Properties

Label 102.2.h.a.49.2
Level $102$
Weight $2$
Character 102.49
Analytic conductor $0.814$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,2,Mod(19,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 102.h (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.814474100617\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.2
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 102.49
Dual form 102.2.h.a.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(0.382683 + 0.923880i) q^{3} +1.00000i q^{4} +(0.400544 - 0.165911i) q^{5} +(0.382683 - 0.923880i) q^{6} +(3.15432 + 1.30656i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(-0.400544 - 0.165911i) q^{10} +(0.648847 - 1.56645i) q^{11} +(-0.923880 + 0.382683i) q^{12} +0.331821i q^{13} +(-1.30656 - 3.15432i) q^{14} +(0.306563 + 0.306563i) q^{15} -1.00000 q^{16} +(-3.94495 - 1.19891i) q^{17} +1.00000 q^{18} +(-1.51594 - 1.51594i) q^{19} +(0.165911 + 0.400544i) q^{20} +3.41421i q^{21} +(-1.56645 + 0.648847i) q^{22} +(0.720777 - 1.74011i) q^{23} +(0.923880 + 0.382683i) q^{24} +(-3.40262 + 3.40262i) q^{25} +(0.234633 - 0.234633i) q^{26} +(-0.923880 - 0.382683i) q^{27} +(-1.30656 + 3.15432i) q^{28} +(-7.88877 + 3.26763i) q^{29} -0.433546i q^{30} +(-0.989538 - 2.38896i) q^{31} +(0.707107 + 0.707107i) q^{32} +1.69552 q^{33} +(1.94174 + 3.63726i) q^{34} +1.48022 q^{35} +(-0.707107 - 0.707107i) q^{36} +(-4.06193 - 9.80638i) q^{37} +2.14386i q^{38} +(-0.306563 + 0.126983i) q^{39} +(0.165911 - 0.400544i) q^{40} +(11.1953 + 4.63726i) q^{41} +(2.41421 - 2.41421i) q^{42} +(7.13707 - 7.13707i) q^{43} +(1.56645 + 0.648847i) q^{44} +(-0.165911 + 0.400544i) q^{45} +(-1.74011 + 0.720777i) q^{46} -2.38009i q^{47} +(-0.382683 - 0.923880i) q^{48} +(3.29289 + 3.29289i) q^{49} +4.81204 q^{50} +(-0.402015 - 4.10346i) q^{51} -0.331821 q^{52} +(2.21371 + 2.21371i) q^{53} +(0.382683 + 0.923880i) q^{54} -0.735084i q^{55} +(3.15432 - 1.30656i) q^{56} +(0.820420 - 1.98067i) q^{57} +(7.88877 + 3.26763i) q^{58} +(-5.42676 + 5.42676i) q^{59} +(-0.306563 + 0.306563i) q^{60} +(-7.42788 - 3.07673i) q^{61} +(-0.989538 + 2.38896i) q^{62} +(-3.15432 + 1.30656i) q^{63} -1.00000i q^{64} +(0.0550527 + 0.132909i) q^{65} +(-1.19891 - 1.19891i) q^{66} +15.7711 q^{67} +(1.19891 - 3.94495i) q^{68} +1.88348 q^{69} +(-1.04667 - 1.04667i) q^{70} +(0.0867259 + 0.209375i) q^{71} +1.00000i q^{72} +(-11.2147 + 4.64527i) q^{73} +(-4.06193 + 9.80638i) q^{74} +(-4.44574 - 1.84149i) q^{75} +(1.51594 - 1.51594i) q^{76} +(4.09334 - 4.09334i) q^{77} +(0.306563 + 0.126983i) q^{78} +(-4.79863 + 11.5849i) q^{79} +(-0.400544 + 0.165911i) q^{80} -1.00000i q^{81} +(-4.63726 - 11.1953i) q^{82} +(-0.738027 - 0.738027i) q^{83} -3.41421 q^{84} +(-1.77904 + 0.174292i) q^{85} -10.0933 q^{86} +(-6.03780 - 6.03780i) q^{87} +(-0.648847 - 1.56645i) q^{88} +13.8281i q^{89} +(0.400544 - 0.165911i) q^{90} +(-0.433546 + 1.04667i) q^{91} +(1.74011 + 0.720777i) q^{92} +(1.82843 - 1.82843i) q^{93} +(-1.68297 + 1.68297i) q^{94} +(-0.858710 - 0.355689i) q^{95} +(-0.382683 + 0.923880i) q^{96} +(3.46953 - 1.43713i) q^{97} -4.65685i q^{98} +(0.648847 + 1.56645i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 8 q^{10} - 8 q^{15} - 8 q^{16} - 8 q^{17} + 8 q^{18} - 16 q^{22} - 16 q^{23} + 8 q^{25} + 8 q^{26} - 16 q^{33} + 16 q^{34} - 16 q^{35} + 8 q^{39} + 16 q^{41} + 8 q^{42} - 16 q^{43} + 16 q^{44}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0.382683 + 0.923880i 0.220942 + 0.533402i
\(4\) 1.00000i 0.500000i
\(5\) 0.400544 0.165911i 0.179129 0.0741975i −0.291317 0.956627i \(-0.594093\pi\)
0.470445 + 0.882429i \(0.344093\pi\)
\(6\) 0.382683 0.923880i 0.156230 0.377172i
\(7\) 3.15432 + 1.30656i 1.19222 + 0.493834i 0.888478 0.458919i \(-0.151763\pi\)
0.303744 + 0.952754i \(0.401763\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) −0.400544 0.165911i −0.126663 0.0524656i
\(11\) 0.648847 1.56645i 0.195635 0.472304i −0.795371 0.606123i \(-0.792724\pi\)
0.991006 + 0.133819i \(0.0427240\pi\)
\(12\) −0.923880 + 0.382683i −0.266701 + 0.110471i
\(13\) 0.331821i 0.0920307i 0.998941 + 0.0460153i \(0.0146523\pi\)
−0.998941 + 0.0460153i \(0.985348\pi\)
