Properties

Label 1008.2.q.k.529.4
Level $1008$
Weight $2$
Character 1008.529
Analytic conductor $8.049$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.4
Character \(\chi\) \(=\) 1008.529
Dual form 1008.2.q.k.625.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22753 + 1.22195i) q^{3} +(1.76479 - 3.05671i) q^{5} +(2.63986 - 0.176417i) q^{7} +(0.0136831 - 2.99997i) q^{9} +O(q^{10})\) \(q+(-1.22753 + 1.22195i) q^{3} +(1.76479 - 3.05671i) q^{5} +(2.63986 - 0.176417i) q^{7} +(0.0136831 - 2.99997i) q^{9} +(-1.16036 - 2.00981i) q^{11} +(-2.35884 - 4.08563i) q^{13} +(1.56880 + 5.90871i) q^{15} +(-0.636946 + 1.10322i) q^{17} +(-2.78386 - 4.82178i) q^{19} +(-3.02495 + 3.44233i) q^{21} +(-1.64855 + 2.85537i) q^{23} +(-3.72899 - 6.45880i) q^{25} +(3.64901 + 3.69929i) q^{27} +(-4.32116 + 7.48447i) q^{29} -8.51642 q^{31} +(3.88027 + 1.04921i) q^{33} +(4.11956 - 8.38064i) q^{35} +(-2.84024 - 4.91943i) q^{37} +(7.88798 + 2.13287i) q^{39} +(1.66553 + 2.88478i) q^{41} +(-0.0444165 + 0.0769317i) q^{43} +(-9.14589 - 5.33615i) q^{45} -7.05213 q^{47} +(6.93775 - 0.931432i) q^{49} +(-0.566208 - 2.13256i) q^{51} +(3.41816 - 5.92042i) q^{53} -8.19121 q^{55} +(9.30925 + 2.51717i) q^{57} +7.99490 q^{59} +13.3553 q^{61} +(-0.493123 - 7.92192i) q^{63} -16.6514 q^{65} -6.12804 q^{67} +(-1.46546 - 5.51951i) q^{69} -1.30202 q^{71} +(6.64529 - 11.5100i) q^{73} +(12.4698 + 3.37177i) q^{75} +(-3.41777 - 5.10092i) q^{77} +10.0281 q^{79} +(-8.99963 - 0.0820978i) q^{81} +(5.90243 - 10.2233i) q^{83} +(2.24815 + 3.89392i) q^{85} +(-3.84126 - 14.4677i) q^{87} +(0.561496 + 0.972540i) q^{89} +(-6.94778 - 10.3694i) q^{91} +(10.4542 - 10.4066i) q^{93} -19.6517 q^{95} +(-3.50818 + 6.07635i) q^{97} +(-6.04525 + 3.45356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} + q^{19} - 2 q^{23} - 10 q^{25} + 4 q^{27} + 9 q^{29} - 8 q^{31} + 29 q^{33} - 14 q^{35} + 2 q^{37} + 16 q^{39} + 16 q^{41} + q^{45} + 10 q^{47} + 15 q^{49} - 7 q^{51} + 11 q^{53} - 22 q^{55} + 7 q^{57} - 38 q^{59} + 26 q^{61} - 48 q^{63} - 26 q^{65} + 52 q^{67} - 4 q^{69} + 48 q^{71} - 35 q^{73} + 23 q^{75} + 17 q^{77} + 20 q^{79} - 38 q^{81} + 28 q^{83} - 20 q^{85} + 33 q^{87} + 6 q^{89} + 37 q^{91} + 19 q^{93} + 24 q^{95} - 29 q^{97} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22753 + 1.22195i −0.708718 + 0.705492i
\(4\) 0 0
\(5\) 1.76479 3.05671i 0.789239 1.36700i −0.137194 0.990544i \(-0.543808\pi\)
0.926433 0.376459i \(-0.122858\pi\)
\(6\) 0 0
\(7\) 2.63986 0.176417i 0.997774 0.0666792i
\(8\) 0 0
\(9\) 0.0136831 2.99997i 0.00456103 0.999990i
\(10\) 0 0
\(11\) −1.16036 2.00981i −0.349863 0.605981i 0.636362 0.771391i \(-0.280439\pi\)
−0.986225 + 0.165410i \(0.947105\pi\)
\(12\) 0 0
\(13\) −2.35884 4.08563i −0.654224 1.13315i −0.982088 0.188424i \(-0.939662\pi\)
0.327864 0.944725i \(-0.393671\pi\)
\(14\) 0 0
\(15\) 1.56880 + 5.90871i 0.405062 + 1.52562i
\(16\) 0 0
\(17\) −0.636946 + 1.10322i −0.154482 + 0.267571i −0.932870 0.360212i \(-0.882704\pi\)
0.778388 + 0.627783i \(0.216038\pi\)
\(18\) 0 0
\(19\) −2.78386 4.82178i −0.638661 1.10619i −0.985727 0.168352i \(-0.946155\pi\)
0.347066 0.937841i \(-0.387178\pi\)
\(20\) 0 0
\(21\) −3.02495 + 3.44233i −0.660099 + 0.751179i
\(22\) 0 0
\(23\) −1.64855 + 2.85537i −0.343746 + 0.595386i −0.985125 0.171838i \(-0.945029\pi\)
0.641379 + 0.767224i \(0.278363\pi\)
\(24\) 0 0
\(25\) −3.72899 6.45880i −0.745798 1.29176i
\(26\) 0 0
\(27\) 3.64901 + 3.69929i 0.702253 + 0.711928i
\(28\) 0 0
\(29\) −4.32116 + 7.48447i −0.802419 + 1.38983i 0.115601 + 0.993296i \(0.463121\pi\)
−0.918020 + 0.396535i \(0.870213\pi\)
\(30\) 0 0
\(31\) −8.51642 −1.52959 −0.764797 0.644272i \(-0.777161\pi\)
−0.764797 + 0.644272i \(0.777161\pi\)
\(32\) 0 0
\(33\) 3.88027 + 1.04921i 0.675469 + 0.182643i
\(34\) 0 0
\(35\) 4.11956 8.38064i 0.696332 1.41659i
\(36\) 0 0
\(37\) −2.84024 4.91943i −0.466932 0.808750i 0.532354 0.846522i \(-0.321307\pi\)
−0.999286 + 0.0377716i \(0.987974\pi\)
\(38\) 0 0
\(39\) 7.88798 + 2.13287i 1.26309 + 0.341533i
\(40\) 0 0
\(41\) 1.66553 + 2.88478i 0.260112 + 0.450528i 0.966272 0.257525i \(-0.0829071\pi\)
−0.706159 + 0.708053i \(0.749574\pi\)
\(42\) 0 0
\(43\) −0.0444165 + 0.0769317i −0.00677346 + 0.0117320i −0.869392 0.494123i \(-0.835489\pi\)
0.862619 + 0.505855i \(0.168823\pi\)
\(44\) 0 0
\(45\) −9.14589 5.33615i −1.36339 0.795466i
\(46\) 0 0
\(47\) −7.05213 −1.02866 −0.514330 0.857593i \(-0.671959\pi\)
−0.514330 + 0.857593i \(0.671959\pi\)
\(48\) 0 0
\(49\) 6.93775 0.931432i 0.991108 0.133062i
\(50\) 0 0
\(51\) −0.566208 2.13256i −0.0792850 0.298618i
\(52\) 0 0
\(53\) 3.41816 5.92042i 0.469520 0.813233i −0.529873 0.848077i \(-0.677760\pi\)
0.999393 + 0.0348444i \(0.0110936\pi\)
\(54\) 0 0
\(55\) −8.19121 −1.10450
\(56\) 0 0
\(57\) 9.30925 + 2.51717i 1.23304 + 0.333408i
\(58\) 0 0
\(59\) 7.99490 1.04085 0.520423 0.853908i \(-0.325774\pi\)
0.520423 + 0.853908i \(0.325774\pi\)
\(60\) 0 0
\(61\) 13.3553 1.70997 0.854985 0.518653i \(-0.173566\pi\)
0.854985 + 0.518653i \(0.173566\pi\)
\(62\) 0 0
\(63\) −0.493123 7.92192i −0.0621277 0.998068i
\(64\) 0 0
\(65\) −16.6514 −2.06536
\(66\) 0 0
\(67\) −6.12804 −0.748660 −0.374330 0.927296i \(-0.622127\pi\)
−0.374330 + 0.927296i \(0.622127\pi\)
\(68\) 0 0
\(69\) −1.46546 5.51951i −0.176421 0.664471i
\(70\) 0 0
\(71\) −1.30202 −0.154522 −0.0772609 0.997011i \(-0.524617\pi\)
−0.0772609 + 0.997011i \(0.524617\pi\)
\(72\) 0 0
\(73\) 6.64529 11.5100i 0.777772 1.34714i −0.155451 0.987844i \(-0.549683\pi\)
