Properties

Label 1512.2.q.c.793.1
Level $1512$
Weight $2$
Character 1512.793
Analytic conductor $12.073$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,2,Mod(793,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.793");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 793.1
Character \(\chi\) \(=\) 1512.793
Dual form 1512.2.q.c.1369.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.76479 - 3.05671i) q^{5} +(-2.63986 - 0.176417i) q^{7} +O(q^{10})\) \(q+(-1.76479 - 3.05671i) q^{5} +(-2.63986 - 0.176417i) q^{7} +(-1.16036 + 2.00981i) q^{11} +(-2.35884 + 4.08563i) q^{13} +(0.636946 + 1.10322i) q^{17} +(2.78386 - 4.82178i) q^{19} +(-1.64855 - 2.85537i) q^{23} +(-3.72899 + 6.45880i) q^{25} +(4.32116 + 7.48447i) q^{29} +8.51642 q^{31} +(4.11956 + 8.38064i) q^{35} +(-2.84024 + 4.91943i) q^{37} +(-1.66553 + 2.88478i) q^{41} +(0.0444165 + 0.0769317i) q^{43} -7.05213 q^{47} +(6.93775 + 0.931432i) q^{49} +(-3.41816 - 5.92042i) q^{53} +8.19121 q^{55} +7.99490 q^{59} +13.3553 q^{61} +16.6514 q^{65} +6.12804 q^{67} -1.30202 q^{71} +(6.64529 + 11.5100i) q^{73} +(3.41777 - 5.10092i) q^{77} -10.0281 q^{79} +(5.90243 + 10.2233i) q^{83} +(2.24815 - 3.89392i) q^{85} +(-0.561496 + 0.972540i) q^{89} +(6.94778 - 10.3694i) q^{91} -19.6517 q^{95} +(-3.50818 - 6.07635i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 3 q^{5} - 5 q^{7} + 3 q^{11} - 3 q^{13} - 7 q^{17} - q^{19} - 2 q^{23} - 10 q^{25} - 9 q^{29} + 8 q^{31} - 14 q^{35} + 2 q^{37} - 16 q^{41} + 10 q^{47} + 15 q^{49} - 11 q^{53} + 22 q^{55} - 38 q^{59} + 26 q^{61} + 26 q^{65} - 52 q^{67} + 48 q^{71} - 35 q^{73} - 17 q^{77} - 20 q^{79} + 28 q^{83} - 20 q^{85} - 6 q^{89} - 37 q^{91} + 24 q^{95} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.76479 3.05671i −0.789239 1.36700i −0.926433 0.376459i \(-0.877142\pi\)
0.137194 0.990544i \(-0.456192\pi\)
\(6\) 0 0
\(7\) −2.63986 0.176417i −0.997774 0.0666792i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.16036 + 2.00981i −0.349863 + 0.605981i −0.986225 0.165410i \(-0.947105\pi\)
0.636362 + 0.771391i \(0.280439\pi\)
\(12\) 0 0
\(13\) −2.35884 + 4.08563i −0.654224 + 1.13315i 0.327864 + 0.944725i \(0.393671\pi\)
−0.982088 + 0.188424i \(0.939662\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.636946 + 1.10322i 0.154482 + 0.267571i 0.932870 0.360212i \(-0.117296\pi\)
−0.778388 + 0.627783i \(0.783962\pi\)
\(18\) 0 0
\(19\) 2.78386 4.82178i 0.638661 1.10619i −0.347066 0.937841i \(-0.612822\pi\)
0.985727 0.168352i \(-0.0538445\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.64855 2.85537i −0.343746 0.595386i 0.641379 0.767224i \(-0.278363\pi\)
−0.985125 + 0.171838i \(0.945029\pi\)
\(24\) 0 0
\(25\) −3.72899 + 6.45880i −0.745798 + 1.29176i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.32116 + 7.48447i 0.802419 + 1.38983i 0.918020 + 0.396535i \(0.129787\pi\)
−0.115601 + 0.993296i \(0.536879\pi\)
\(30\) 0 0
\(31\) 8.51642 1.52959 0.764797 0.644272i \(-0.222839\pi\)
0.764797 + 0.644272i \(0.222839\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.11956 + 8.38064i 0.696332 + 1.41659i
\(36\) 0 0
\(37\) −2.84024 + 4.91943i −0.466932 + 0.808750i −0.999286 0.0377716i \(-0.987974\pi\)
0.532354 + 0.846522i \(0.321307\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.66553 + 2.88478i −0.260112 + 0.450528i −0.966272 0.257525i \(-0.917093\pi\)
0.706159 + 0.708053i \(0.250426\pi\)
\(42\) 0 0
\(43\) 0.0444165 + 0.0769317i 0.00677346 + 0.0117320i 0.869392 0.494123i \(-0.164511\pi\)
−0.862619 + 0.505855i \(0.831177\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.05213 −1.02866 −0.514330 0.857593i \(-0.671959\pi\)
−0.514330 + 0.857593i \(0.671959\pi\)
\(48\) 0 0
\(49\) 6.93775 + 0.931432i 0.991108 + 0.133062i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.41816 5.92042i −0.469520 0.813233i 0.529873 0.848077i \(-0.322240\pi\)
−0.999393 + 0.0348444i \(0.988906\pi\)
\(54\) 0 0
\(55\) 8.19121 1.10450
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.99490 1.04085 0.520423 0.853908i \(-0.325774\pi\)
0.520423 + 0.853908i \(0.325774\pi\)
\(60\) 0 0
\(61\) 13.3553 1.70997 0.854985 0.518653i \(-0.173566\pi\)
0.854985 + 0.518653i \(0.173566\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.6514 2.06536
\(66\) 0 0
\(67\) 6.12804 0.748660 0.374330 0.927296i \(-0.377873\pi\)
0.374330 + 0.927296i \(0.377873\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.30202 −0.154522 −0.0772609 0.997011i \(-0.524617\pi\)
−0.0772609 + 0.997011i \(0.524617\pi\)
\(72\) 0 0
\(73\) 6.64529 + 11.5100i 0.777772 + 1.34714i 0.933223 + 0.359297i \(0.116984\pi\)
−0.155451 + 0.987844i \(0.549683\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41777 5.10092i 0.389491 0.581303i
\(78\) 0 0