\(14\) −1.30656 3.15432i −0.349194 0.843028i
\(15\) 0.306563 + 0.306563i 0.0791542 + 0.0791542i
\(16\) −1.00000 −0.250000
\(17\) −3.94495 1.19891i −0.956790 0.290779i
\(18\) 1.00000 0.235702
\(19\) −1.51594 1.51594i −0.347780 0.347780i 0.511502 0.859282i \(-0.329089\pi\)
−0.859282 + 0.511502i \(0.829089\pi\)
\(20\) 0.165911 + 0.400544i 0.0370988 + 0.0895643i
\(21\) 3.41421i 0.745042i
\(22\) −1.56645 + 0.648847i −0.333969 + 0.138335i
\(23\) 0.720777 1.74011i 0.150292 0.362838i −0.830746 0.556652i \(-0.812086\pi\)
0.981038 + 0.193814i \(0.0620858\pi\)
\(24\) 0.923880 + 0.382683i 0.188586 + 0.0781149i
\(25\) −3.40262 + 3.40262i −0.680525 + 0.680525i
\(26\) 0.234633 0.234633i 0.0460153 0.0460153i
\(27\) −0.923880 0.382683i −0.177801 0.0736475i
\(28\) −1.30656 + 3.15432i −0.246917 + 0.596111i
\(29\) −7.88877 + 3.26763i −1.46491 + 0.606785i −0.965691 0.259693i \(-0.916379\pi\)
−0.499216 + 0.866477i \(0.666379\pi\)
\(30\) 0.433546i 0.0791542i
\(31\) −0.989538 2.38896i −0.177726 0.429069i 0.809763 0.586758i \(-0.199596\pi\)
−0.987489 + 0.157688i \(0.949596\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 1.69552 0.295152
\(34\) 1.94174 + 3.63726i 0.333006 + 0.623785i
\(35\) 1.48022 0.250202
\(36\) −0.707107 0.707107i −0.117851 0.117851i
\(37\) −4.06193 9.80638i −0.667778 1.61216i −0.785320 0.619090i \(-0.787501\pi\)
0.117542 0.993068i \(-0.462499\pi\)
\(38\) 2.14386i 0.347780i
\(39\) −0.306563 + 0.126983i −0.0490894 + 0.0203335i
\(40\) 0.165911 0.400544i 0.0262328 0.0633315i
\(41\) 11.1953 + 4.63726i 1.74842 + 0.724218i 0.997997 + 0.0632564i \(0.0201486\pi\)
0.750420 + 0.660962i \(0.229851\pi\)
\(42\) 2.41421 2.41421i 0.372521 0.372521i
\(43\) 7.13707 7.13707i 1.08839 1.08839i 0.0926990 0.995694i \(-0.470451\pi\)
0.995694 0.0926990i \(-0.0295494\pi\)
\(44\) 1.56645 + 0.648847i 0.236152 + 0.0978173i
\(45\) −0.165911 + 0.400544i −0.0247325 + 0.0597095i
\(46\) −1.74011 + 0.720777i −0.256565 + 0.106273i
\(47\) 2.38009i 0.347171i −0.984819 0.173586i \(-0.944465\pi\)
0.984819 0.173586i \(-0.0555353\pi\)
\(48\) −0.382683 0.923880i −0.0552356 0.133351i
\(49\) 3.29289 + 3.29289i 0.470413 + 0.470413i
\(50\) 4.81204 0.680525
\(51\) −0.402015 4.10346i −0.0562934 0.574599i
\(52\) −0.331821 −0.0460153
\(53\) 2.21371 + 2.21371i 0.304076 + 0.304076i 0.842606 0.538530i \(-0.181020\pi\)
−0.538530 + 0.842606i \(0.681020\pi\)
\(54\) 0.382683 + 0.923880i 0.0520766 + 0.125724i
\(55\) 0.735084i 0.0991187i
\(56\) 3.15432 1.30656i 0.421514 0.174597i
\(57\) 0.820420 1.98067i 0.108667 0.262346i
\(58\) 7.88877 + 3.26763i 1.03585 + 0.429061i
\(59\) −5.42676 + 5.42676i −0.706504 + 0.706504i −0.965798 0.259295i \(-0.916510\pi\)
0.259295 + 0.965798i \(0.416510\pi\)
\(60\) −0.306563 + 0.306563i −0.0395771 + 0.0395771i
\(61\) −7.42788 3.07673i −0.951043 0.393935i −0.147420 0.989074i \(-0.547097\pi\)
−0.803623 + 0.595139i \(0.797097\pi\)
\(62\) −0.989538 + 2.38896i −0.125671 + 0.303398i
\(63\) −3.15432 + 1.30656i −0.397407 + 0.164611i
\(64\) 1.00000i 0.125000i
\(65\) 0.0550527 + 0.132909i 0.00682845 + 0.0164853i
\(66\) −1.19891 1.19891i −0.147576 0.147576i
\(67\) 15.7711 1.92675 0.963375 0.268159i \(-0.0864153\pi\)
0.963375 + 0.268159i \(0.0864153\pi\)
\(68\) 1.19891 3.94495i 0.145389 0.478395i
\(69\) 1.88348 0.226744
\(70\) −1.04667 1.04667i −0.125101 0.125101i
\(71\) 0.0867259 + 0.209375i 0.0102925 + 0.0248482i 0.928942 0.370225i \(-0.120719\pi\)
−0.918650 + 0.395073i \(0.870719\pi\)
\(72\) 1.00000i 0.117851i
\(73\) −11.2147 + 4.64527i −1.31258 + 0.543687i −0.925635 0.378417i \(-0.876469\pi\)
−0.386942 + 0.922104i \(0.626469\pi\)
\(74\) −4.06193 + 9.80638i −0.472190 + 1.13997i
\(75\) −4.44574 1.84149i −0.513350 0.212637i
\(76\) 1.51594 1.51594i 0.173890 0.173890i
\(77\) 4.09334 4.09334i 0.466480 0.466480i
\(78\) 0.306563 + 0.126983i 0.0347114 + 0.0143779i
\(79\) −4.79863 + 11.5849i −0.539888 + 1.30341i 0.384912 + 0.922953i \(0.374232\pi\)
−0.924800 + 0.380453i \(0.875768\pi\)
\(80\) −0.400544 + 0.165911i −0.0447822 + 0.0185494i
\(81\) 1.00000i 0.111111i
\(82\) −4.63726 11.1953i −0.512099 1.23632i
\(83\) −0.738027 0.738027i −0.0810090 0.0810090i 0.665441 0.746450i \(-0.268243\pi\)