0.933223 0.359297i \(-0.116984\pi\)
\(74\) 0 0
\(75\) 12.4698 + 3.37177i 1.43989 + 0.389338i
\(76\) 0 0
\(77\) −3.41777 5.10092i −0.389491 0.581303i
\(78\) 0 0
\(79\) 10.0281 1.12824 0.564122 0.825691i \(-0.309215\pi\)
0.564122 + 0.825691i \(0.309215\pi\)
\(80\) 0 0
\(81\) −8.99963 0.0820978i −0.999958 0.00912197i
\(82\) 0 0
\(83\) 5.90243 10.2233i 0.647876 1.12215i −0.335753 0.941950i \(-0.608991\pi\)
0.983629 0.180204i \(-0.0576758\pi\)
\(84\) 0 0
\(85\) 2.24815 + 3.89392i 0.243847 + 0.422355i
\(86\) 0 0
\(87\) −3.84126 14.4677i −0.411826 1.55110i
\(88\) 0 0
\(89\) 0.561496 + 0.972540i 0.0595185 + 0.103089i 0.894249 0.447569i \(-0.147710\pi\)
−0.834731 + 0.550658i \(0.814377\pi\)
\(90\) 0 0
\(91\) −6.94778 10.3694i −0.728325 1.08700i
\(92\) 0 0
\(93\) 10.4542 10.4066i 1.08405 1.07912i
\(94\) 0 0
\(95\) −19.6517 −2.01622
\(96\) 0 0
\(97\) −3.50818 + 6.07635i −0.356202 + 0.616960i −0.987323 0.158724i \(-0.949262\pi\)
0.631121 + 0.775685i \(0.282595\pi\)
\(98\) 0 0
\(99\) −6.04525 + 3.45356i −0.607570 + 0.347096i
\(100\) 0 0
\(101\) 4.87055 + 8.43605i 0.484638 + 0.839418i 0.999844 0.0176482i \(-0.00561789\pi\)
−0.515206 + 0.857066i \(0.672285\pi\)
\(102\) 0 0
\(103\) 5.14279 8.90757i 0.506734 0.877689i −0.493236 0.869896i \(-0.664186\pi\)
0.999970 0.00779301i \(-0.00248062\pi\)
\(104\) 0 0
\(105\) 5.18381 + 15.3214i 0.505888 + 1.49522i
\(106\) 0 0
\(107\) −2.72201 4.71465i −0.263146 0.455783i 0.703930 0.710269i \(-0.251427\pi\)
−0.967076 + 0.254487i \(0.918094\pi\)
\(108\) 0 0
\(109\) 0.417404 0.722965i 0.0399800 0.0692475i −0.845343 0.534224i \(-0.820604\pi\)
0.885323 + 0.464977i \(0.153937\pi\)
\(110\) 0 0
\(111\) 9.49778 + 2.56815i 0.901490 + 0.243758i
\(112\) 0 0
\(113\) 5.44881 + 9.43761i 0.512581 + 0.887815i 0.999894 + 0.0145882i \(0.00464372\pi\)
−0.487313 + 0.873227i \(0.662023\pi\)
\(114\) 0 0
\(115\) 5.81870 + 10.0783i 0.542596 + 0.939804i
\(116\) 0 0
\(117\) −12.2890 + 7.02054i −1.13612 + 0.649049i
\(118\) 0 0
\(119\) −1.48682 + 3.02472i −0.136297 + 0.277276i
\(120\) 0 0
\(121\) 2.80711 4.86205i 0.255192 0.442005i
\(122\) 0 0
\(123\) −5.56956 1.50598i −0.502190 0.135790i
\(124\) 0 0
\(125\) −8.67565 −0.775974
\(126\) 0 0
\(127\) 9.90354 0.878797 0.439399 0.898292i \(-0.355192\pi\)
0.439399 + 0.898292i \(0.355192\pi\)
\(128\) 0 0
\(129\) −0.0394837 0.148711i −0.00347635 0.0130933i
\(130\) 0 0
\(131\) 8.59220 14.8821i 0.750704 1.30026i −0.196778 0.980448i \(-0.563048\pi\)
0.947482 0.319809i \(-0.103619\pi\)
\(132\) 0 0
\(133\) −8.19964 12.2377i −0.710999 1.06115i
\(134\) 0 0
\(135\) 17.7474 4.62550i 1.52745 0.398100i
\(136\) 0 0
\(137\) 8.04696 + 13.9377i 0.687498 + 1.19078i 0.972645 + 0.232298i \(0.0746243\pi\)
−0.285147 + 0.958484i \(0.592042\pi\)
\(138\) 0 0
\(139\) −1.11151 1.92519i −0.0942768 0.163292i 0.815030 0.579419i \(-0.196721\pi\)
−0.909307 + 0.416127i \(0.863387\pi\)
\(140\) 0 0
\(141\) 8.65674 8.61735i 0.729029 0.725711i
\(142\) 0 0
\(143\) −5.47422 + 9.48163i −0.457778 + 0.792894i
\(144\) 0 0
\(145\) 15.2519 + 26.4171i 1.26660 + 2.19382i
\(146\) 0 0
\(147\) −7.37817 + 9.62094i −0.608541 + 0.793522i
\(148\) 0 0
\(149\) −3.46846 + 6.00755i −0.284147 + 0.492158i −0.972402 0.233312i \(-0.925044\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(150\) 0 0
\(151\) 7.75834 + 13.4378i 0.631365 + 1.09356i 0.987273 + 0.159035i \(0.0508383\pi\)
−0.355908 + 0.934521i \(0.615828\pi\)
\(152\) 0 0
\(153\) 3.30092 + 1.92591i 0.266863 + 0.155701i
\(154\) 0 0
\(155\) −15.0297 + 26.0322i −1.20722 + 2.09096i
\(156\) 0 0
\(157\) 0.802110 0.0640154 0.0320077 0.999488i \(-0.489810\pi\)
0.0320077 + 0.999488i \(0.489810\pi\)
\(158\) 0 0
\(159\) 3.03855 + 11.4443i 0.240972 + 0.907595i
\(160\) 0 0
\(161\) −3.84821 + 7.82862i −0.303281 + 0.616982i
\(162\) 0 0
\(163\) −1.77500 3.07438i −0.139028 0.240804i 0.788101 0.615546i \(-0.211065\pi\)
−0.927129 + 0.374742i \(0.877731\pi\)
\(164\) 0 0
\(165\) 10.0550 10.0092i 0.782781 0.779219i
\(166\) 0 0
\(167\) −0.865131 1.49845i −0.0669459 0.115954i 0.830610 0.556855i \(-0.187992\pi\)
−0.897556 + 0.440901i \(0.854659\pi\)
\(168\) 0 0
\(169\) −4.62823 + 8.01633i −0.356018 + 0.616641i
\(170\) 0 0
\(171\) −14.5033 + 8.28551i −1.10909 + 0.633609i
\(172\) 0 0
\(173\) 2.23458 0.169892 0.0849462 0.996386i \(-0.472928\pi\)
0.0849462 + 0.996386i \(0.472928\pi\)
\(174\) 0 0
\(175\) −10.9835 16.3925i −0.830272 1.23916i
\(176\) 0 0
\(177\) −9.81401 + 9.76935i −0.737666 + 0.734309i
\(178\) 0 0
\(179\) 0.350412 0.606931i 0.0261910 0.0453641i −0.852633 0.522511i \(-0.824996\pi\)
0.878824 + 0.477146i \(0.158329\pi\)
\(180\) 0 0
\(181\) −19.6339 −1.45938 −0.729688 0.683780i \(-0.760335\pi\)
−0.729688 + 0.683780i \(0.760335\pi\)
\(182\) 0 0
\(183\) −16.3941 + 16.3195i −1.21189 + 1.20637i
\(184\) 0 0
\(185\) −20.0497 −1.47408
\(186\) 0 0
\(187\) 2.95636 0.216190
\(188\) 0 0
\(189\) 10.2855 + 9.12186i 0.748160 + 0.663518i
\(190\) 0 0
\(191\) −16.0858 −1.16393 −0.581963 0.813215i \(-0.697715\pi\)
−0.581963 + 0.813215i \(0.697715\pi\)
\(192\) 0 0
\(193\) −0.585463 −0.0421426 −0.0210713 0.999778i \(-0.506708\pi\)
−0.0210713 + 0.999778i \(0.506708\pi\)
\(194\) 0 0
\(195\) 20.4402 20.3472i 1.46375 1.45709i
\(196\) 0 0
\(197\) −17.2923 −1.23203 −0.616014 0.787735i \(-0.711254\pi\)
−0.616014 + 0.787735i \(0.711254\pi\)
\(198\) 0 0
\(199\) 12.2119 21.1517i 0.865681 1.49940i −0.000687656 1.00000i \(-0.500219\pi\)
0.866369 0.499404i \(-0.166448\pi\)