\(79\) −10.0281 −1.12824 −0.564122 0.825691i \(-0.690785\pi\)
−0.564122 + 0.825691i \(0.690785\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.90243 + 10.2233i 0.647876 + 1.12215i 0.983629 + 0.180204i \(0.0576758\pi\)
−0.335753 + 0.941950i \(0.608991\pi\)
\(84\) 0 0
\(85\) 2.24815 3.89392i 0.243847 0.422355i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.561496 + 0.972540i −0.0595185 + 0.103089i −0.894249 0.447569i \(-0.852290\pi\)
0.834731 + 0.550658i \(0.185623\pi\)
\(90\) 0 0
\(91\) 6.94778 10.3694i 0.728325 1.08700i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −19.6517 −2.01622
\(96\) 0 0
\(97\) −3.50818 6.07635i −0.356202 0.616960i 0.631121 0.775685i \(-0.282595\pi\)
−0.987323 + 0.158724i \(0.949262\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.87055 + 8.43605i −0.484638 + 0.839418i −0.999844 0.0176482i \(-0.994382\pi\)
0.515206 + 0.857066i \(0.327715\pi\)
\(102\) 0 0
\(103\) −5.14279 8.90757i −0.506734 0.877689i −0.999970 0.00779301i \(-0.997519\pi\)
0.493236 0.869896i \(-0.335814\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.72201 + 4.71465i −0.263146 + 0.455783i −0.967076 0.254487i \(-0.918094\pi\)
0.703930 + 0.710269i \(0.251427\pi\)
\(108\) 0 0
\(109\) 0.417404 + 0.722965i 0.0399800 + 0.0692475i 0.885323 0.464977i \(-0.153937\pi\)
−0.845343 + 0.534224i \(0.820604\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.44881 + 9.43761i −0.512581 + 0.887815i 0.487313 + 0.873227i \(0.337977\pi\)
−0.999894 + 0.0145882i \(0.995356\pi\)
\(114\) 0 0
\(115\) −5.81870 + 10.0783i −0.542596 + 0.939804i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.48682 3.02472i −0.136297 0.277276i
\(120\) 0 0
\(121\) 2.80711 + 4.86205i 0.255192 + 0.442005i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.67565 0.775974
\(126\) 0 0
\(127\) −9.90354 −0.878797 −0.439399 0.898292i \(-0.644808\pi\)
−0.439399 + 0.898292i \(0.644808\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.59220 + 14.8821i 0.750704 + 1.30026i 0.947482 + 0.319809i \(0.103619\pi\)
−0.196778 + 0.980448i \(0.563048\pi\)
\(132\) 0 0
\(133\) −8.19964 + 12.2377i −0.710999 + 1.06115i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.04696 + 13.9377i −0.687498 + 1.19078i 0.285147 + 0.958484i \(0.407958\pi\)
−0.972645 + 0.232298i \(0.925376\pi\)
\(138\) 0 0
\(139\) 1.11151 1.92519i 0.0942768 0.163292i −0.815030 0.579419i \(-0.803279\pi\)
0.909307 + 0.416127i \(0.136613\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.47422 9.48163i −0.457778 0.792894i
\(144\) 0 0
\(145\) 15.2519 26.4171i 1.26660 2.19382i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.46846 + 6.00755i 0.284147 + 0.492158i 0.972402 0.233312i \(-0.0749562\pi\)
−0.688255 + 0.725469i \(0.741623\pi\)
\(150\) 0 0
\(151\) −7.75834 + 13.4378i −0.631365 + 1.09356i 0.355908 + 0.934521i \(0.384172\pi\)
−0.987273 + 0.159035i \(0.949162\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.0297 26.0322i −1.20722 2.09096i
\(156\) 0 0
\(157\) 0.802110 0.0640154 0.0320077 0.999488i \(-0.489810\pi\)
0.0320077 + 0.999488i \(0.489810\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.84821 + 7.82862i 0.303281 + 0.616982i
\(162\) 0 0
\(163\) 1.77500 3.07438i 0.139028 0.240804i −0.788101 0.615546i \(-0.788935\pi\)
0.927129 + 0.374742i \(0.122269\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.865131 + 1.49845i −0.0669459 + 0.115954i −0.897556 0.440901i \(-0.854659\pi\)
0.830610 + 0.556855i \(0.187992\pi\)
\(168\) 0 0
\(169\) −4.62823 8.01633i −0.356018 0.616641i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.23458 −0.169892 −0.0849462 0.996386i \(-0.527072\pi\)
−0.0849462 + 0.996386i \(0.527072\pi\)
\(174\) 0 0
\(175\) 10.9835 16.3925i 0.830272 1.23916i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.350412 + 0.606931i 0.0261910 + 0.0453641i 0.878824 0.477146i \(-0.158329\pi\)
−0.852633 + 0.522511i \(0.824996\pi\)
\(180\) 0 0
\(181\) −19.6339 −1.45938 −0.729688 0.683780i \(-0.760335\pi\)
−0.729688 + 0.683780i \(0.760335\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.0497 1.47408
\(186\) 0 0
\(187\) −2.95636 −0.216190
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0858 −1.16393 −0.581963 0.813215i \(-0.697715\pi\)
−0.581963 + 0.813215i \(0.697715\pi\)
\(192\) 0 0
\(193\) −0.585463 −0.0421426 −0.0210713 0.999778i \(-0.506708\pi\)
−0.0210713 + 0.999778i \(0.506708\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.2923 1.23203 0.616014 0.787735i \(-0.288746\pi\)
0.616014 + 0.787735i \(0.288746\pi\)
\(198\) 0 0
\(199\) −12.2119 21.1517i −0.865681 1.49940i −0.866369 0.499404i \(-0.833552\pi\)
0.000687656 1.00000i \(-0.499781\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.0869 20.5203i −0.707960 1.44024i