−0.746450 + 0.665441i \(0.768243\pi\)
\(84\) −3.41421 −0.372521
\(85\) −1.77904 + 0.174292i −0.192964 + 0.0189046i
\(86\) −10.0933 −1.08839
\(87\) −6.03780 6.03780i −0.647320 0.647320i
\(88\) −0.648847 1.56645i −0.0691673 0.166985i
\(89\) 13.8281i 1.46577i 0.680352 + 0.732885i \(0.261827\pi\)
−0.680352 + 0.732885i \(0.738173\pi\)
\(90\) 0.400544 0.165911i 0.0422210 0.0174885i
\(91\) −0.433546 + 1.04667i −0.0454479 + 0.109721i
\(92\) 1.74011 + 0.720777i 0.181419 + 0.0751461i
\(93\) 1.82843 1.82843i 0.189599 0.189599i
\(94\) −1.68297 + 1.68297i −0.173586 + 0.173586i
\(95\) −0.858710 0.355689i −0.0881018 0.0364929i
\(96\) −0.382683 + 0.923880i −0.0390575 + 0.0942931i
\(97\) 3.46953 1.43713i 0.352277 0.145918i −0.199525 0.979893i \(-0.563940\pi\)
0.551803 + 0.833975i \(0.313940\pi\)
\(98\) 4.65685i 0.470413i
\(99\) 0.648847 + 1.56645i 0.0652115 + 0.157435i
\(100\) −3.40262 3.40262i −0.340262 0.340262i
\(101\) −0.636303 −0.0633145 −0.0316573 0.999499i \(-0.510079\pi\)
−0.0316573 + 0.999499i \(0.510079\pi\)
\(102\) −2.61732 + 3.18585i −0.259153 + 0.315446i
\(103\) 8.59955 0.847339 0.423669 0.905817i \(-0.360742\pi\)
0.423669 + 0.905817i \(0.360742\pi\)
\(104\) 0.234633 + 0.234633i 0.0230077 + 0.0230077i
\(105\) 0.566454 + 1.36754i 0.0552803 + 0.133458i
\(106\) 3.13066i 0.304076i
\(107\) 2.00000 0.828427i 0.193347 0.0800871i −0.283909 0.958851i \(-0.591631\pi\)
0.477256 + 0.878764i \(0.341631\pi\)
\(108\) 0.382683 0.923880i 0.0368237 0.0889003i
\(109\) −7.31136 3.02847i −0.700302 0.290074i 0.00398311 0.999992i \(-0.498732\pi\)
−0.704285 + 0.709918i \(0.748732\pi\)
\(110\) −0.519783 + 0.519783i −0.0495594 + 0.0495594i
\(111\) 7.50548 7.50548i 0.712388 0.712388i
\(112\) −3.15432 1.30656i −0.298055 0.123459i
\(113\) 3.51620 8.48886i 0.330776 0.798565i −0.667755 0.744382i \(-0.732744\pi\)
0.998531 0.0541835i \(-0.0172556\pi\)
\(114\) −1.98067 + 0.820420i −0.185507 + 0.0768393i
\(115\) 0.816574i 0.0761459i
\(116\) −3.26763 7.88877i −0.303392 0.732454i
\(117\) −0.234633 0.234633i −0.0216918 0.0216918i
\(118\) 7.67459 0.706504
\(119\) −10.8772 8.93608i −0.997109 0.819169i
\(120\) 0.433546 0.0395771
\(121\) 5.74540 + 5.74540i 0.522309 + 0.522309i
\(122\) 3.07673 + 7.42788i 0.278554 + 0.672489i
\(123\) 12.1177i 1.09262i
\(124\) 2.38896 0.989538i 0.214535 0.0888631i
\(125\) −1.62792 + 3.93015i −0.145606 + 0.351523i
\(126\) 3.15432 + 1.30656i 0.281009 + 0.116398i
\(127\) −8.54487 + 8.54487i −0.758235 + 0.758235i −0.976001 0.217766i \(-0.930123\pi\)
0.217766 + 0.976001i \(0.430123\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 9.32503 + 3.86256i 0.821023 + 0.340079i
\(130\) 0.0550527 0.132909i 0.00482844 0.0116569i
\(131\) −0.828427 + 0.343146i −0.0723800 + 0.0299808i −0.418580 0.908180i \(-0.637472\pi\)
0.346200 + 0.938161i \(0.387472\pi\)
\(132\) 1.69552i 0.147576i
\(133\) −2.80109 6.76242i −0.242885 0.586377i
\(134\) −11.1519 11.1519i −0.963375 0.963375i
\(135\) −0.433546 −0.0373137
\(136\) −3.63726 + 1.94174i −0.311892 + 0.166503i
\(137\) 12.6109 1.07742 0.538710 0.842491i \(-0.318912\pi\)
0.538710 + 0.842491i \(0.318912\pi\)
\(138\) −1.33182 1.33182i −0.113372 0.113372i
\(139\) 6.52273 + 15.7473i 0.553250 + 1.33566i 0.915024 + 0.403399i \(0.132171\pi\)
−0.361774 + 0.932266i \(0.617829\pi\)
\(140\) 1.48022i 0.125101i
\(141\) 2.19891 0.910819i 0.185182 0.0767048i
\(142\) 0.0867259 0.209375i 0.00727787 0.0175703i
\(143\) 0.519783 + 0.215301i 0.0434664 + 0.0180044i
\(144\) 0.707107 0.707107i 0.0589256 0.0589256i
\(145\) −2.61766 + 2.61766i −0.217385 + 0.217385i
\(146\) 11.2147 + 4.64527i 0.928132 + 0.384445i
\(147\) −1.78210 + 4.30237i −0.146985 + 0.354854i
\(148\) 9.80638 4.06193i 0.806079 0.333889i
\(149\) 17.5004i 1.43369i −0.697234 0.716844i \(-0.745586\pi\)
0.697234 0.716844i \(-0.254414\pi\)
\(150\) 1.84149 + 4.44574i 0.150357 + 0.362993i
\(151\) 6.81657 + 6.81657i 0.554725 + 0.554725i 0.927801 0.373076i \(-0.121697\pi\)
−0.373076 + 0.927801i \(0.621697\pi\)
\(152\) −2.14386 −0.173890
\(153\) 3.63726 1.94174i 0.294055 0.156980i
\(154\) −5.78886 −0.466480
\(155\) −0.792706 0.792706i −0.0636717 0.0636717i