\(200\) 0 0
\(201\) 7.52239 7.48815i 0.530588 0.528174i
\(202\) 0 0
\(203\) −10.0869 + 20.5203i −0.707960 + 1.44024i
\(204\) 0 0
\(205\) 11.7573 0.821164
\(206\) 0 0
\(207\) 8.54347 + 4.98467i 0.593812 + 0.346458i
\(208\) 0 0
\(209\) −6.46058 + 11.1900i −0.446888 + 0.774032i
\(210\) 0 0
\(211\) 5.58733 + 9.67754i 0.384648 + 0.666230i 0.991720 0.128417i \(-0.0409895\pi\)
−0.607072 + 0.794647i \(0.707656\pi\)
\(212\) 0 0
\(213\) 1.59828 1.59101i 0.109512 0.109014i
\(214\) 0 0
\(215\) 0.156772 + 0.271537i 0.0106918 + 0.0185187i
\(216\) 0 0
\(217\) −22.4822 + 1.50244i −1.52619 + 0.101992i
\(218\) 0 0
\(219\) 5.90728 + 22.2491i 0.399177 + 1.50345i
\(220\) 0 0
\(221\) 6.00981 0.404263
\(222\) 0 0
\(223\) 1.32951 2.30277i 0.0890303 0.154205i −0.818071 0.575117i \(-0.804957\pi\)
0.907101 + 0.420912i \(0.138290\pi\)
\(224\) 0 0
\(225\) −19.4272 + 11.0985i −1.29515 + 0.739898i
\(226\) 0 0
\(227\) 5.95786 + 10.3193i 0.395437 + 0.684917i 0.993157 0.116788i \(-0.0372598\pi\)
−0.597720 + 0.801705i \(0.703927\pi\)
\(228\) 0 0
\(229\) 14.8064 25.6454i 0.978434 1.69470i 0.310330 0.950629i \(-0.399561\pi\)
0.668104 0.744068i \(-0.267106\pi\)
\(230\) 0 0
\(231\) 10.4285 + 2.08522i 0.686144 + 0.137197i
\(232\) 0 0
\(233\) 1.84417 + 3.19420i 0.120816 + 0.209259i 0.920090 0.391708i \(-0.128116\pi\)
−0.799274 + 0.600967i \(0.794782\pi\)
\(234\) 0 0
\(235\) −12.4456 + 21.5563i −0.811859 + 1.40618i
\(236\) 0 0
\(237\) −12.3098 + 12.2538i −0.799607 + 0.795968i
\(238\) 0 0
\(239\) −8.03590 13.9186i −0.519799 0.900319i −0.999735 0.0230153i \(-0.992673\pi\)
0.479936 0.877304i \(-0.340660\pi\)
\(240\) 0 0
\(241\) −2.24933 3.89596i −0.144892 0.250961i 0.784440 0.620204i \(-0.212950\pi\)
−0.929333 + 0.369243i \(0.879617\pi\)
\(242\) 0 0
\(243\) 11.1477 10.8963i 0.715124 0.698998i
\(244\) 0 0
\(245\) 9.39658 22.8505i 0.600326 1.45986i
\(246\) 0 0
\(247\) −13.1333 + 22.7476i −0.835654 + 1.44740i
\(248\) 0 0
\(249\) 5.24692 + 19.7619i 0.332510 + 1.25236i
\(250\) 0 0
\(251\) 17.2696 1.09005 0.545023 0.838421i \(-0.316521\pi\)
0.545023 + 0.838421i \(0.316521\pi\)
\(252\) 0 0
\(253\) 7.65167 0.481057
\(254\) 0 0
\(255\) −7.51786 2.03279i −0.470786 0.127298i
\(256\) 0 0
\(257\) −2.41087 + 4.17574i −0.150386 + 0.260476i −0.931369 0.364076i \(-0.881385\pi\)
0.780984 + 0.624552i \(0.214718\pi\)
\(258\) 0 0
\(259\) −8.36571 12.4856i −0.519820 0.775815i
\(260\) 0 0
\(261\) 22.3940 + 13.0658i 1.38616 + 0.808750i
\(262\) 0 0
\(263\) 14.0452 + 24.3270i 0.866062 + 1.50006i 0.865988 + 0.500064i \(0.166690\pi\)
7.41948e−5 1.00000i \(0.499976\pi\)
\(264\) 0 0
\(265\) −12.0647 20.8966i −0.741128 1.28367i
\(266\) 0 0
\(267\) −1.87765 0.507707i −0.114910 0.0310712i
\(268\) 0 0
\(269\) 12.4126 21.4993i 0.756810 1.31083i −0.187659 0.982234i \(-0.560090\pi\)
0.944469 0.328599i \(-0.106577\pi\)
\(270\) 0 0
\(271\) 4.79671 + 8.30815i 0.291379 + 0.504684i 0.974136 0.225962i \(-0.0725524\pi\)
−0.682757 + 0.730646i \(0.739219\pi\)
\(272\) 0 0
\(273\) 21.1995 + 4.23891i 1.28305 + 0.256551i
\(274\) 0 0
\(275\) −8.65398 + 14.9891i −0.521854 + 0.903878i
\(276\) 0 0
\(277\) −8.46914 14.6690i −0.508862 0.881374i −0.999947 0.0102629i \(-0.996733\pi\)
0.491086 0.871111i \(-0.336600\pi\)
\(278\) 0 0
\(279\) −0.116531 + 25.5490i −0.00697653 + 1.52958i
\(280\) 0 0
\(281\) 11.4291 19.7958i 0.681805 1.18092i −0.292625 0.956227i \(-0.594529\pi\)
0.974430 0.224693i \(-0.0721379\pi\)
\(282\) 0 0
\(283\) −8.35621 −0.496725 −0.248363 0.968667i \(-0.579892\pi\)
−0.248363 + 0.968667i \(0.579892\pi\)
\(284\) 0 0
\(285\) 24.1232 24.0134i 1.42893 1.42243i
\(286\) 0 0
\(287\) 4.90570 + 7.32161i 0.289574 + 0.432181i
\(288\) 0 0
\(289\) 7.68860 + 13.3170i 0.452271 + 0.783356i
\(290\) 0 0
\(291\) −3.11857 11.7458i −0.182814 0.688549i
\(292\) 0 0
\(293\) −2.16141 3.74368i −0.126271 0.218708i 0.795958 0.605352i \(-0.206968\pi\)
−0.922229 + 0.386644i \(0.873634\pi\)
\(294\) 0 0
\(295\) 14.1093 24.4381i 0.821477 1.42284i
\(296\) 0 0
\(297\) 3.20068 11.6263i 0.185722 0.674629i
\(298\) 0 0
\(299\) 15.5546 0.899548
\(300\) 0 0
\(301\) −0.103682 + 0.210925i −0.00597610 + 0.0121575i
\(302\) 0 0
\(303\) −16.2872 4.40397i −0.935675 0.253002i
\(304\) 0 0
\(305\) 23.5693 40.8233i 1.34958 2.33753i
\(306\) 0 0
\(307\) 9.22888 0.526720 0.263360 0.964698i \(-0.415169\pi\)
0.263360 + 0.964698i \(0.415169\pi\)
\(308\) 0 0
\(309\) 4.57164 + 17.2186i 0.260072 + 0.979530i
\(310\) 0 0
\(311\) 19.1073 1.08348 0.541738 0.840548i \(-0.317767\pi\)
0.541738 + 0.840548i \(0.317767\pi\)
\(312\) 0 0
\(313\) 5.67903 0.320997 0.160499 0.987036i \(-0.448690\pi\)
0.160499 + 0.987036i \(0.448690\pi\)
\(314\) 0 0
\(315\) −25.0853 12.4732i −1.41340 0.702786i
\(316\) 0 0
\(317\) −28.2681 −1.58770 −0.793848 0.608116i \(-0.791925\pi\)
−0.793848 + 0.608116i \(0.791925\pi\)
\(318\) 0 0
\(319\) 20.0565 1.12295
\(320\) 0 0
\(321\) 9.10242 + 2.46125i 0.508048 + 0.137373i
\(322\) 0 0
\(323\) 7.09266 0.394646
\(324\) 0 0
\(325\) −17.5922 + 30.4705i −0.975838 + 1.69020i
\(326\) 0 0
\(327\) 0.371048 + 1.39751i 0.0205190 + 0.0772825i
\(328\) 0 0
\(329\) −18.6167 + 1.24411i −1.02637 + 0.0685902i
\(330\) 0 0
\(331\) 6.68091 0.367216 0.183608 0.983000i \(-0.441222\pi\)
0.183608 + 0.983000i \(0.441222\pi\)
\(332\) 0 0
\(333\) −14.7970 + 8.45331i −0.810871 + 0.463238i
\(334\) 0 0
\(335\) −10.8147 + 18.7317i −0.590872 + 1.02342i
\(336\) 0 0
\(337\) −3.49421 6.05215i −0.190342 0.329681i 0.755022 0.655700i \(-0.227626\pi\)