\(204\) 0 0
\(205\) 11.7573 0.821164
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.46058 + 11.1900i 0.446888 + 0.774032i
\(210\) 0 0
\(211\) −5.58733 + 9.67754i −0.384648 + 0.666230i −0.991720 0.128417i \(-0.959010\pi\)
0.607072 + 0.794647i \(0.292344\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.156772 0.271537i 0.0106918 0.0185187i
\(216\) 0 0
\(217\) −22.4822 1.50244i −1.52619 0.101992i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00981 −0.404263
\(222\) 0 0
\(223\) −1.32951 2.30277i −0.0890303 0.154205i 0.818071 0.575117i \(-0.195043\pi\)
−0.907101 + 0.420912i \(0.861710\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.95786 10.3193i 0.395437 0.684917i −0.597720 0.801705i \(-0.703927\pi\)
0.993157 + 0.116788i \(0.0372598\pi\)
\(228\) 0 0
\(229\) 14.8064 + 25.6454i 0.978434 + 1.69470i 0.668104 + 0.744068i \(0.267106\pi\)
0.310330 + 0.950629i \(0.399561\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.84417 + 3.19420i −0.120816 + 0.209259i −0.920090 0.391708i \(-0.871884\pi\)
0.799274 + 0.600967i \(0.205218\pi\)
\(234\) 0 0
\(235\) 12.4456 + 21.5563i 0.811859 + 1.40618i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.03590 + 13.9186i −0.519799 + 0.900319i 0.479936 + 0.877304i \(0.340660\pi\)
−0.999735 + 0.0230153i \(0.992673\pi\)
\(240\) 0 0
\(241\) −2.24933 + 3.89596i −0.144892 + 0.250961i −0.929333 0.369243i \(-0.879617\pi\)
0.784440 + 0.620204i \(0.212950\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.39658 22.8505i −0.600326 1.45986i
\(246\) 0 0
\(247\) 13.1333 + 22.7476i 0.835654 + 1.44740i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.2696 1.09005 0.545023 0.838421i \(-0.316521\pi\)
0.545023 + 0.838421i \(0.316521\pi\)
\(252\) 0 0
\(253\) 7.65167 0.481057
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.41087 + 4.17574i 0.150386 + 0.260476i 0.931369 0.364076i \(-0.118615\pi\)
−0.780984 + 0.624552i \(0.785282\pi\)
\(258\) 0 0
\(259\) 8.36571 12.4856i 0.519820 0.775815i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.0452 24.3270i 0.866062 1.50006i 7.41948e−5 1.00000i \(-0.499976\pi\)
0.865988 0.500064i \(-0.166690\pi\)
\(264\) 0 0
\(265\) −12.0647 + 20.8966i −0.741128 + 1.28367i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.4126 21.4993i −0.756810 1.31083i −0.944469 0.328599i \(-0.893423\pi\)
0.187659 0.982234i \(-0.439910\pi\)
\(270\) 0 0
\(271\) −4.79671 + 8.30815i −0.291379 + 0.504684i −0.974136 0.225962i \(-0.927448\pi\)
0.682757 + 0.730646i \(0.260781\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.65398 14.9891i −0.521854 0.903878i
\(276\) 0 0
\(277\) −8.46914 + 14.6690i −0.508862 + 0.881374i 0.491086 + 0.871111i \(0.336600\pi\)
−0.999947 + 0.0102629i \(0.996733\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.4291 19.7958i −0.681805 1.18092i −0.974430 0.224693i \(-0.927862\pi\)
0.292625 0.956227i \(-0.405471\pi\)
\(282\) 0 0
\(283\) 8.35621 0.496725 0.248363 0.968667i \(-0.420108\pi\)
0.248363 + 0.968667i \(0.420108\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.90570 7.32161i 0.289574 0.432181i
\(288\) 0 0
\(289\) 7.68860 13.3170i 0.452271 0.783356i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.16141 3.74368i 0.126271 0.218708i −0.795958 0.605352i \(-0.793032\pi\)
0.922229 + 0.386644i \(0.126366\pi\)
\(294\) 0 0
\(295\) −14.1093 24.4381i −0.821477 1.42284i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.5546 0.899548
\(300\) 0 0
\(301\) −0.103682 0.210925i −0.00597610 0.0121575i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −23.5693 40.8233i −1.34958 2.33753i
\(306\) 0 0
\(307\) −9.22888 −0.526720 −0.263360 0.964698i \(-0.584831\pi\)
−0.263360 + 0.964698i \(0.584831\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.1073 1.08348 0.541738 0.840548i \(-0.317767\pi\)
0.541738 + 0.840548i \(0.317767\pi\)
\(312\) 0 0
\(313\) 5.67903 0.320997 0.160499 0.987036i \(-0.448690\pi\)
0.160499 + 0.987036i \(0.448690\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.2681 1.58770 0.793848 0.608116i \(-0.208075\pi\)
0.793848 + 0.608116i \(0.208075\pi\)
\(318\) 0 0
\(319\) −20.0565 −1.12295
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.09266 0.394646
\(324\) 0 0
\(325\) −17.5922 30.4705i −0.975838 1.69020i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.6167 + 1.24411i 1.02637 + 0.0685902i
\(330\) 0 0
\(331\) −6.68091 −0.367216 −0.183608 0.983000i \(-0.558778\pi\)
−0.183608 + 0.983000i \(0.558778\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.8147 18.7317i −0.590872 1.02342i
\(336\) 0 0
\(337\) −3.49421 + 6.05215i −0.190342 + 0.329681i −0.945363 0.326018i \(-0.894293\pi\)
0.755022 + 0.655700i \(0.227626\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.88215 + 17.1164i −0.535148 + 0.926904i
