\(940\) 0 0
\(941\) 0.233235 0.403976i 0.00760326 0.0131692i −0.862199 0.506570i \(-0.830913\pi\)
0.869802 + 0.493401i \(0.164246\pi\)
\(942\) 0 0
\(943\) 5.49142 + 9.51142i 0.178825 + 0.309734i
\(944\) 0 0
\(945\) −15.9701 + 45.8205i −0.519506 + 1.49054i
\(946\) 0 0
\(947\) −7.55575 13.0869i −0.245529 0.425268i 0.716751 0.697329i \(-0.245628\pi\)
−0.962280 + 0.272060i \(0.912295\pi\)
\(948\) 0 0
\(949\) 31.3503 54.3003i 1.01767 1.76266i
\(950\) 0 0
\(951\) 34.7001 34.5422i 1.12523 1.12011i
\(952\) 0 0
\(953\) 19.6802 0.637503 0.318751 0.947838i \(-0.396736\pi\)
0.318751 + 0.947838i \(0.396736\pi\)
\(954\) 0 0
\(955\) −28.3881 49.1696i −0.918616 1.59109i
\(956\) 0 0
\(957\) 33.5346 + 9.06757i 1.08402 + 0.293113i
\(958\) 0 0
\(959\) 18.7840 + 38.2133i 0.606568 + 1.23397i
\(960\) 0 0
\(961\) −20.7647 35.9655i −0.669828 1.16018i
\(962\) 0 0
\(963\) 0.0744910 16.3319i 0.00240044 0.526287i
\(964\) 0 0
\(965\) −1.03322 + 1.78959i −0.0332606 + 0.0576090i
\(966\) 0 0
\(967\) −8.83228 15.2980i −0.284027 0.491949i 0.688346 0.725383i \(-0.258337\pi\)
−0.972373 + 0.233433i \(0.925004\pi\)
\(968\) 0 0
\(969\) −3.15248 11.8735i −0.101272 0.381431i
\(970\) 0 0
\(971\) 11.7523 20.3555i 0.377148 0.653240i −0.613498 0.789697i \(-0.710238\pi\)
0.990646 + 0.136456i \(0.0435713\pi\)
\(972\) 0 0
\(973\) −3.27386 + 4.88614i −0.104955 + 0.156642i
\(974\) 0 0
\(975\) −43.1900 + 42.9934i −1.38319 + 1.37689i
\(976\) 0 0
\(977\) 2.71689 4.70580i 0.0869211 0.150552i −0.819287 0.573384i \(-0.805631\pi\)
0.906208 + 0.422832i \(0.138964\pi\)
\(978\) 0 0
\(979\) 1.30308 2.25700i 0.0416466 0.0721341i
\(980\) 0 0
\(981\) −2.16316 1.26209i −0.0690644 0.0402955i
\(982\) 0 0
\(983\) 2.10690 0.0671997 0.0335998 0.999435i \(-0.489303\pi\)
0.0335998 + 0.999435i \(0.489303\pi\)
\(984\) 0 0
\(985\) 61.0348 1.94473
\(986\) 0 0
\(987\) −30.5647 10.4968i −0.972886 0.334117i
\(988\) 0 0
\(989\) −0.146446 + 0.253651i −0.00465670 + 0.00806564i
\(990\) 0 0
\(991\) −8.91172 15.4356i −0.283090 0.490327i 0.689054 0.724710i \(-0.258026\pi\)
−0.972144 + 0.234383i \(0.924693\pi\)
\(992\) 0 0
\(993\) −8.20105 + 8.16373i −0.260252 + 0.259068i
\(994\) 0 0
\(995\) −43.1031 74.6567i −1.36646 2.36678i
\(996\) 0 0
\(997\) −36.4954 −1.15582 −0.577911 0.816100i \(-0.696132\pi\)
−0.577911 + 0.816100i \(0.696132\pi\)
\(998\) 0 0
\(999\) −28.5624 + 7.44422i −0.903676 + 0.235525i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.t.k.961.5 22
3.2 odd 2 3024.2.t.l.289.11 22
4.3 odd 2 504.2.t.d.457.7 yes 22
7.4 even 3 1008.2.q.k.529.4 22
9.4 even 3 1008.2.q.k.625.4 22
9.5 odd 6 3024.2.q.k.2305.1 22
12.11 even 2 1512.2.t.d.289.11 22
21.11 odd 6 3024.2.q.k.2881.1 22
28.11 odd 6 504.2.q.d.25.8 22
36.23 even 6 1512.2.q.c.793.1 22
36.31 odd 6 504.2.q.d.121.8 yes 22
63.4 even 3 inner 1008.2.t.k.193.5 22
63.32 odd 6 3024.2.t.l.1873.11 22
84.11 even 6 1512.2.q.c.1369.1 22
252.67 odd 6 504.2.t.d.193.7 yes 22
252.95 even 6 1512.2.t.d.361.11 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.8 22 28.11 odd 6
504.2.q.d.121.8 yes 22 36.31 odd 6
504.2.t.d.193.7 yes 22 252.67 odd 6
504.2.t.d.457.7 yes 22 4.3 odd 2
1008.2.q.k.529.4 22 7.4 even 3
1008.2.q.k.625.4 22 9.4 even 3
1008.2.t.k.193.5 22 63.4 even 3 inner
1008.2.t.k.961.5 22 1.1 even 1 trivial
1512.2.q.c.793.1 22 36.23 even 6
1512.2.q.c.1369.1 22 84.11 even 6
1512.2.t.d.289.11 22 12.11 even 2
1512.2.t.d.361.11 22 252.95 even 6
3024.2.q.k.2305.1 22 9.5 odd 6
3024.2.q.k.2881.1 22 21.11 odd 6
3024.2.t.l.289.11 22 3.2 odd 2
3024.2.t.l.1873.11 22 63.32 odd 6