−0.945363 + 0.326018i \(0.894293\pi\)
\(338\) 0 0
\(339\) −18.2209 4.92683i −0.989622 0.267589i
\(340\) 0 0
\(341\) 9.88215 + 17.1164i 0.535148 + 0.926904i
\(342\) 0 0
\(343\) 18.1504 3.68279i 0.980030 0.198852i
\(344\) 0 0
\(345\) −19.4578 5.26129i −1.04757 0.283258i
\(346\) 0 0
\(347\) −8.28821 −0.444934 −0.222467 0.974940i \(-0.571411\pi\)
−0.222467 + 0.974940i \(0.571411\pi\)
\(348\) 0 0
\(349\) 3.05373 5.28921i 0.163462 0.283125i −0.772646 0.634837i \(-0.781067\pi\)
0.936108 + 0.351712i \(0.114400\pi\)
\(350\) 0 0
\(351\) 6.50648 23.6345i 0.347290 1.26152i
\(352\) 0 0
\(353\) 13.3604 + 23.1409i 0.711104 + 1.23167i 0.964443 + 0.264290i \(0.0851377\pi\)
−0.253340 + 0.967377i \(0.581529\pi\)
\(354\) 0 0
\(355\) −2.29780 + 3.97991i −0.121955 + 0.211232i
\(356\) 0 0
\(357\) −1.87093 5.52977i −0.0990201 0.292667i
\(358\) 0 0
\(359\) −2.45603 4.25397i −0.129624 0.224516i 0.793907 0.608040i \(-0.208044\pi\)
−0.923531 + 0.383523i \(0.874711\pi\)
\(360\) 0 0
\(361\) −5.99972 + 10.3918i −0.315775 + 0.546938i
\(362\) 0 0
\(363\) 2.49536 + 9.39848i 0.130972 + 0.493292i
\(364\) 0 0
\(365\) −23.4551 40.6255i −1.22770 2.12643i
\(366\) 0 0
\(367\) −15.3532 26.5925i −0.801430 1.38812i −0.918675 0.395015i \(-0.870740\pi\)
0.117245 0.993103i \(-0.462594\pi\)
\(368\) 0 0
\(369\) 8.67705 4.95707i 0.451709 0.258055i
\(370\) 0 0
\(371\) 7.97901 16.2321i 0.414250 0.842730i
\(372\) 0 0
\(373\) −8.29190 + 14.3620i −0.429338 + 0.743635i −0.996815 0.0797543i \(-0.974586\pi\)
0.567477 + 0.823390i \(0.307920\pi\)
\(374\) 0 0
\(375\) 10.6497 10.6012i 0.549946 0.547443i
\(376\) 0 0
\(377\) 40.7716 2.09985
\(378\) 0 0
\(379\) −4.08857 −0.210016 −0.105008 0.994471i \(-0.533487\pi\)
−0.105008 + 0.994471i \(0.533487\pi\)
\(380\) 0 0
\(381\) −12.1569 + 12.1016i −0.622819 + 0.619985i
\(382\) 0 0
\(383\) 15.1769 26.2871i 0.775503 1.34321i −0.159009 0.987277i \(-0.550830\pi\)
0.934511 0.355933i \(-0.115837\pi\)
\(384\) 0 0
\(385\) −21.6237 + 1.44507i −1.10205 + 0.0736474i
\(386\) 0 0
\(387\) 0.230185 + 0.134301i 0.0117010 + 0.00682690i
\(388\) 0 0
\(389\) 1.73382 + 3.00307i 0.0879082 + 0.152261i 0.906627 0.421934i \(-0.138648\pi\)
−0.818719 + 0.574195i \(0.805315\pi\)
\(390\) 0 0
\(391\) −2.10007 3.63743i −0.106205 0.183953i
\(392\) 0 0
\(393\) 7.63797 + 28.7675i 0.385285 + 1.45113i
\(394\) 0 0
\(395\) 17.6974 30.6529i 0.890455 1.54231i
\(396\) 0 0
\(397\) −7.04243 12.1979i −0.353450 0.612193i 0.633402 0.773823i \(-0.281658\pi\)
−0.986851 + 0.161630i \(0.948325\pi\)
\(398\) 0 0
\(399\) 25.0192 + 5.00269i 1.25253 + 0.250448i
\(400\) 0 0
\(401\) 5.46593 9.46726i 0.272955 0.472772i −0.696662 0.717400i \(-0.745332\pi\)
0.969617 + 0.244627i \(0.0786656\pi\)
\(402\) 0 0
\(403\) 20.0888 + 34.7949i 1.00070 + 1.73326i
\(404\) 0 0
\(405\) −16.1334 + 27.3644i −0.801676 + 1.35975i
\(406\) 0 0
\(407\) −6.59142 + 11.4167i −0.326725 + 0.565904i
\(408\) 0 0
\(409\) 15.9879 0.790553 0.395276 0.918562i \(-0.370649\pi\)
0.395276 + 0.918562i \(0.370649\pi\)
\(410\) 0 0
\(411\) −26.9091 7.27609i −1.32733 0.358903i
\(412\) 0 0
\(413\) 21.1054 1.41043i 1.03853 0.0694029i
\(414\) 0 0
\(415\) −20.8331 36.0841i −1.02266 1.77130i
\(416\) 0 0
\(417\) 3.71689 + 1.00503i 0.182017 + 0.0492165i
\(418\) 0 0
\(419\) 3.56197 + 6.16951i 0.174014 + 0.301400i 0.939819 0.341671i \(-0.110993\pi\)
−0.765806 + 0.643072i \(0.777660\pi\)
\(420\) 0 0
\(421\) −16.6326 + 28.8086i −0.810625 + 1.40404i 0.101802 + 0.994805i \(0.467539\pi\)
−0.912427 + 0.409239i \(0.865794\pi\)
\(422\) 0 0
\(423\) −0.0964951 + 21.1562i −0.00469175 + 1.02865i
\(424\) 0 0
\(425\) 9.50066 0.460849
\(426\) 0 0
\(427\) 35.2561 2.35610i 1.70616 0.114019i
\(428\) 0 0
\(429\) −4.86627 18.3283i −0.234946 0.884897i
\(430\) 0 0
\(431\) 2.62382 4.54459i 0.126385 0.218905i −0.795889 0.605443i \(-0.792996\pi\)
0.922273 + 0.386538i \(0.126329\pi\)
\(432\) 0 0
\(433\) 22.1053 1.06231 0.531156 0.847274i \(-0.321758\pi\)
0.531156 + 0.847274i \(0.321758\pi\)
\(434\) 0 0
\(435\) −51.0025 13.7908i −2.44538 0.661220i
\(436\) 0 0
\(437\) 18.3573 0.878149
\(438\) 0 0
\(439\) −34.6165 −1.65216 −0.826079 0.563555i \(-0.809433\pi\)
−0.826079 + 0.563555i \(0.809433\pi\)
\(440\) 0 0
\(441\) −2.69934 20.8258i −0.128540 0.991704i
\(442\) 0 0
\(443\) 4.40923 0.209489 0.104744 0.994499i \(-0.466598\pi\)
0.104744 + 0.994499i \(0.466598\pi\)
\(444\) 0 0
\(445\) 3.96370 0.187897
\(446\) 0 0
\(447\) −3.08326 11.6128i −0.145833 0.549265i
\(448\) 0 0
\(449\) −19.6336 −0.926568 −0.463284 0.886210i \(-0.653329\pi\)
−0.463284 + 0.886210i \(0.653329\pi\)
\(450\) 0 0
\(451\) 3.86525 6.69481i 0.182007 0.315246i
\(452\) 0 0
\(453\) −25.9440 7.01512i −1.21895 0.329599i
\(454\) 0 0
\(455\) −43.9575 + 2.93759i −2.06076 + 0.137716i
\(456\) 0 0
\(457\) −30.8392 −1.44259 −0.721297 0.692626i \(-0.756454\pi\)
−0.721297 + 0.692626i \(0.756454\pi\)
\(458\) 0 0
\(459\) −6.40536 + 1.66943i −0.298976 + 0.0779221i
\(460\) 0 0
\(461\) −13.6297 + 23.6074i −0.634800 + 1.09951i 0.351757 + 0.936091i \(0.385584\pi\)
−0.986557 + 0.163415i \(0.947749\pi\)
\(462\) 0 0
\(463\) 0.959750 + 1.66234i 0.0446034 + 0.0772553i 0.887465 0.460875i \(-0.152464\pi\)
−0.842862 + 0.538130i \(0.819131\pi\)
\(464\) 0 0
\(465\) −13.3605 50.3210i −0.619581 2.33358i
\(466\) 0 0
\(467\) −4.88655 8.46376i −0.226123 0.391656i 0.730533 0.682877i \(-0.239272\pi\)
−0.956656 + 0.291221i \(0.905938\pi\)
\(468\) 0 0
\(469\) −16.1772 + 1.08109i −0.746994 + 0.0499201i