\(156\) −0.126983 0.306563i −0.0101667 0.0245447i
\(157\) 4.78976i 0.382265i −0.981564 0.191132i \(-0.938784\pi\)
0.981564 0.191132i \(-0.0612160\pi\)
\(158\) 11.5849 4.79863i 0.921647 0.381759i
\(159\) −1.19805 + 2.89235i −0.0950116 + 0.229378i
\(160\) 0.400544 + 0.165911i 0.0316658 + 0.0131164i
\(161\) 4.54712 4.54712i 0.358363 0.358363i
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −16.4496 6.81363i −1.28843 0.533685i −0.369912 0.929067i \(-0.620612\pi\)
−0.918517 + 0.395382i \(0.870612\pi\)
\(164\) −4.63726 + 11.1953i −0.362109 + 0.874208i
\(165\) 0.679129 0.281305i 0.0528701 0.0218995i
\(166\) 1.04373i 0.0810090i
\(167\) 6.73332 + 16.2557i 0.521040 + 1.25790i 0.937258 + 0.348637i \(0.113355\pi\)
−0.416218 + 0.909265i \(0.636645\pi\)
\(168\) 2.41421 + 2.41421i 0.186261 + 0.186261i
\(169\) 12.8899 0.991530
\(170\) 1.38121 + 1.13473i 0.105934 + 0.0870295i
\(171\) 2.14386 0.163945
\(172\) 7.13707 + 7.13707i 0.544197 + 0.544197i
\(173\) −7.40349 17.8736i −0.562877 1.35890i −0.907456 0.420147i \(-0.861978\pi\)
0.344579 0.938757i \(-0.388022\pi\)
\(174\) 8.53874i 0.647320i
\(175\) −15.1787 + 6.28723i −1.14740 + 0.475270i
\(176\) −0.648847 + 1.56645i −0.0489087 + 0.118076i
\(177\) −7.09040 2.93694i −0.532947 0.220754i
\(178\) 9.77791 9.77791i 0.732885 0.732885i
\(179\) 6.44834 6.44834i 0.481972 0.481972i −0.423789 0.905761i \(-0.639300\pi\)
0.905761 + 0.423789i \(0.139300\pi\)
\(180\) −0.400544 0.165911i −0.0298548 0.0123663i
\(181\) 0.297227 0.717569i 0.0220927 0.0533365i −0.912448 0.409192i \(-0.865811\pi\)
0.934541 + 0.355856i \(0.115811\pi\)
\(182\) 1.04667 0.433546i 0.0775844 0.0321365i
\(183\) 8.03988i 0.594325i
\(184\) −0.720777 1.74011i −0.0531364 0.128282i
\(185\) −3.25397 3.25397i −0.239236 0.239236i
\(186\) −2.58579 −0.189599
\(187\) −4.43771 + 5.40167i −0.324517 + 0.395009i
\(188\) 2.38009 0.173586
\(189\) −2.41421 2.41421i −0.175608 0.175608i
\(190\) 0.355689 + 0.858710i 0.0258044 + 0.0622974i
\(191\) 13.4248i 0.971384i −0.874130 0.485692i \(-0.838568\pi\)
0.874130 0.485692i \(-0.161432\pi\)
\(192\) 0.923880 0.382683i 0.0666753 0.0276178i
\(193\) 1.94749 4.70167i 0.140184 0.338434i −0.838159 0.545426i \(-0.816368\pi\)
0.978342 + 0.206993i \(0.0663677\pi\)
\(194\) −3.46953 1.43713i −0.249098 0.103180i
\(195\) −0.101724 + 0.101724i −0.00728462 + 0.00728462i
\(196\) −3.29289 + 3.29289i −0.235207 + 0.235207i
\(197\) 3.83825 + 1.58986i 0.273464 + 0.113273i 0.515201 0.857069i \(-0.327717\pi\)
−0.241737 + 0.970342i \(0.577717\pi\)
\(198\) 0.648847 1.56645i 0.0461115 0.111323i
\(199\) 9.89357 4.09805i 0.701336 0.290503i −0.00337780 0.999994i \(-0.501075\pi\)
0.704714 + 0.709491i \(0.251075\pi\)
\(200\) 4.81204i 0.340262i
\(201\) 6.03535 + 14.5706i 0.425701 + 1.02773i
\(202\) 0.449934 + 0.449934i 0.0316573 + 0.0316573i
\(203\) −29.1531 −2.04615
\(204\) 4.10346 0.402015i 0.287300 0.0281467i
\(205\) 5.25359 0.366927
\(206\) −6.08080 6.08080i −0.423669 0.423669i
\(207\) 0.720777 + 1.74011i 0.0500974 + 0.120946i
\(208\) 0.331821i 0.0230077i
\(209\) −3.35826 + 1.39104i −0.232296 + 0.0962200i
\(210\) 0.566454 1.36754i 0.0390891 0.0943694i
\(211\) −4.36210 1.80684i −0.300300 0.124388i 0.227446 0.973791i \(-0.426963\pi\)
−0.527746 + 0.849403i \(0.676963\pi\)
\(212\) −2.21371 + 2.21371i −0.152038 + 0.152038i
\(213\) −0.160248 + 0.160248i −0.0109800 + 0.0109800i
\(214\) −2.00000 0.828427i −0.136717 0.0566301i
\(215\) 1.67459 4.04283i 0.114206 0.275718i
\(216\) −0.923880 + 0.382683i −0.0628620 + 0.0260383i
\(217\) 8.82843i 0.599313i
\(218\) 3.02847 + 7.31136i 0.205114 + 0.495188i
\(219\) −8.58333 8.58333i −0.580008 0.580008i
\(220\) 0.735084 0.0495594
\(221\) 0.397825 1.30902i 0.0267606 0.0880541i
\(222\) −10.6143 −0.712388
\(223\) 11.0563 + 11.0563i 0.740383 + 0.740383i 0.972652 0.232269i \(-0.0746149\pi\)
−0.232269 + 0.972652i \(0.574615\pi\)
\(224\) 1.30656 + 3.15432i 0.0872984 + 0.210757i
\(225\) 4.81204i 0.320803i
\(226\) −8.48886 + 3.51620i −0.564671 + 0.233894i
\(227\) −4.23304 + 10.2195i −0.280957 + 0.678290i −0.999858 0.0168221i \(-0.994645\pi\)
0.718902 + 0.695112i \(0.244645\pi\)
\(228\) 1.98067 + 0.820420i 0.131173 + 0.0543336i