\(342\) 0 0
\(343\) −18.1504 3.68279i −0.980030 0.198852i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.28821 −0.444934 −0.222467 0.974940i \(-0.571411\pi\)
−0.222467 + 0.974940i \(0.571411\pi\)
\(348\) 0 0
\(349\) 3.05373 + 5.28921i 0.163462 + 0.283125i 0.936108 0.351712i \(-0.114400\pi\)
−0.772646 + 0.634837i \(0.781067\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.3604 + 23.1409i −0.711104 + 1.23167i 0.253340 + 0.967377i \(0.418471\pi\)
−0.964443 + 0.264290i \(0.914862\pi\)
\(354\) 0 0
\(355\) 2.29780 + 3.97991i 0.121955 + 0.211232i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.45603 + 4.25397i −0.129624 + 0.224516i −0.923531 0.383523i \(-0.874711\pi\)
0.793907 + 0.608040i \(0.208044\pi\)
\(360\) 0 0
\(361\) −5.99972 10.3918i −0.315775 0.546938i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.4551 40.6255i 1.22770 2.12643i
\(366\) 0 0
\(367\) 15.3532 26.5925i 0.801430 1.38812i −0.117245 0.993103i \(-0.537406\pi\)
0.918675 0.395015i \(-0.129260\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.97901 + 16.2321i 0.414250 + 0.842730i
\(372\) 0 0
\(373\) −8.29190 14.3620i −0.429338 0.743635i 0.567477 0.823390i \(-0.307920\pi\)
−0.996815 + 0.0797543i \(0.974586\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −40.7716 −2.09985
\(378\) 0 0
\(379\) 4.08857 0.210016 0.105008 0.994471i \(-0.466513\pi\)
0.105008 + 0.994471i \(0.466513\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.1769 + 26.2871i 0.775503 + 1.34321i 0.934511 + 0.355933i \(0.115837\pi\)
−0.159009 + 0.987277i \(0.550830\pi\)
\(384\) 0 0
\(385\) −21.6237 1.44507i −1.10205 0.0736474i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.73382 + 3.00307i −0.0879082 + 0.152261i −0.906627 0.421934i \(-0.861352\pi\)
0.818719 + 0.574195i \(0.194685\pi\)
\(390\) 0 0
\(391\) 2.10007 3.63743i 0.106205 0.183953i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.6974 + 30.6529i 0.890455 + 1.54231i
\(396\) 0 0
\(397\) −7.04243 + 12.1979i −0.353450 + 0.612193i −0.986851 0.161630i \(-0.948325\pi\)
0.633402 + 0.773823i \(0.281658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.46593 9.46726i −0.272955 0.472772i 0.696662 0.717400i \(-0.254668\pi\)
−0.969617 + 0.244627i \(0.921334\pi\)
\(402\) 0 0
\(403\) −20.0888 + 34.7949i −1.00070 + 1.73326i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.59142 11.4167i −0.326725 0.565904i
\(408\) 0 0
\(409\) 15.9879 0.790553 0.395276 0.918562i \(-0.370649\pi\)
0.395276 + 0.918562i \(0.370649\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.1054 1.41043i −1.03853 0.0694029i
\(414\) 0 0
\(415\) 20.8331 36.0841i 1.02266 1.77130i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.56197 6.16951i 0.174014 0.301400i −0.765806 0.643072i \(-0.777660\pi\)
0.939819 + 0.341671i \(0.110993\pi\)
\(420\) 0 0
\(421\) −16.6326 28.8086i −0.810625 1.40404i −0.912427 0.409239i \(-0.865794\pi\)
0.101802 0.994805i \(-0.467539\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.50066 −0.460849
\(426\) 0 0
\(427\) −35.2561 2.35610i −1.70616 0.114019i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.62382 + 4.54459i 0.126385 + 0.218905i 0.922273 0.386538i \(-0.126329\pi\)
−0.795889 + 0.605443i \(0.792996\pi\)
\(432\) 0 0
\(433\) 22.1053 1.06231 0.531156 0.847274i \(-0.321758\pi\)
0.531156 + 0.847274i \(0.321758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.3573 −0.878149
\(438\) 0 0
\(439\) 34.6165 1.65216 0.826079 0.563555i \(-0.190567\pi\)
0.826079 + 0.563555i \(0.190567\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.40923 0.209489 0.104744 0.994499i \(-0.466598\pi\)
0.104744 + 0.994499i \(0.466598\pi\)
\(444\) 0 0
\(445\) 3.96370 0.187897
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.6336 0.926568 0.463284 0.886210i \(-0.346671\pi\)
0.463284 + 0.886210i \(0.346671\pi\)
\(450\) 0 0
\(451\) −3.86525 6.69481i −0.182007 0.315246i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −43.9575 2.93759i −2.06076 0.137716i
\(456\) 0 0
\(457\) −30.8392 −1.44259 −0.721297 0.692626i \(-0.756454\pi\)
−0.721297 + 0.692626i \(0.756454\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.6297 + 23.6074i 0.634800 + 1.09951i 0.986557 + 0.163415i \(0.0522510\pi\)
−0.351757 + 0.936091i \(0.614416\pi\)
\(462\) 0 0
\(463\) −0.959750 + 1.66234i −0.0446034 + 0.0772553i −0.887465 0.460875i \(-0.847536\pi\)
0.842862 + 0.538130i \(0.180869\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.88655 + 8.46376i −0.226123 + 0.391656i −0.956656 0.291221i \(-0.905938\pi\)
0.730533 + 0.682877i \(0.239272\pi\)
\(468\) 0 0
\(469\) −16.1772 1.08109i −0.746994 0.0499201i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.206158 −0.00947913