\(470\) 0 0
\(471\) −0.984618 + 0.980138i −0.0453688 + 0.0451624i
\(472\) 0 0
\(473\) 0.206158 0.00947913
\(474\) 0 0
\(475\) −20.7619 + 35.9607i −0.952623 + 1.64999i
\(476\) 0 0
\(477\) −17.7143 10.3354i −0.811083 0.473225i
\(478\) 0 0
\(479\) 7.68809 + 13.3162i 0.351278 + 0.608431i 0.986474 0.163920i \(-0.0524139\pi\)
−0.635196 + 0.772351i \(0.719081\pi\)
\(480\) 0 0
\(481\) −13.3993 + 23.2083i −0.610956 + 1.05821i
\(482\) 0 0
\(483\) −4.84236 14.3122i −0.220335 0.651228i
\(484\) 0 0
\(485\) 12.3824 + 21.4470i 0.562258 + 0.973859i
\(486\) 0 0
\(487\) −5.18342 + 8.97794i −0.234883 + 0.406829i −0.959239 0.282597i \(-0.908804\pi\)
0.724356 + 0.689427i \(0.242137\pi\)
\(488\) 0 0
\(489\) 5.93561 + 1.60496i 0.268418 + 0.0725788i
\(490\) 0 0
\(491\) 6.94718 + 12.0329i 0.313522 + 0.543035i 0.979122 0.203273i \(-0.0651578\pi\)
−0.665600 + 0.746308i \(0.731825\pi\)
\(492\) 0 0
\(493\) −5.50469 9.53440i −0.247919 0.429408i
\(494\) 0 0
\(495\) −0.112081 + 24.5734i −0.00503768 + 1.10449i
\(496\) 0 0
\(497\) −3.43717 + 0.229699i −0.154178 + 0.0103034i
\(498\) 0 0
\(499\) −1.70488 + 2.95294i −0.0763210 + 0.132192i −0.901660 0.432446i \(-0.857651\pi\)
0.825339 + 0.564638i \(0.190984\pi\)
\(500\) 0 0
\(501\) 2.89301 + 0.782255i 0.129250 + 0.0349486i
\(502\) 0 0
\(503\) −43.8911 −1.95701 −0.978504 0.206227i \(-0.933881\pi\)
−0.978504 + 0.206227i \(0.933881\pi\)
\(504\) 0 0
\(505\) 34.3821 1.52998
\(506\) 0 0
\(507\) −4.11423 15.4958i −0.182719 0.688192i
\(508\) 0 0
\(509\) −19.6674 + 34.0649i −0.871742 + 1.50990i −0.0115483 + 0.999933i \(0.503676\pi\)
−0.860193 + 0.509968i \(0.829657\pi\)
\(510\) 0 0
\(511\) 15.5121 31.5571i 0.686215 1.39600i
\(512\) 0 0
\(513\) 7.67882 27.8930i 0.339028 1.23151i
\(514\) 0 0
\(515\) −18.1519 31.4400i −0.799869 1.38541i
\(516\) 0 0
\(517\) 8.18305 + 14.1735i 0.359890 + 0.623348i
\(518\) 0 0
\(519\) −2.74303 + 2.73055i −0.120406 + 0.119858i
\(520\) 0 0
\(521\) 12.4779 21.6124i 0.546669 0.946858i −0.451831 0.892104i \(-0.649229\pi\)
0.998500 0.0547547i \(-0.0174377\pi\)
\(522\) 0 0
\(523\) 15.1575 + 26.2536i 0.662792 + 1.14799i 0.979879 + 0.199594i \(0.0639622\pi\)
−0.317086 + 0.948397i \(0.602704\pi\)
\(524\) 0 0
\(525\) 33.5134 + 6.70112i 1.46264 + 0.292461i
\(526\) 0 0
\(527\) 5.42449 9.39550i 0.236295 0.409274i
\(528\) 0 0
\(529\) 6.06457 + 10.5041i 0.263677 + 0.456702i
\(530\) 0 0
\(531\) 0.109395 23.9844i 0.00474734 1.04084i
\(532\) 0 0
\(533\) 7.85744 13.6095i 0.340343 0.589492i
\(534\) 0 0
\(535\) −19.2151 −0.830742
\(536\) 0 0
\(537\) 0.311496 + 1.17321i 0.0134420 + 0.0506279i
\(538\) 0 0
\(539\) −9.92233 12.8628i −0.427385 0.554039i
\(540\) 0 0
\(541\) −14.2812 24.7357i −0.613996 1.06347i −0.990560 0.137082i \(-0.956228\pi\)
0.376563 0.926391i \(-0.377106\pi\)
\(542\) 0 0
\(543\) 24.1013 23.9916i 1.03429 1.02958i
\(544\) 0 0
\(545\) −1.47326 2.55177i −0.0631077 0.109306i
\(546\) 0 0
\(547\) −3.89233 + 6.74171i −0.166424 + 0.288255i −0.937160 0.348900i \(-0.886555\pi\)
0.770736 + 0.637154i \(0.219889\pi\)
\(548\) 0 0
\(549\) 0.182742 40.0654i 0.00779923 1.70995i
\(550\) 0 0
\(551\) 48.1179 2.04989
\(552\) 0 0
\(553\) 26.4727 1.76912i 1.12573 0.0752305i
\(554\) 0 0
\(555\) 24.6117 24.4997i 1.04471 1.03996i
\(556\) 0 0
\(557\) −23.2470 + 40.2650i −0.985008 + 1.70608i −0.343108 + 0.939296i \(0.611480\pi\)
−0.641900 + 0.766788i \(0.721854\pi\)
\(558\) 0 0
\(559\) 0.419086 0.0177254
\(560\) 0 0
\(561\) −3.62903 + 3.61252i −0.153218 + 0.152521i
\(562\) 0 0
\(563\) −27.9826 −1.17933 −0.589663 0.807650i \(-0.700739\pi\)
−0.589663 + 0.807650i \(0.700739\pi\)
\(564\) 0 0
\(565\) 38.4641 1.61820
\(566\) 0 0
\(567\) −23.7723 + 1.37096i −0.998341 + 0.0575748i
\(568\) 0 0
\(569\) 8.89957 0.373090 0.186545 0.982446i \(-0.440271\pi\)
0.186545 + 0.982446i \(0.440271\pi\)
\(570\) 0 0
\(571\) 32.3304 1.35298 0.676492 0.736450i \(-0.263500\pi\)
0.676492 + 0.736450i \(0.263500\pi\)
\(572\) 0 0
\(573\) 19.7459 19.6560i 0.824895 0.821141i
\(574\) 0 0
\(575\) 24.5897 1.02546
\(576\) 0 0
\(577\) −16.8414 + 29.1701i −0.701115 + 1.21437i 0.266960 + 0.963707i \(0.413981\pi\)
−0.968075 + 0.250659i \(0.919353\pi\)
\(578\) 0 0
\(579\) 0.718676 0.715406i 0.0298672 0.0297313i
\(580\) 0 0
\(581\) 13.7780 28.0294i 0.571610 1.16286i
\(582\) 0 0
\(583\) −15.8652 −0.657071
\(584\) 0 0
\(585\) −0.227843 + 49.9538i −0.00942016 + 2.06534i
\(586\) 0 0
\(587\) 1.24076 2.14907i 0.0512118 0.0887015i −0.839283 0.543695i \(-0.817025\pi\)
0.890495 + 0.454993i \(0.150358\pi\)
\(588\) 0 0
\(589\) 23.7085 + 41.0643i 0.976891 + 1.69202i
\(590\) 0 0
\(591\) 21.2270 21.1304i 0.873160 0.869187i
\(592\) 0 0
\(593\) −15.0903 26.1371i −0.619684 1.07332i −0.989543 0.144236i \(-0.953928\pi\)
0.369859 0.929088i \(-0.379406\pi\)
\(594\) 0 0
\(595\) 6.62177 + 9.88280i 0.271466 + 0.405155i
\(596\) 0 0
\(597\) 10.8557 + 40.8868i 0.444295 + 1.67339i
\(598\) 0 0
\(599\) 16.4083 0.670424 0.335212 0.942143i \(-0.391192\pi\)
0.335212 + 0.942143i \(0.391192\pi\)
\(600\) 0 0
\(601\) −2.96998 + 5.14416i −0.121148 + 0.209835i −0.920221 0.391400i \(-0.871991\pi\)
0.799073 + 0.601235i \(0.205324\pi\)
\(602\) 0 0
\(603\) −0.0838506 + 18.3839i −0.00341466 + 0.748652i
\(604\) 0 0
\(605\) −9.90793 17.1610i −0.402815 0.697695i
\(606\) 0 0
\(607\) −2.97573 + 5.15412i −0.120781 + 0.209199i −0.920076 0.391740i \(-0.871873\pi\)
0.799295 + 0.600939i \(0.205207\pi\)
\(608\) 0 0
\(609\) −12.6927 37.5150i −0.514336 1.52019i
\(610\) 0 0