\(229\) −10.8789 + 10.8789i −0.718901 + 0.718901i −0.968380 0.249479i \(-0.919741\pi\)
0.249479 + 0.968380i \(0.419741\pi\)
\(230\) −0.577405 + 0.577405i −0.0380730 + 0.0380730i
\(231\) 5.34821 + 2.21530i 0.351886 + 0.145756i
\(232\) −3.26763 + 7.88877i −0.214531 + 0.517923i
\(233\) −9.58764 + 3.97133i −0.628107 + 0.260171i −0.673949 0.738778i \(-0.735403\pi\)
0.0458413 + 0.998949i \(0.485403\pi\)
\(234\) 0.331821i 0.0216918i
\(235\) −0.394882 0.953329i −0.0257592 0.0621883i
\(236\) −5.42676 5.42676i −0.353252 0.353252i
\(237\) −12.5394 −0.814524
\(238\) 1.37257 + 14.0101i 0.0889703 + 0.908139i
\(239\) −24.7803 −1.60291 −0.801454 0.598057i \(-0.795940\pi\)
−0.801454 + 0.598057i \(0.795940\pi\)
\(240\) −0.306563 0.306563i −0.0197886 0.0197886i
\(241\) −1.64752 3.97746i −0.106126 0.256211i 0.861892 0.507092i \(-0.169280\pi\)
−0.968018 + 0.250881i \(0.919280\pi\)
\(242\) 8.12522i 0.522309i
\(243\) 0.923880 0.382683i 0.0592669 0.0245492i
\(244\) 3.07673 7.42788i 0.196967 0.475522i
\(245\) 1.86527 + 0.772622i 0.119168 + 0.0493610i
\(246\) 8.56854 8.56854i 0.546310 0.546310i
\(247\) 0.503021 0.503021i 0.0320064 0.0320064i
\(248\) −2.38896 0.989538i −0.151699 0.0628357i
\(249\) 0.399418 0.964279i 0.0253121 0.0611087i
\(250\) 3.93015 1.62792i 0.248565 0.102959i
\(251\) 19.0639i 1.20330i 0.798759 + 0.601652i \(0.205490\pi\)
−0.798759 + 0.601652i \(0.794510\pi\)
\(252\) −1.30656 3.15432i −0.0823057 0.198704i
\(253\) −2.25813 2.25813i −0.141967 0.141967i
\(254\) 12.0843 0.758235
\(255\) −0.841833 1.57692i −0.0527176 0.0987504i
\(256\) 1.00000 0.0625000
\(257\) 18.9218 + 18.9218i 1.18031 + 1.18031i 0.979664 + 0.200643i \(0.0643032\pi\)
0.200643 + 0.979664i \(0.435697\pi\)
\(258\) −3.86256 9.32503i −0.240472 0.580551i
\(259\) 36.2396i 2.25182i
\(260\) −0.132909 + 0.0550527i −0.00824267 + 0.00341422i
\(261\) 3.26763 7.88877i 0.202262 0.488302i
\(262\) 0.828427 + 0.343146i 0.0511804 + 0.0211996i
\(263\) 19.4541 19.4541i 1.19959 1.19959i 0.225302 0.974289i \(-0.427663\pi\)
0.974289 0.225302i \(-0.0723369\pi\)
\(264\) 1.19891 1.19891i 0.0737880 0.0737880i
\(265\) 1.25397 + 0.519409i 0.0770305 + 0.0319071i
\(266\) −2.80109 + 6.76242i −0.171746 + 0.414631i
\(267\) −12.7755 + 5.29177i −0.781845 + 0.323851i
\(268\) 15.7711i 0.963375i
\(269\) 3.83250 + 9.25247i 0.233671 + 0.564133i 0.996604 0.0823455i \(-0.0262411\pi\)
−0.762932 + 0.646478i \(0.776241\pi\)
\(270\) 0.306563 + 0.306563i 0.0186568 + 0.0186568i
\(271\) −9.20949 −0.559437 −0.279718 0.960082i \(-0.590241\pi\)
−0.279718 + 0.960082i \(0.590241\pi\)
\(272\) 3.94495 + 1.19891i 0.239198 + 0.0726947i
\(273\) −1.13291 −0.0685668
\(274\) −8.91723 8.91723i −0.538710 0.538710i
\(275\) 3.12228 + 7.53784i 0.188280 + 0.454549i
\(276\) 1.88348i 0.113372i
\(277\) −7.72852 + 3.20126i −0.464362 + 0.192345i −0.602583 0.798056i \(-0.705862\pi\)
0.138221 + 0.990401i \(0.455862\pi\)
\(278\) 6.52273 15.7473i 0.391207 0.944458i
\(279\) 2.38896 + 0.989538i 0.143023 + 0.0592421i
\(280\) 1.04667 1.04667i 0.0625506 0.0625506i
\(281\) −7.77791 + 7.77791i −0.463991 + 0.463991i −0.899961 0.435970i \(-0.856405\pi\)
0.435970 + 0.899961i \(0.356405\pi\)
\(282\) −2.19891 0.910819i −0.130943 0.0542385i
\(283\) 8.08918 19.5290i 0.480852 1.16088i −0.478353 0.878168i \(-0.658766\pi\)
0.959205 0.282712i \(-0.0912339\pi\)
\(284\) −0.209375 + 0.0867259i −0.0124241 + 0.00514623i
\(285\) 0.929461i 0.0550565i
\(286\) −0.215301 0.519783i −0.0127310 0.0307354i
\(287\) 29.2548 + 29.2548i 1.72686 + 1.72686i
\(288\) −1.00000 −0.0589256
\(289\) 14.1252 + 9.45929i 0.830895 + 0.556429i
\(290\) 3.70193 0.217385
\(291\) 2.65546 + 2.65546i 0.155666 + 0.155666i
\(292\) −4.64527 11.2147i −0.271844 0.656289i
\(293\) 25.1277i 1.46797i 0.679164 + 0.733987i \(0.262343\pi\)
−0.679164 + 0.733987i \(0.737657\pi\)
\(294\) 4.30237 1.78210i 0.250919 0.103934i
\(295\) −1.27330 + 3.07401i −0.0741342 + 0.178976i
\(296\) −9.80638 4.06193i −0.569984 0.236095i
\(297\) −1.19891 + 1.19891i −0.0695680 + 0.0695680i
\(298\) −12.3746 + 12.3746i −0.716844 + 0.716844i
\(299\) 0.577405 + 0.239169i 0.0333922 + 0.0138315i
\(300\) 1.84149 4.44574i 0.106318 0.256675i