\(474\) 0 0
\(475\) 20.7619 + 35.9607i 0.952623 + 1.64999i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.68809 13.3162i 0.351278 0.608431i −0.635196 0.772351i \(-0.719081\pi\)
0.986474 + 0.163920i \(0.0524139\pi\)
\(480\) 0 0
\(481\) −13.3993 23.2083i −0.610956 1.05821i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.3824 + 21.4470i −0.562258 + 0.973859i
\(486\) 0 0
\(487\) 5.18342 + 8.97794i 0.234883 + 0.406829i 0.959239 0.282597i \(-0.0911959\pi\)
−0.724356 + 0.689427i \(0.757863\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.94718 12.0329i 0.313522 0.543035i −0.665600 0.746308i \(-0.731825\pi\)
0.979122 + 0.203273i \(0.0651578\pi\)
\(492\) 0 0
\(493\) −5.50469 + 9.53440i −0.247919 + 0.429408i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.43717 + 0.229699i 0.154178 + 0.0103034i
\(498\) 0 0
\(499\) 1.70488 + 2.95294i 0.0763210 + 0.132192i 0.901660 0.432446i \(-0.142349\pi\)
−0.825339 + 0.564638i \(0.809016\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −43.8911 −1.95701 −0.978504 0.206227i \(-0.933881\pi\)
−0.978504 + 0.206227i \(0.933881\pi\)
\(504\) 0 0
\(505\) 34.3821 1.52998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.6674 + 34.0649i 0.871742 + 1.50990i 0.860193 + 0.509968i \(0.170343\pi\)
0.0115483 + 0.999933i \(0.496324\pi\)
\(510\) 0 0
\(511\) −15.5121 31.5571i −0.686215 1.39600i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.1519 + 31.4400i −0.799869 + 1.38541i
\(516\) 0 0
\(517\) 8.18305 14.1735i 0.359890 0.623348i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.4779 21.6124i −0.546669 0.946858i −0.998500 0.0547547i \(-0.982562\pi\)
0.451831 0.892104i \(-0.350771\pi\)
\(522\) 0 0
\(523\) −15.1575 + 26.2536i −0.662792 + 1.14799i 0.317086 + 0.948397i \(0.397296\pi\)
−0.979879 + 0.199594i \(0.936038\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.42449 + 9.39550i 0.236295 + 0.409274i
\(528\) 0 0
\(529\) 6.06457 10.5041i 0.263677 0.456702i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.85744 13.6095i −0.340343 0.589492i
\(534\) 0 0
\(535\) 19.2151 0.830742
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.92233 + 12.8628i −0.427385 + 0.554039i
\(540\) 0 0
\(541\) −14.2812 + 24.7357i −0.613996 + 1.06347i 0.376563 + 0.926391i \(0.377106\pi\)
−0.990560 + 0.137082i \(0.956228\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.47326 2.55177i 0.0631077 0.109306i
\(546\) 0 0
\(547\) 3.89233 + 6.74171i 0.166424 + 0.288255i 0.937160 0.348900i \(-0.113445\pi\)
−0.770736 + 0.637154i \(0.780111\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 48.1179 2.04989
\(552\) 0 0
\(553\) 26.4727 + 1.76912i 1.12573 + 0.0752305i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.2470 + 40.2650i 0.985008 + 1.70608i 0.641900 + 0.766788i \(0.278146\pi\)
0.343108 + 0.939296i \(0.388520\pi\)
\(558\) 0 0
\(559\) −0.419086 −0.0177254
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.9826 −1.17933 −0.589663 0.807650i \(-0.700739\pi\)
−0.589663 + 0.807650i \(0.700739\pi\)
\(564\) 0 0
\(565\) 38.4641 1.61820
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.89957 −0.373090 −0.186545 0.982446i \(-0.559729\pi\)
−0.186545 + 0.982446i \(0.559729\pi\)
\(570\) 0 0
\(571\) −32.3304 −1.35298 −0.676492 0.736450i \(-0.736500\pi\)
−0.676492 + 0.736450i \(0.736500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.5897 1.02546
\(576\) 0 0
\(577\) −16.8414 29.1701i −0.701115 1.21437i −0.968075 0.250659i \(-0.919353\pi\)
0.266960 0.963707i \(-0.413981\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.7780 28.0294i −0.571610 1.16286i
\(582\) 0 0
\(583\) 15.8652 0.657071
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.24076 + 2.14907i 0.0512118 + 0.0887015i 0.890495 0.454993i \(-0.150358\pi\)
−0.839283 + 0.543695i \(0.817025\pi\)
\(588\) 0 0
\(589\) 23.7085 41.0643i 0.976891 1.69202i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.0903 26.1371i 0.619684 1.07332i −0.369859 0.929088i \(-0.620594\pi\)
0.989543 0.144236i \(-0.0460725\pi\)
\(594\) 0 0
\(595\) −6.62177 + 9.88280i −0.271466 + 0.405155i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.4083 0.670424 0.335212 0.942143i \(-0.391192\pi\)
0.335212 + 0.942143i \(0.391192\pi\)
\(600\) 0 0
\(601\) −2.96998 5.14416i −0.121148 0.209835i 0.799073 0.601235i \(-0.205324\pi\)
−0.920221 + 0.391400i \(0.871991\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.90793 17.1610i 0.402815 0.697695i
\(606\) 0 0
\(607\) 2.97573 + 5.15412i 0.120781 + 0.209199i 0.920076 0.391740i \(-0.128127\pi\)
−0.799295 + 0.600939i \(0.794793\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.6348 28.8124i 0.672974 1.16562i
\(612\) 0 0
\(613\) 15.5920 + 27.0062i 0.629756 + 1.09077i 0.987601 + 0.156988i \(0.0501783\pi\)