\(611\) 16.6348 + 28.8124i 0.672974 + 1.16562i
\(612\) 0 0
\(613\) 15.5920 27.0062i 0.629756 1.09077i −0.357845 0.933781i \(-0.616488\pi\)
0.987601 0.156988i \(-0.0501783\pi\)
\(614\) 0 0
\(615\) −14.4325 + 14.3668i −0.581973 + 0.579325i
\(616\) 0 0
\(617\) −11.1437 19.3014i −0.448627 0.777045i 0.549670 0.835382i \(-0.314754\pi\)
−0.998297 + 0.0583367i \(0.981420\pi\)
\(618\) 0 0
\(619\) 17.2943 + 29.9547i 0.695118 + 1.20398i 0.970141 + 0.242543i \(0.0779814\pi\)
−0.275022 + 0.961438i \(0.588685\pi\)
\(620\) 0 0
\(621\) −16.5784 + 4.32083i −0.665269 + 0.173389i
\(622\) 0 0
\(623\) 1.65384 + 2.46831i 0.0662599 + 0.0988909i
\(624\) 0 0
\(625\) 3.33422 5.77504i 0.133369 0.231002i
\(626\) 0 0
\(627\) −5.74308 21.6307i −0.229357 0.863846i
\(628\) 0 0
\(629\) 7.23631 0.288530
\(630\) 0 0
\(631\) 26.2933 1.04672 0.523360 0.852112i \(-0.324678\pi\)
0.523360 + 0.852112i \(0.324678\pi\)
\(632\) 0 0
\(633\) −18.6841 5.05209i −0.742627 0.200802i
\(634\) 0 0
\(635\) 17.4777 30.2723i 0.693582 1.20132i
\(636\) 0 0
\(637\) −20.1705 26.1480i −0.799185 1.03602i
\(638\) 0 0
\(639\) −0.0178157 + 3.90603i −0.000704779 + 0.154520i
\(640\) 0 0
\(641\) 16.2673 + 28.1758i 0.642519 + 1.11288i 0.984869 + 0.173303i \(0.0554441\pi\)
−0.342349 + 0.939573i \(0.611223\pi\)
\(642\) 0 0
\(643\) −5.21987 9.04107i −0.205851 0.356545i 0.744552 0.667564i \(-0.232663\pi\)
−0.950404 + 0.311019i \(0.899330\pi\)
\(644\) 0 0
\(645\) −0.524247 0.141754i −0.0206422 0.00558155i
\(646\) 0 0
\(647\) −0.685824 + 1.18788i −0.0269625 + 0.0467005i −0.879192 0.476468i \(-0.841917\pi\)
0.852229 + 0.523168i \(0.175250\pi\)
\(648\) 0 0
\(649\) −9.27699 16.0682i −0.364154 0.630733i
\(650\) 0 0
\(651\) 25.7617 29.3164i 1.00968 1.14900i
\(652\) 0 0
\(653\) 3.62567 6.27985i 0.141883 0.245749i −0.786322 0.617816i \(-0.788018\pi\)
0.928206 + 0.372067i \(0.121351\pi\)
\(654\) 0 0
\(655\) −30.3269 52.5277i −1.18497 2.05243i
\(656\) 0 0
\(657\) −34.4386 20.0931i −1.34358 0.783908i
\(658\) 0 0
\(659\) 13.3187 23.0686i 0.518822 0.898626i −0.480939 0.876754i \(-0.659704\pi\)
0.999761 0.0218722i \(-0.00696268\pi\)
\(660\) 0 0
\(661\) −34.8199 −1.35434 −0.677168 0.735828i \(-0.736793\pi\)
−0.677168 + 0.735828i \(0.736793\pi\)
\(662\) 0 0
\(663\) −7.37725 + 7.34367i −0.286508 + 0.285205i
\(664\) 0 0
\(665\) −51.8779 + 3.46689i −2.01174 + 0.134440i
\(666\) 0 0
\(667\) −14.2473 24.6770i −0.551657 0.955498i
\(668\) 0 0
\(669\) 1.18185 + 4.45132i 0.0456931 + 0.172098i
\(670\) 0 0
\(671\) −15.4970 26.8416i −0.598255 1.03621i
\(672\) 0 0
\(673\) 8.23841 14.2693i 0.317567 0.550043i −0.662412 0.749139i \(-0.730467\pi\)
0.979980 + 0.199096i \(0.0638007\pi\)
\(674\) 0 0
\(675\) 10.2858 37.3628i 0.395901 1.43810i
\(676\) 0 0
\(677\) −21.1654 −0.813450 −0.406725 0.913551i \(-0.633329\pi\)
−0.406725 + 0.913551i \(0.633329\pi\)
\(678\) 0 0
\(679\) −8.18916 + 16.6596i −0.314271 + 0.639339i
\(680\) 0 0
\(681\) −19.9231 5.38712i −0.763457 0.206435i
\(682\) 0 0
\(683\) −14.0756 + 24.3796i −0.538587 + 0.932859i 0.460394 + 0.887715i \(0.347708\pi\)
−0.998980 + 0.0451447i \(0.985625\pi\)
\(684\) 0 0
\(685\) 56.8049 2.17040
\(686\) 0 0
\(687\) 13.1620 + 49.5733i 0.502163 + 1.89134i
\(688\) 0 0
\(689\) −32.2515 −1.22869
\(690\) 0 0
\(691\) −19.0796 −0.725822 −0.362911 0.931824i \(-0.618217\pi\)
−0.362911 + 0.931824i \(0.618217\pi\)
\(692\) 0 0
\(693\) −15.3494 + 10.1834i −0.583074 + 0.386835i
\(694\) 0 0
\(695\) −7.84632 −0.297628
\(696\) 0 0
\(697\) −4.24341 −0.160731
\(698\) 0 0
\(699\) −6.16694 1.66751i −0.233255 0.0630710i
\(700\) 0 0
\(701\) 23.8508 0.900834 0.450417 0.892818i \(-0.351275\pi\)
0.450417 + 0.892818i \(0.351275\pi\)
\(702\) 0 0
\(703\) −15.8136 + 27.3900i −0.596422 + 1.03303i
\(704\) 0 0
\(705\) −11.0634 41.6690i −0.416671 1.56934i
\(706\) 0 0
\(707\) 14.3459 + 21.4108i 0.539532 + 0.805235i
\(708\) 0 0
\(709\) 20.0986 0.754817 0.377409 0.926047i \(-0.376815\pi\)
0.377409 + 0.926047i \(0.376815\pi\)
\(710\) 0 0
\(711\) 0.137215 30.0839i 0.00514596 1.12823i
\(712\) 0 0
\(713\) 14.0397 24.3175i 0.525792 0.910698i
\(714\) 0 0
\(715\) 19.3217 + 33.4662i 0.722592 + 1.25157i
\(716\) 0 0
\(717\) 26.8722 + 7.26610i 1.00356 + 0.271357i
\(718\) 0 0
\(719\) 3.29246 + 5.70270i 0.122788 + 0.212675i 0.920866 0.389879i \(-0.127483\pi\)
−0.798078 + 0.602554i \(0.794150\pi\)
\(720\) 0 0
\(721\) 12.0048 24.4220i 0.447082 0.909524i
\(722\) 0 0
\(723\) 7.52180 + 2.03386i 0.279739 + 0.0756399i
\(724\) 0 0
\(725\) 64.4542 2.39377
\(726\) 0 0
\(727\) −18.2342 + 31.5826i −0.676269 + 1.17133i 0.299827 + 0.953994i \(0.403071\pi\)
−0.976096 + 0.217339i \(0.930262\pi\)
\(728\) 0 0
\(729\) −0.369433 + 26.9975i −0.0136827 + 0.999906i
\(730\) 0 0
\(731\) −0.0565818 0.0980026i −0.00209276 0.00362476i
\(732\) 0 0
\(733\) −11.6824 + 20.2345i −0.431498 + 0.747377i −0.997003 0.0773684i \(-0.975348\pi\)
0.565504 + 0.824745i \(0.308682\pi\)
\(734\) 0 0
\(735\) 16.3875 + 39.5319i 0.604462 + 1.45816i
\(736\) 0 0
\(737\) 7.11077 + 12.3162i 0.261928 + 0.453673i
\(738\) 0 0
\(739\) −14.4596 + 25.0448i −0.531906 + 0.921288i 0.467400 + 0.884046i \(0.345191\pi\)
−0.999306 + 0.0372422i \(0.988143\pi\)
\(740\) 0 0
\(741\) −11.6748 43.9717i −0.428884 1.61534i
\(742\) 0 0
\(743\) −11.6794 20.2292i −0.428474 0.742139i 0.568264 0.822847i \(-0.307615\pi\)
−0.996738 + 0.0807074i \(0.974282\pi\)
\(744\) 0 0
\(745\) 12.2422 + 21.2042i 0.448521 + 0.776860i
\(746\) 0 0
\(747\) −30.5888 17.8470i −1.11919 0.652987i