\(301\) 31.8377 13.1876i 1.83509 0.760120i
\(302\) 9.64009i 0.554725i
\(303\) −0.243503 0.587868i −0.0139889 0.0337721i
\(304\) 1.51594 + 1.51594i 0.0869450 + 0.0869450i
\(305\) −3.48566 −0.199588
\(306\) −3.94495 1.19891i −0.225518 0.0685373i
\(307\) 15.3433 0.875688 0.437844 0.899051i \(-0.355742\pi\)
0.437844 + 0.899051i \(0.355742\pi\)
\(308\) 4.09334 + 4.09334i 0.233240 + 0.233240i
\(309\) 3.29090 + 7.94495i 0.187213 + 0.451972i
\(310\) 1.12106i 0.0636717i
\(311\) 20.0320 8.29752i 1.13591 0.470509i 0.266124 0.963939i \(-0.414257\pi\)
0.869786 + 0.493429i \(0.164257\pi\)
\(312\) −0.126983 + 0.306563i −0.00718897 + 0.0173557i
\(313\) −7.74993 3.21013i −0.438052 0.181447i 0.152748 0.988265i \(-0.451188\pi\)
−0.590800 + 0.806818i \(0.701188\pi\)
\(314\) −3.38687 + 3.38687i −0.191132 + 0.191132i
\(315\) −1.04667 + 1.04667i −0.0589733 + 0.0589733i
\(316\) −11.5849 4.79863i −0.651703 0.269944i
\(317\) 9.17686 22.1549i 0.515424 1.24434i −0.425264 0.905069i \(-0.639819\pi\)
0.940688 0.339274i \(-0.110181\pi\)
\(318\) 2.89235 1.19805i 0.162195 0.0671833i
\(319\) 14.4776i 0.810589i
\(320\) −0.165911 0.400544i −0.00927469 0.0223911i
\(321\) 1.53073 + 1.53073i 0.0854372 + 0.0854372i
\(322\) −6.43060 −0.358363
\(323\) 4.16282 + 7.79777i 0.231625 + 0.433880i
\(324\) 1.00000 0.0555556
\(325\) −1.12906 1.12906i −0.0626292 0.0626292i
\(326\) 6.81363 + 16.4496i 0.377372 + 0.911057i
\(327\) 7.91376i 0.437632i
\(328\) 11.1953 4.63726i 0.618159 0.256050i
\(329\) 3.10973 7.50756i 0.171445 0.413905i
\(330\) −0.679129 0.281305i −0.0373848 0.0154853i
\(331\) −2.88311 + 2.88311i −0.158470 + 0.158470i −0.781888 0.623418i \(-0.785743\pi\)
0.623418 + 0.781888i \(0.285743\pi\)
\(332\) 0.738027 0.738027i 0.0405045 0.0405045i
\(333\) 9.80638 + 4.06193i 0.537386 + 0.222593i
\(334\) 6.73332 16.2557i 0.368431 0.889471i
\(335\) 6.31703 2.61660i 0.345136 0.142960i
\(336\) 3.41421i 0.186261i
\(337\) −3.83323 9.25423i −0.208809 0.504110i 0.784427 0.620221i \(-0.212957\pi\)
−0.993236 + 0.116111i \(0.962957\pi\)
\(338\) −9.11453 9.11453i −0.495765 0.495765i
\(339\) 9.18828 0.499039
\(340\) −0.174292 1.77904i −0.00945231 0.0964818i
\(341\) −4.38425 −0.237420
\(342\) −1.51594 1.51594i −0.0819725 0.0819725i
\(343\) −3.06147 7.39104i −0.165304 0.399078i
\(344\) 10.0933i 0.544197i
\(345\) 0.754416 0.312489i 0.0406164 0.0168239i
\(346\) −7.40349 + 17.8736i −0.398014 + 0.960891i
\(347\) −7.98618 3.30798i −0.428721 0.177582i 0.157880 0.987458i \(-0.449534\pi\)
−0.586601 + 0.809876i \(0.699534\pi\)
\(348\) 6.03780 6.03780i 0.323660 0.323660i
\(349\) −14.7167 + 14.7167i −0.787768 + 0.787768i −0.981128 0.193360i \(-0.938062\pi\)
0.193360 + 0.981128i \(0.438062\pi\)
\(350\) 15.1787 + 6.28723i 0.811337 + 0.336067i
\(351\) 0.126983 0.306563i 0.00677783 0.0163631i
\(352\) 1.56645 0.648847i 0.0834923 0.0345836i
\(353\) 20.1049i 1.07007i 0.844829 + 0.535037i \(0.179702\pi\)
−0.844829 + 0.535037i \(0.820298\pi\)
\(354\) 2.93694 + 7.09040i 0.156097 + 0.376850i
\(355\) 0.0694750 + 0.0694750i 0.00368735 + 0.00368735i
\(356\) −13.8281 −0.732885
\(357\) 4.09334 13.4689i 0.216643 0.712849i
\(358\) −9.11933 −0.481972
\(359\) −17.8899 17.8899i −0.944193 0.944193i 0.0543305 0.998523i \(-0.482698\pi\)
−0.998523 + 0.0543305i \(0.982698\pi\)
\(360\) 0.165911 + 0.400544i 0.00874426 + 0.0211105i
\(361\) 14.4039i 0.758098i
\(362\) −0.717569 + 0.297227i −0.0377146 + 0.0156219i
\(363\) −3.10939 + 7.50672i −0.163200 + 0.394001i
\(364\) −1.04667 0.433546i −0.0548605 0.0227240i
\(365\) −3.72126 + 3.72126i −0.194780 + 0.194780i
\(366\) −5.68506 + 5.68506i −0.297163 + 0.297163i
\(367\) −9.53441 3.94928i −0.497692 0.206151i 0.119694 0.992811i \(-0.461809\pi\)
−0.617386 + 0.786660i \(0.711809\pi\)
\(368\) −0.720777 + 1.74011i −0.0375731 + 0.0907094i
\(369\) −11.1953 + 4.63726i −0.582806 + 0.241406i
\(370\) 4.60180i 0.239236i
\(371\) 4.09040 + 9.87510i 0.212363 + 0.512690i
\(372\) 1.82843 + 1.82843i 0.0947995 + 0.0947995i
\(373\) −18.2719 −0.946083 −0.473041 0.881040i \(-0.656844\pi\)
−0.473041 + 0.881040i \(0.656844\pi\)
\(374\) 6.95749 0.681624i 0.359763 0.0352460i
\(375\) −4.25397 −0.219674