−0.357845 + 0.933781i \(0.616488\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.1437 19.3014i 0.448627 0.777045i −0.549670 0.835382i \(-0.685246\pi\)
0.998297 + 0.0583367i \(0.0185797\pi\)
\(618\) 0 0
\(619\) −17.2943 + 29.9547i −0.695118 + 1.20398i 0.275022 + 0.961438i \(0.411315\pi\)
−0.970141 + 0.242543i \(0.922019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.65384 2.46831i 0.0662599 0.0988909i
\(624\) 0 0
\(625\) 3.33422 + 5.77504i 0.133369 + 0.231002i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.23631 −0.288530
\(630\) 0 0
\(631\) −26.2933 −1.04672 −0.523360 0.852112i \(-0.675322\pi\)
−0.523360 + 0.852112i \(0.675322\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.4777 + 30.2723i 0.693582 + 1.20132i
\(636\) 0 0
\(637\) −20.1705 + 26.1480i −0.799185 + 1.03602i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.2673 + 28.1758i −0.642519 + 1.11288i 0.342349 + 0.939573i \(0.388777\pi\)
−0.984869 + 0.173303i \(0.944556\pi\)
\(642\) 0 0
\(643\) 5.21987 9.04107i 0.205851 0.356545i −0.744552 0.667564i \(-0.767337\pi\)
0.950404 + 0.311019i \(0.100670\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.685824 1.18788i −0.0269625 0.0467005i 0.852229 0.523168i \(-0.175250\pi\)
−0.879192 + 0.476468i \(0.841917\pi\)
\(648\) 0 0
\(649\) −9.27699 + 16.0682i −0.364154 + 0.630733i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.62567 6.27985i −0.141883 0.245749i 0.786322 0.617816i \(-0.211982\pi\)
−0.928206 + 0.372067i \(0.878649\pi\)
\(654\) 0 0
\(655\) 30.3269 52.5277i 1.18497 2.05243i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.3187 + 23.0686i 0.518822 + 0.898626i 0.999761 + 0.0218722i \(0.00696268\pi\)
−0.480939 + 0.876754i \(0.659704\pi\)
\(660\) 0 0
\(661\) −34.8199 −1.35434 −0.677168 0.735828i \(-0.736793\pi\)
−0.677168 + 0.735828i \(0.736793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 51.8779 + 3.46689i 2.01174 + 0.134440i
\(666\) 0 0
\(667\) 14.2473 24.6770i 0.551657 0.955498i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.4970 + 26.8416i −0.598255 + 1.03621i
\(672\) 0 0
\(673\) 8.23841 + 14.2693i 0.317567 + 0.550043i 0.979980 0.199096i \(-0.0638007\pi\)
−0.662412 + 0.749139i \(0.730467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.1654 0.813450 0.406725 0.913551i \(-0.366671\pi\)
0.406725 + 0.913551i \(0.366671\pi\)
\(678\) 0 0
\(679\) 8.18916 + 16.6596i 0.314271 + 0.639339i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.0756 24.3796i −0.538587 0.932859i −0.998980 0.0451447i \(-0.985625\pi\)
0.460394 0.887715i \(-0.347708\pi\)
\(684\) 0 0
\(685\) 56.8049 2.17040
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 32.2515 1.22869
\(690\) 0 0
\(691\) 19.0796 0.725822 0.362911 0.931824i \(-0.381783\pi\)
0.362911 + 0.931824i \(0.381783\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.84632 −0.297628
\(696\) 0 0
\(697\) −4.24341 −0.160731
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8508 −0.900834 −0.450417 0.892818i \(-0.648725\pi\)
−0.450417 + 0.892818i \(0.648725\pi\)
\(702\) 0 0
\(703\) 15.8136 + 27.3900i 0.596422 + 1.03303i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.3459 21.4108i 0.539532 0.805235i
\(708\) 0 0
\(709\) 20.0986 0.754817 0.377409 0.926047i \(-0.376815\pi\)
0.377409 + 0.926047i \(0.376815\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.0397 24.3175i −0.525792 0.910698i
\(714\) 0 0
\(715\) −19.3217 + 33.4662i −0.722592 + 1.25157i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.29246 5.70270i 0.122788 0.212675i −0.798078 0.602554i \(-0.794150\pi\)
0.920866 + 0.389879i \(0.127483\pi\)
\(720\) 0 0
\(721\) 12.0048 + 24.4220i 0.447082 + 0.909524i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −64.4542 −2.39377
\(726\) 0 0
\(727\) 18.2342 + 31.5826i 0.676269 + 1.17133i 0.976096 + 0.217339i \(0.0697376\pi\)
−0.299827 + 0.953994i \(0.596929\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.0565818 + 0.0980026i −0.00209276 + 0.00362476i
\(732\) 0 0
\(733\) −11.6824 20.2345i −0.431498 0.747377i 0.565504 0.824745i \(-0.308682\pi\)
−0.997003 + 0.0773684i \(0.975348\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.11077 + 12.3162i −0.261928 + 0.453673i
\(738\) 0 0
\(739\) 14.4596 + 25.0448i 0.531906 + 0.921288i 0.999306 + 0.0372422i \(0.0118573\pi\)
−0.467400 + 0.884046i \(0.654809\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.6794 + 20.2292i −0.428474 + 0.742139i −0.996738 0.0807074i \(-0.974282\pi\)
0.568264 + 0.822847i \(0.307615\pi\)
\(744\) 0 0
\(745\) 12.2422 21.2042i 0.448521 0.776860i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.01747 11.9658i 0.292952 0.437222i
\(750\) 0 0