\(748\) 0 0
\(749\) −8.01747 11.9658i −0.292952 0.437222i
\(750\) 0 0
\(751\) −0.856616 + 1.48370i −0.0312584 + 0.0541411i −0.881231 0.472685i \(-0.843285\pi\)
0.849973 + 0.526826i \(0.176618\pi\)
\(752\) 0 0
\(753\) −21.1990 + 21.1025i −0.772535 + 0.769019i
\(754\) 0 0
\(755\) 54.7675 1.99319
\(756\) 0 0
\(757\) 28.4587 1.03435 0.517175 0.855880i \(-0.326984\pi\)
0.517175 + 0.855880i \(0.326984\pi\)
\(758\) 0 0
\(759\) −9.39269 + 9.34995i −0.340933 + 0.339382i
\(760\) 0 0
\(761\) 17.0525 29.5358i 0.618154 1.07067i −0.371669 0.928365i \(-0.621214\pi\)
0.989822 0.142308i \(-0.0454524\pi\)
\(762\) 0 0
\(763\) 0.974346 1.98216i 0.0352737 0.0717592i
\(764\) 0 0
\(765\) 11.7124 6.69111i 0.423463 0.241918i
\(766\) 0 0
\(767\) −18.8587 32.6642i −0.680947 1.17943i
\(768\) 0 0
\(769\) 2.48467 + 4.30357i 0.0895995 + 0.155191i 0.907342 0.420394i \(-0.138108\pi\)
−0.817742 + 0.575584i \(0.804775\pi\)
\(770\) 0 0
\(771\) −2.14312 8.07183i −0.0771826 0.290700i
\(772\) 0 0
\(773\) −5.74814 + 9.95607i −0.206746 + 0.358095i −0.950688 0.310150i \(-0.899621\pi\)
0.743941 + 0.668245i \(0.232954\pi\)
\(774\) 0 0
\(775\) 31.7576 + 55.0058i 1.14077 + 1.97587i
\(776\) 0 0
\(777\) 25.5259 + 5.10400i 0.915737 + 0.183105i
\(778\) 0 0
\(779\) 9.27320 16.0617i 0.332247 0.575469i
\(780\) 0 0
\(781\) 1.51082 + 2.61682i 0.0540615 + 0.0936373i
\(782\) 0 0
\(783\) −43.4551 + 11.3257i −1.55296 + 0.404748i
\(784\) 0 0
\(785\) 1.41556 2.45182i 0.0505235 0.0875092i
\(786\) 0 0
\(787\) −48.6011 −1.73244 −0.866221 0.499661i \(-0.833458\pi\)
−0.866221 + 0.499661i \(0.833458\pi\)
\(788\) 0 0
\(789\) −46.9672 12.6997i −1.67208 0.452121i
\(790\) 0 0
\(791\) 16.0491 + 23.9527i 0.570639 + 0.851661i
\(792\) 0 0
\(793\) −31.5030 54.5647i −1.11870 1.93765i
\(794\) 0 0
\(795\) 40.3445 + 10.9089i 1.43087 + 0.386900i
\(796\) 0 0
\(797\) 16.8556 + 29.1947i 0.597056 + 1.03413i 0.993253 + 0.115965i \(0.0369962\pi\)
−0.396198 + 0.918165i \(0.629670\pi\)
\(798\) 0 0
\(799\) 4.49183 7.78007i 0.158909 0.275239i
\(800\) 0 0
\(801\) 2.92527 1.67116i 0.103359 0.0590476i
\(802\) 0 0
\(803\) −30.8438 −1.08846
\(804\) 0 0
\(805\) 17.1385 + 25.5788i 0.604054 + 0.901533i
\(806\) 0 0
\(807\) 11.0341 + 41.5587i 0.388418 + 1.46293i
\(808\) 0 0
\(809\) −7.93617 + 13.7459i −0.279021 + 0.483278i −0.971142 0.238503i \(-0.923343\pi\)
0.692121 + 0.721782i \(0.256677\pi\)
\(810\) 0 0
\(811\) −27.2524 −0.956963 −0.478481 0.878098i \(-0.658813\pi\)
−0.478481 + 0.878098i \(0.658813\pi\)
\(812\) 0 0
\(813\) −16.0403 4.33720i −0.562556 0.152112i
\(814\) 0 0
\(815\) −12.5300 −0.438907
\(816\) 0 0
\(817\) 0.494597 0.0173038
\(818\) 0 0
\(819\) −31.2028 + 20.7012i −1.09031 + 0.723360i
\(820\) 0 0
\(821\) 24.3389 0.849433 0.424717 0.905326i \(-0.360374\pi\)
0.424717 + 0.905326i \(0.360374\pi\)
\(822\) 0 0
\(823\) 11.5380 0.402188 0.201094 0.979572i \(-0.435550\pi\)
0.201094 + 0.979572i \(0.435550\pi\)
\(824\) 0 0
\(825\) −7.69289 28.9744i −0.267832 1.00876i
\(826\) 0 0
\(827\) 34.8582 1.21214 0.606069 0.795412i \(-0.292745\pi\)
0.606069 + 0.795412i \(0.292745\pi\)
\(828\) 0 0
\(829\) −7.64018 + 13.2332i −0.265354 + 0.459607i −0.967656 0.252272i \(-0.918822\pi\)
0.702302 + 0.711879i \(0.252156\pi\)
\(830\) 0 0
\(831\) 28.3209 + 7.65783i 0.982442 + 0.265647i
\(832\) 0 0
\(833\) −3.39140 + 8.24716i −0.117505 + 0.285747i
\(834\) 0 0
\(835\) −6.10711 −0.211345
\(836\) 0 0
\(837\) −31.0765 31.5047i −1.07416 1.08896i
\(838\) 0 0
\(839\) 8.39990 14.5490i 0.289997 0.502289i −0.683812 0.729658i \(-0.739679\pi\)
0.973809 + 0.227369i \(0.0730125\pi\)
\(840\) 0 0
\(841\) −22.8448 39.5684i −0.787753 1.36443i
\(842\) 0 0
\(843\) 10.1598 + 38.2659i 0.349923 + 1.31795i
\(844\) 0 0
\(845\) 16.3357 + 28.2943i 0.561967 + 0.973355i
\(846\) 0 0
\(847\) 6.55263 13.3304i 0.225151 0.458037i
\(848\) 0 0
\(849\) 10.2575 10.2109i 0.352038 0.350436i
\(850\) 0 0
\(851\) 18.7291 0.642024
\(852\) 0 0
\(853\) −11.4270 + 19.7921i −0.391253 + 0.677670i −0.992615 0.121306i \(-0.961292\pi\)
0.601362 + 0.798977i \(0.294625\pi\)
\(854\) 0 0
\(855\) −0.268897 + 58.9546i −0.00919607 + 2.01620i
\(856\) 0 0
\(857\) 17.5871 + 30.4618i 0.600765 + 1.04056i 0.992705 + 0.120565i \(0.0384706\pi\)
−0.391940 + 0.919991i \(0.628196\pi\)
\(858\) 0 0
\(859\) 5.28520 9.15424i 0.180329 0.312339i −0.761664 0.647973i \(-0.775617\pi\)
0.941993 + 0.335634i \(0.108950\pi\)
\(860\) 0 0
\(861\) −14.9685 2.99302i −0.510127 0.102002i
\(862\) 0 0
\(863\) 7.29326 + 12.6323i 0.248265 + 0.430008i 0.963045 0.269342i \(-0.0868061\pi\)
−0.714779 + 0.699350i \(0.753473\pi\)
\(864\) 0 0
\(865\) 3.94358 6.83048i 0.134086 0.232243i
\(866\) 0 0
\(867\) −25.7108 6.95206i −0.873184 0.236104i
\(868\) 0 0
\(869\) −11.6362 20.1545i −0.394731 0.683694i
\(870\) 0 0
\(871\) 14.4551 + 25.0369i 0.489791 + 0.848343i
\(872\) 0 0
\(873\) 18.1809 + 10.6076i 0.615329 + 0.359012i
\(874\) 0 0
\(875\) −22.9025 + 1.53053i −0.774247 + 0.0517413i
\(876\) 0 0
\(877\) −5.65914 + 9.80192i −0.191096 + 0.330987i −0.945614 0.325292i \(-0.894537\pi\)
0.754518 + 0.656279i \(0.227871\pi\)
\(878\) 0 0
\(879\) 7.22779 + 1.95436i 0.243787 + 0.0659188i
\(880\) 0 0
\(881\) −0.733220 −0.0247028 −0.0123514 0.999924i \(-0.503932\pi\)
−0.0123514 + 0.999924i \(0.503932\pi\)
\(882\) 0 0
\(883\) 14.1726 0.476944 0.238472 0.971149i \(-0.423353\pi\)
0.238472 + 0.971149i \(0.423353\pi\)
\(884\) 0 0
\(885\) 12.5424 + 47.2395i 0.421608 + 1.58794i
\(886\) 0 0