\(376\) −1.68297 1.68297i −0.0867928 0.0867928i
\(377\) −1.08427 2.61766i −0.0558428 0.134816i
\(378\) 3.41421i 0.175608i
\(379\) 19.3386 8.01029i 0.993355 0.411461i 0.173999 0.984746i \(-0.444331\pi\)
0.819356 + 0.573285i \(0.194331\pi\)
\(380\) 0.355689 0.858710i 0.0182465 0.0440509i
\(381\) −11.1644 4.62445i −0.571970 0.236918i
\(382\) −9.49276 + 9.49276i −0.485692 + 0.485692i
\(383\) −16.2616 + 16.2616i −0.830929 + 0.830929i −0.987644 0.156715i \(-0.949910\pi\)
0.156715 + 0.987644i \(0.449910\pi\)
\(384\) −0.923880 0.382683i −0.0471465 0.0195287i
\(385\) 0.960434 2.31869i 0.0489482 0.118172i
\(386\) −4.70167 + 1.94749i −0.239309 + 0.0991249i
\(387\) 10.0933i 0.513073i
\(388\) 1.43713 + 3.46953i 0.0729590 + 0.176139i
\(389\) −6.41875 6.41875i −0.325444 0.325444i 0.525407 0.850851i \(-0.323913\pi\)
−0.850851 + 0.525407i \(0.823913\pi\)
\(390\) 0.143860 0.00728462
\(391\) −4.92966 + 6.00049i −0.249304 + 0.303458i
\(392\) 4.65685 0.235207
\(393\) −0.634051 0.634051i −0.0319836 0.0319836i
\(394\) −1.58986 3.83825i −0.0800958 0.193368i
\(395\) 5.43641i 0.273536i
\(396\) −1.56645 + 0.648847i −0.0787173 + 0.0326058i
\(397\) −2.98821 + 7.21417i −0.149974 + 0.362069i −0.980956 0.194230i \(-0.937779\pi\)
0.830982 + 0.556299i \(0.187779\pi\)
\(398\) −9.89357 4.09805i −0.495920 0.205417i
\(399\) 5.17574 5.17574i 0.259111 0.259111i
\(400\) 3.40262 3.40262i 0.170131 0.170131i
\(401\) −16.0392 6.64367i −0.800962 0.331769i −0.0556201 0.998452i \(-0.517714\pi\)
−0.745342 + 0.666683i \(0.767714\pi\)
\(402\) 6.03535 14.5706i 0.301016 0.726716i
\(403\) 0.792706 0.328350i 0.0394875 0.0163563i
\(404\) 0.636303i 0.0316573i
\(405\) −0.165911 0.400544i −0.00824417 0.0199032i
\(406\) 20.6143 + 20.6143i 1.02307 + 1.02307i
\(407\) −17.9968 −0.892069
\(408\) −3.18585 2.61732i −0.157723 0.129576i
\(409\) 4.42153 0.218631 0.109315 0.994007i \(-0.465134\pi\)
0.109315 + 0.994007i \(0.465134\pi\)
\(410\) −3.71485 3.71485i −0.183463 0.183463i
\(411\) 4.82597 + 11.6509i 0.238048 + 0.574698i
\(412\) 8.59955i 0.423669i
\(413\) −24.2081 + 10.0273i −1.19120 + 0.493413i
\(414\) 0.720777 1.74011i 0.0354242 0.0855217i
\(415\) −0.418059 0.173166i −0.0205217 0.00850037i
\(416\) −0.234633 + 0.234633i −0.0115038 + 0.0115038i
\(417\) −12.0524 + 12.0524i −0.590210 + 0.590210i
\(418\) 3.35826 + 1.39104i 0.164258 + 0.0680378i
\(419\) 8.86537 21.4029i 0.433102 1.04560i −0.545180 0.838319i \(-0.683539\pi\)
0.978282 0.207281i \(-0.0664613\pi\)
\(420\) −1.36754 + 0.566454i −0.0667292 + 0.0276401i
\(421\) 20.0524i 0.977295i 0.872481 + 0.488648i \(0.162510\pi\)
−0.872481 + 0.488648i \(0.837490\pi\)
\(422\) 1.80684 + 4.36210i 0.0879557 + 0.212344i
\(423\) 1.68297 + 1.68297i 0.0818290 + 0.0818290i
\(424\) 3.13066 0.152038
\(425\) 17.5026 9.34373i 0.849002 0.453237i
\(426\) 0.226626 0.0109800
\(427\) −19.4100 19.4100i −0.939315 0.939315i
\(428\) 0.828427 + 2.00000i 0.0400435 + 0.0966736i
\(429\) 0.562609i 0.0271630i
\(430\) −4.04283 + 1.67459i −0.194962 + 0.0807561i
\(431\) 15.3635 37.0908i 0.740033 1.78660i 0.134285 0.990943i \(-0.457126\pi\)
0.605749 0.795656i \(-0.292874\pi\)
\(432\) 0.923880 + 0.382683i 0.0444502 + 0.0184119i
\(433\) −15.4502 + 15.4502i −0.742490 + 0.742490i −0.973057 0.230566i \(-0.925942\pi\)
0.230566 + 0.973057i \(0.425942\pi\)
\(434\) −6.24264 + 6.24264i −0.299656 + 0.299656i
\(435\) −3.42014 1.41667i −0.163983 0.0679240i
\(436\) 3.02847 7.31136i 0.145037 0.350151i
\(437\) −3.73055 + 1.54524i −0.178456 + 0.0739190i
\(438\) 12.1387i 0.580008i
\(439\) 0.320985 + 0.774927i 0.0153198 + 0.0369852i 0.931354 0.364114i \(-0.118628\pi\)
−0.916035 + 0.401099i \(0.868628\pi\)
\(440\) −0.519783 0.519783i −0.0247797 0.0247797i
\(441\) −4.65685 −0.221755
\(442\) −1.20692 + 0.644311i −0.0574073 + 0.0306467i
\(443\) −3.21267 −0.152639 −0.0763194 0.997083i \(-0.524317\pi\)
−0.0763194 + 0.997083i \(0.524317\pi\)
\(444\) 7.50548 + 7.50548i 0.356194 + 0.356194i
\(445\) 2.29422 + 5.53874i 0.108757 + 0.262562i
\(446\) 15.6359i 0.740383i
\(447\) 16.1683 6.69711i 0.764732 0.316762i
\(448\) 1.30656 3.15432i 0.0617293 0.149028i
\(449\) −26.5599 11.0015i −1.25344 0.519192i −0.345550 0.938400i \(-0.612308\pi\)