\(751\) 0.856616 + 1.48370i 0.0312584 + 0.0541411i 0.881231 0.472685i \(-0.156715\pi\)
−0.849973 + 0.526826i \(0.823382\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 54.7675 1.99319
\(756\) 0 0
\(757\) 28.4587 1.03435 0.517175 0.855880i \(-0.326984\pi\)
0.517175 + 0.855880i \(0.326984\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.0525 29.5358i −0.618154 1.07067i −0.989822 0.142308i \(-0.954548\pi\)
0.371669 0.928365i \(-0.378786\pi\)
\(762\) 0 0
\(763\) −0.974346 1.98216i −0.0352737 0.0717592i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.8587 + 32.6642i −0.680947 + 1.17943i
\(768\) 0 0
\(769\) 2.48467 4.30357i 0.0895995 0.155191i −0.817742 0.575584i \(-0.804775\pi\)
0.907342 + 0.420394i \(0.138108\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.74814 + 9.95607i 0.206746 + 0.358095i 0.950688 0.310150i \(-0.100379\pi\)
−0.743941 + 0.668245i \(0.767046\pi\)
\(774\) 0 0
\(775\) −31.7576 + 55.0058i −1.14077 + 1.97587i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.27320 + 16.0617i 0.332247 + 0.575469i
\(780\) 0 0
\(781\) 1.51082 2.61682i 0.0540615 0.0936373i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.41556 2.45182i −0.0505235 0.0875092i
\(786\) 0 0
\(787\) 48.6011 1.73244 0.866221 0.499661i \(-0.166542\pi\)
0.866221 + 0.499661i \(0.166542\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.0491 23.9527i 0.570639 0.851661i
\(792\) 0 0
\(793\) −31.5030 + 54.5647i −1.11870 + 1.93765i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.8556 + 29.1947i −0.597056 + 1.03413i 0.396198 + 0.918165i \(0.370330\pi\)
−0.993253 + 0.115965i \(0.963004\pi\)
\(798\) 0 0
\(799\) −4.49183 7.78007i −0.158909 0.275239i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.8438 −1.08846
\(804\) 0 0
\(805\) 17.1385 25.5788i 0.604054 0.901533i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.93617 + 13.7459i 0.279021 + 0.483278i 0.971142 0.238503i \(-0.0766568\pi\)
−0.692121 + 0.721782i \(0.743323\pi\)
\(810\) 0 0
\(811\) 27.2524 0.956963 0.478481 0.878098i \(-0.341187\pi\)
0.478481 + 0.878098i \(0.341187\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12.5300 −0.438907
\(816\) 0 0
\(817\) 0.494597 0.0173038
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.3389 −0.849433 −0.424717 0.905326i \(-0.639626\pi\)
−0.424717 + 0.905326i \(0.639626\pi\)
\(822\) 0 0
\(823\) −11.5380 −0.402188 −0.201094 0.979572i \(-0.564450\pi\)
−0.201094 + 0.979572i \(0.564450\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.8582 1.21214 0.606069 0.795412i \(-0.292745\pi\)
0.606069 + 0.795412i \(0.292745\pi\)
\(828\) 0 0
\(829\) −7.64018 13.2332i −0.265354 0.459607i 0.702302 0.711879i \(-0.252156\pi\)
−0.967656 + 0.252272i \(0.918822\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.39140 + 8.24716i 0.117505 + 0.285747i
\(834\) 0 0
\(835\) 6.10711 0.211345
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.39990 + 14.5490i 0.289997 + 0.502289i 0.973809 0.227369i \(-0.0730125\pi\)
−0.683812 + 0.729658i \(0.739679\pi\)
\(840\) 0 0
\(841\) −22.8448 + 39.5684i −0.787753 + 1.36443i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16.3357 + 28.2943i −0.561967 + 0.973355i
\(846\) 0 0
\(847\) −6.55263 13.3304i −0.225151 0.458037i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18.7291 0.642024
\(852\) 0 0
\(853\) −11.4270 19.7921i −0.391253 0.677670i 0.601362 0.798977i \(-0.294625\pi\)
−0.992615 + 0.121306i \(0.961292\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.5871 + 30.4618i −0.600765 + 1.04056i 0.391940 + 0.919991i \(0.371804\pi\)
−0.992705 + 0.120565i \(0.961529\pi\)
\(858\) 0 0
\(859\) −5.28520 9.15424i −0.180329 0.312339i 0.761664 0.647973i \(-0.224383\pi\)
−0.941993 + 0.335634i \(0.891050\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.29326 12.6323i 0.248265 0.430008i −0.714779 0.699350i \(-0.753473\pi\)
0.963045 + 0.269342i \(0.0868061\pi\)
\(864\) 0 0
\(865\) 3.94358 + 6.83048i 0.134086 + 0.232243i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.6362 20.1545i 0.394731 0.683694i
\(870\) 0 0
\(871\) −14.4551 + 25.0369i −0.489791 + 0.848343i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −22.9025 1.53053i −0.774247 0.0517413i
\(876\) 0 0
\(877\) −5.65914 9.80192i −0.191096 0.330987i 0.754518 0.656279i \(-0.227871\pi\)
−0.945614 + 0.325292i \(0.894537\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.733220 0.0247028 0.0123514 0.999924i \(-0.496068\pi\)
0.0123514 + 0.999924i \(0.496068\pi\)
\(882\) 0 0
\(883\) −14.1726 −0.476944 −0.238472 0.971149i \(-0.576647\pi\)
−0.238472 + 0.971149i \(0.576647\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.8162 29.1266i −0.564634 0.977975i −0.997084 0.0763170i \(-0.975684\pi\)
0.432449 0.901658i \(-0.357649\pi\)
\(888\) 0 0