\(887\) −16.8162 + 29.1266i −0.564634 + 0.977975i 0.432449 + 0.901658i \(0.357649\pi\)
−0.997084 + 0.0763170i \(0.975684\pi\)
\(888\) 0 0
\(889\) 26.1440 1.74715i 0.876842 0.0585975i
\(890\) 0 0
\(891\) 10.2778 + 18.1828i 0.344321 + 0.609147i
\(892\) 0 0
\(893\) 19.6321 + 34.0038i 0.656964 + 1.13790i
\(894\) 0 0
\(895\) −1.23681 2.14221i −0.0413419 0.0716063i
\(896\) 0 0
\(897\) −19.0939 + 19.0070i −0.637525 + 0.634624i
\(898\) 0 0
\(899\) 36.8008 63.7408i 1.22737 2.12588i
\(900\) 0 0
\(901\) 4.35436 + 7.54198i 0.145065 + 0.251260i
\(902\) 0 0
\(903\) −0.130467 0.385611i −0.00434166 0.0128323i
\(904\) 0 0
\(905\) −34.6498 + 60.0152i −1.15180 + 1.99497i
\(906\) 0 0
\(907\) 4.79255 + 8.30094i 0.159134 + 0.275628i 0.934557 0.355814i \(-0.115796\pi\)
−0.775423 + 0.631443i \(0.782463\pi\)
\(908\) 0 0
\(909\) 25.3745 14.4961i 0.841620 0.480805i
\(910\) 0 0
\(911\) 9.37499 16.2380i 0.310607 0.537988i −0.667887 0.744263i \(-0.732801\pi\)
0.978494 + 0.206275i \(0.0661342\pi\)
\(912\) 0 0
\(913\) −27.3959 −0.906672
\(914\) 0 0
\(915\) 20.9518 + 78.9125i 0.692644 + 2.60877i
\(916\) 0 0
\(917\) 20.0568 40.8026i 0.662333 1.34742i
\(918\) 0 0
\(919\) −21.2895 36.8745i −0.702276 1.21638i −0.967666 0.252236i \(-0.918834\pi\)
0.265390 0.964141i \(-0.414499\pi\)
\(920\) 0 0
\(921\) −11.3288 + 11.2772i −0.373296 + 0.371597i
\(922\) 0 0
\(923\) 3.07126 + 5.31958i 0.101092 + 0.175096i
\(924\) 0 0
\(925\) −21.1824 + 36.6890i −0.696474 + 1.20633i
\(926\) 0 0
\(927\) −26.6521 15.5501i −0.875368 0.510732i
\(928\) 0 0
\(929\) 38.1524 1.25174 0.625869 0.779928i \(-0.284744\pi\)
0.625869 + 0.779928i \(0.284744\pi\)
\(930\) 0 0
\(931\) −23.8049 30.8594i −0.780173 1.01137i
\(932\) 0 0
\(933\) −23.4549 + 23.3481i −0.767878 + 0.764383i
\(934\) 0 0
\(935\) 5.21736 9.03673i 0.170626 0.295533i
\(936\) 0 0
\(937\) 6.48960 0.212006 0.106003 0.994366i \(-0.466195\pi\)
0.106003 + 0.994366i \(0.466195\pi\)
\(938\) 0 0
\(939\) −6.97120 + 6.93948i −0.227497 + 0.226461i
\(940\) 0 0
\(941\) −0.466471 −0.0152065 −0.00760326 0.999971i \(-0.502420\pi\)
−0.00760326 + 0.999971i \(0.502420\pi\)
\(942\) 0 0
\(943\) −10.9828 −0.357650
\(944\) 0 0
\(945\) 46.0347 15.3416i 1.49751 0.499063i
\(946\) 0 0
\(947\) 15.1115 0.491058 0.245529 0.969389i \(-0.421038\pi\)
0.245529 + 0.969389i \(0.421038\pi\)
\(948\) 0 0
\(949\) −62.7006 −2.03535
\(950\) 0 0
\(951\) 34.7001 34.5422i 1.12523 1.12011i
\(952\) 0 0
\(953\) 19.6802 0.637503 0.318751 0.947838i \(-0.396736\pi\)
0.318751 + 0.947838i \(0.396736\pi\)
\(954\) 0 0
\(955\) −28.3881 + 49.1696i −0.918616 + 1.59109i
\(956\) 0 0
\(957\) −24.6200 + 24.5080i −0.795852 + 0.792231i
\(958\) 0 0
\(959\) 23.7017 + 35.3741i 0.765368 + 1.14229i
\(960\) 0 0
\(961\) 41.5293 1.33966
\(962\) 0 0
\(963\) −14.1811 + 8.10142i −0.456978 + 0.261065i
\(964\) 0 0
\(965\) −1.03322 + 1.78959i −0.0332606 + 0.0576090i
\(966\) 0 0
\(967\) −8.83228 15.2980i −0.284027 0.491949i 0.688346 0.725383i \(-0.258337\pi\)
−0.972373 + 0.233433i \(0.925004\pi\)
\(968\) 0 0
\(969\) −8.70649 + 8.66687i −0.279693 + 0.278420i
\(970\) 0 0
\(971\) 11.7523 + 20.3555i 0.377148 + 0.653240i 0.990646 0.136456i \(-0.0435713\pi\)
−0.613498 + 0.789697i \(0.710238\pi\)
\(972\) 0 0
\(973\) −3.27386 4.88614i −0.104955 0.156642i
\(974\) 0 0
\(975\) −15.6384 58.9003i −0.500830 1.88632i
\(976\) 0 0
\(977\) −5.43379 −0.173842 −0.0869211 0.996215i \(-0.527703\pi\)
−0.0869211 + 0.996215i \(0.527703\pi\)
\(978\) 0 0
\(979\) 1.30308 2.25700i 0.0416466 0.0721341i
\(980\) 0 0
\(981\) −2.16316 1.26209i −0.0690644 0.0402955i
\(982\) 0 0
\(983\) −1.05345 1.82463i −0.0335998 0.0581966i 0.848736 0.528816i \(-0.177364\pi\)
−0.882336 + 0.470619i \(0.844031\pi\)
\(984\) 0 0
\(985\) −30.5174 + 52.8577i −0.972366 + 1.68419i
\(986\) 0 0
\(987\) 21.3324 24.2758i 0.679017 0.772707i
\(988\) 0 0
\(989\) −0.146446 0.253651i −0.00465670 0.00806564i
\(990\) 0 0
\(991\) −8.91172 + 15.4356i −0.283090 + 0.490327i −0.972144 0.234383i \(-0.924693\pi\)
0.689054 + 0.724710i \(0.258026\pi\)
\(992\) 0 0
\(993\) −8.20105 + 8.16373i −0.260252 + 0.259068i
\(994\) 0 0
\(995\) −43.1031 74.6567i −1.36646 2.36678i
\(996\) 0 0
\(997\) 18.2477 + 31.6060i 0.577911 + 1.00097i 0.995719 + 0.0924360i \(0.0294653\pi\)
−0.417807 + 0.908536i \(0.637201\pi\)
\(998\) 0 0
\(999\) 7.83434 28.4579i 0.247867 0.900369i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.k.529.4 22
3.2 odd 2 3024.2.q.k.2881.1 22
4.3 odd 2 504.2.q.d.25.8 22
7.2 even 3 1008.2.t.k.961.5 22
9.4 even 3 1008.2.t.k.193.5 22
9.5 odd 6 3024.2.t.l.1873.11 22
12.11 even 2 1512.2.q.c.1369.1 22
21.2 odd 6 3024.2.t.l.289.11 22
28.23 odd 6 504.2.t.d.457.7 yes 22
36.23 even 6 1512.2.t.d.361.11 22
36.31 odd 6 504.2.t.d.193.7 yes 22
63.23 odd 6 3024.2.q.k.2305.1 22
63.58 even 3 inner 1008.2.q.k.625.4 22
84.23 even 6 1512.2.t.d.289.11 22
252.23 even 6 1512.2.q.c.793.1 22
252.247 odd 6 504.2.q.d.121.8 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.8 22 4.3 odd 2
504.2.q.d.121.8 yes 22 252.247 odd 6
504.2.t.d.193.7 yes 22 36.31 odd 6
504.2.t.d.457.7 yes 22 28.23 odd 6
1008.2.q.k.529.4 22 1.1 even 1 trivial
1008.2.q.k.625.4 22 63.58 even 3 inner
1008.2.t.k.193.5 22 9.4 even 3
1008.2.t.k.961.5 22 7.2 even 3
1512.2.q.c.793.1 22 252.23 even 6
1512.2.q.c.1369.1 22 12.11 even 2
1512.2.t.d.289.11 22 84.23 even 6
1512.2.t.d.361.11 22 36.23 even 6
3024.2.q.k.2305.1 22 63.23 odd 6
3024.2.q.k.2881.1 22 3.2 odd 2
3024.2.t.l.289.11 22 21.2 odd 6
3024.2.t.l.1873.11 22 9.5 odd 6