\(889\) 26.1440 + 1.74715i 0.876842 + 0.0585975i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −19.6321 + 34.0038i −0.656964 + 1.13790i
\(894\) 0 0
\(895\) 1.23681 2.14221i 0.0413419 0.0716063i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36.8008 + 63.7408i 1.22737 + 2.12588i
\(900\) 0 0
\(901\) 4.35436 7.54198i 0.145065 0.251260i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.6498 + 60.0152i 1.15180 + 1.99497i
\(906\) 0 0
\(907\) −4.79255 + 8.30094i −0.159134 + 0.275628i −0.934557 0.355814i \(-0.884204\pi\)
0.775423 + 0.631443i \(0.217537\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.37499 + 16.2380i 0.310607 + 0.537988i 0.978494 0.206275i \(-0.0661342\pi\)
−0.667887 + 0.744263i \(0.732801\pi\)
\(912\) 0 0
\(913\) −27.3959 −0.906672
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.0568 40.8026i −0.662333 1.34742i
\(918\) 0 0
\(919\) 21.2895 36.8745i 0.702276 1.21638i −0.265390 0.964141i \(-0.585501\pi\)
0.967666 0.252236i \(-0.0811661\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.07126 5.31958i 0.101092 0.175096i
\(924\) 0 0
\(925\) −21.1824 36.6890i −0.696474 1.20633i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −38.1524 −1.25174 −0.625869 0.779928i \(-0.715256\pi\)
−0.625869 + 0.779928i \(0.715256\pi\)
\(930\) 0 0
\(931\) 23.8049 30.8594i 0.780173 1.01137i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.21736 + 9.03673i 0.170626 + 0.295533i
\(936\) 0 0
\(937\) 6.48960 0.212006 0.106003 0.994366i \(-0.466195\pi\)
0.106003 + 0.994366i \(0.466195\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.466471 0.0152065 0.00760326 0.999971i \(-0.497580\pi\)
0.00760326 + 0.999971i \(0.497580\pi\)
\(942\) 0 0
\(943\) 10.9828 0.357650
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.1115 0.491058 0.245529 0.969389i \(-0.421038\pi\)
0.245529 + 0.969389i \(0.421038\pi\)
\(948\) 0 0
\(949\) −62.7006 −2.03535
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.6802 −0.637503 −0.318751 0.947838i \(-0.603264\pi\)
−0.318751 + 0.947838i \(0.603264\pi\)
\(954\) 0 0
\(955\) 28.3881 + 49.1696i 0.918616 + 1.59109i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.7017 35.3741i 0.765368 1.14229i
\(960\) 0 0
\(961\) 41.5293 1.33966
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.03322 + 1.78959i 0.0332606 + 0.0576090i
\(966\) 0 0
\(967\) 8.83228 15.2980i 0.284027 0.491949i −0.688346 0.725383i \(-0.741663\pi\)
0.972373 + 0.233433i \(0.0749961\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.7523 20.3555i 0.377148 0.653240i −0.613498 0.789697i \(-0.710238\pi\)
0.990646 + 0.136456i \(0.0435713\pi\)
\(972\) 0 0
\(973\) −3.27386 + 4.88614i −0.104955 + 0.156642i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.43379 0.173842 0.0869211 0.996215i \(-0.472297\pi\)
0.0869211 + 0.996215i \(0.472297\pi\)
\(978\) 0 0
\(979\) −1.30308 2.25700i −0.0416466 0.0721341i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.05345 + 1.82463i −0.0335998 + 0.0581966i −0.882336 0.470619i \(-0.844031\pi\)
0.848736 + 0.528816i \(0.177364\pi\)
\(984\) 0 0
\(985\) −30.5174 52.8577i −0.972366 1.68419i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.146446 0.253651i 0.00465670 0.00806564i
\(990\) 0 0
\(991\) 8.91172 + 15.4356i 0.283090 + 0.490327i 0.972144 0.234383i \(-0.0753071\pi\)
−0.689054 + 0.724710i \(0.741974\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −43.1031 + 74.6567i −1.36646 + 2.36678i
\(996\) 0 0
\(997\) 18.2477 31.6060i 0.577911 1.00097i −0.417807 0.908536i \(-0.637201\pi\)
0.995719 0.0924360i \(-0.0294653\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.q.c.793.1 22
3.2 odd 2 504.2.q.d.121.8 yes 22
4.3 odd 2 3024.2.q.k.2305.1 22
7.4 even 3 1512.2.t.d.361.11 22
9.2 odd 6 504.2.t.d.457.7 yes 22
9.7 even 3 1512.2.t.d.289.11 22
12.11 even 2 1008.2.q.k.625.4 22
21.11 odd 6 504.2.t.d.193.7 yes 22
28.11 odd 6 3024.2.t.l.1873.11 22
36.7 odd 6 3024.2.t.l.289.11 22
36.11 even 6 1008.2.t.k.961.5 22
63.11 odd 6 504.2.q.d.25.8 22
63.25 even 3 inner 1512.2.q.c.1369.1 22
84.11 even 6 1008.2.t.k.193.5 22
252.11 even 6 1008.2.q.k.529.4 22
252.151 odd 6 3024.2.q.k.2881.1 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.8 22 63.11 odd 6
504.2.q.d.121.8 yes 22 3.2 odd 2
504.2.t.d.193.7 yes 22 21.11 odd 6
504.2.t.d.457.7 yes 22 9.2 odd 6
1008.2.q.k.529.4 22 252.11 even 6
1008.2.q.k.625.4 22 12.11 even 2
1008.2.t.k.193.5 22 84.11 even 6
1008.2.t.k.961.5 22 36.11 even 6
1512.2.q.c.793.1 22 1.1 even 1 trivial
1512.2.q.c.1369.1 22 63.25 even 3 inner
1512.2.t.d.289.11 22 9.7 even 3
1512.2.t.d.361.11 22 7.4 even 3
3024.2.q.k.2305.1 22 4.3 odd 2
3024.2.q.k.2881.1 22 252.151 odd 6
3024.2.t.l.289.11 22 36.7 odd 6
3024.2.t.l.1873.11 22 28.11 odd 6