−0.907890 + 0.419208i \(0.862308\pi\)
\(450\) −3.40262 + 3.40262i −0.160401 + 0.160401i
\(451\) 14.5281 14.5281i 0.684102 0.684102i
\(452\) 8.48886 + 3.51620i 0.399283 + 0.165388i
\(453\) −3.68910 + 8.90628i −0.173329 + 0.418454i
\(454\) 10.2195 4.23304i 0.479623 0.198666i
\(455\) 0.491168i 0.0230263i
\(456\) −0.820420 1.98067i −0.0384197 0.0927533i
\(457\) −5.26863 5.26863i −0.246456 0.246456i 0.573058 0.819515i \(-0.305757\pi\)
−0.819515 + 0.573058i \(0.805757\pi\)
\(458\) 15.3852 0.718901
\(459\) 3.18585 + 2.61732i 0.148703 + 0.122166i
\(460\) 0.816574 0.0380730
\(461\) −18.1287 18.1287i −0.844337 0.844337i 0.145082 0.989420i \(-0.453655\pi\)
−0.989420 + 0.145082i \(0.953655\pi\)
\(462\) −2.21530 5.34821i −0.103065 0.248821i
\(463\) 10.7747i 0.500744i −0.968150 0.250372i \(-0.919447\pi\)
0.968150 0.250372i \(-0.0805529\pi\)
\(464\) 7.88877 3.26763i 0.366227 0.151696i
\(465\) 0.429010 1.03572i 0.0198948 0.0480304i
\(466\) 9.58764 + 3.97133i 0.444139 + 0.183968i
\(467\) 25.2078 25.2078i 1.16648 1.16648i 0.183447 0.983030i \(-0.441275\pi\)
0.983030 0.183447i \(-0.0587254\pi\)
\(468\) 0.234633 0.234633i 0.0108459 0.0108459i
\(469\) 49.7472 + 20.6060i 2.29711 + 0.951495i
\(470\) −0.394882 + 0.953329i −0.0182145 + 0.0439738i
\(471\) 4.42516 1.83296i 0.203901 0.0844585i
\(472\) 7.67459i 0.353252i
\(473\) −6.54903 15.8108i −0.301125 0.726980i
\(474\) 8.86672 + 8.86672i 0.407262 + 0.407262i
\(475\) 10.3163 0.473346
\(476\) 8.93608 10.8772i 0.409584 0.498555i
\(477\) −3.13066 −0.143343
\(478\) 17.5224 + 17.5224i 0.801454 + 0.801454i
\(479\) −5.38442 12.9991i −0.246020 0.593946i 0.751839 0.659347i \(-0.229167\pi\)
−0.997859 + 0.0654014i \(0.979167\pi\)
\(480\) 0.433546i 0.0197886i
\(481\) 3.25397 1.34784i 0.148368 0.0614561i
\(482\) −1.64752 + 3.97746i −0.0750424 + 0.181168i
\(483\) 5.94110 + 2.46088i 0.270329 + 0.111974i
\(484\) −5.74540 + 5.74540i −0.261154 + 0.261154i
\(485\) 1.15126 1.15126i 0.0522762 0.0522762i
\(486\) −0.923880 0.382683i −0.0419080 0.0173589i
\(487\) −9.23512 + 22.2956i −0.418483 + 1.01031i 0.564304 + 0.825567i \(0.309145\pi\)
−0.982787 + 0.184741i \(0.940855\pi\)
\(488\) −7.42788 + 3.07673i −0.336244 + 0.139277i
\(489\) 17.8049i 0.805164i
\(490\) −0.772622 1.86527i −0.0349035 0.0842645i
\(491\) 18.7525 + 18.7525i 0.846288 + 0.846288i 0.989668 0.143380i \(-0.0457971\pi\)
−0.143380 + 0.989668i \(0.545797\pi\)
\(492\) −12.1177 −0.546310
\(493\) 35.0384 3.43271i 1.57805 0.154601i
\(494\) −0.711378 −0.0320064
\(495\) 0.519783 + 0.519783i 0.0233625 + 0.0233625i
\(496\) 0.989538 + 2.38896i 0.0444316 + 0.107267i
\(497\) 0.773748i 0.0347073i
\(498\) −0.964279 + 0.399418i −0.0432104 + 0.0178983i
\(499\) −1.73737 + 4.19438i −0.0777753 + 0.187766i −0.957985 0.286819i \(-0.907402\pi\)
0.880209 + 0.474585i \(0.157402\pi\)
\(500\) −3.93015 1.62792i −0.175762 0.0728029i
\(501\) −12.4416 + 12.4416i −0.555848 + 0.555848i
\(502\) 13.4802 13.4802i 0.601652 0.601652i
\(503\) 3.69306 + 1.52972i 0.164666 + 0.0682067i 0.463494 0.886100i \(-0.346596\pi\)
−0.298828 + 0.954307i \(0.596596\pi\)
\(504\) −1.30656 + 3.15432i −0.0581989 + 0.140505i
\(505\) −0.254867 + 0.105570i −0.0113414 + 0.00469778i
\(506\) 3.19347i 0.141967i
\(507\) 4.93275 + 11.9087i 0.219071 + 0.528884i
\(508\) −8.54487 8.54487i −0.379117 0.379117i
\(509\) 22.9751 1.01835 0.509176 0.860662i \(-0.329950\pi\)
0.509176 + 0.860662i \(0.329950\pi\)
\(510\) −0.519783 + 1.71031i −0.0230164 + 0.0757340i
\(511\) −41.4440 −1.83337
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0.820420 + 1.98067i 0.0362224 + 0.0874486i
\(514\) 26.7594i 1.18031i
\(515\) 3.44450 1.42676i 0.151783 0.0628704i
\(516\) −3.86256 + 9.32503i −0.170040 + 0.410512i
\(517\) −3.72830 1.54431i −0.163970 0.0679187i
\(518\) −25.6253 + 25.6253i −1.12591 + 1.12591i
\(519\) 13.6799 13.6799i 0.600479 0.600479i
\(520\) 0.132909 + 0.0550527i 0.00582844 + 0.00241422i
\(521\) −6.46078 + 15.5977i −0.283052 + 0.683347i −0.999904 0.0138781i \(-0.995582\pi\)
0.716852 + 0.697225i \(0.245582\pi\)
\(522\) −7.88877 + 3.26763i −0.345282 + 0.143020i
\(523\) 15.5903i 0.681717i 0.940115 + 0.340859i \(0.110718\pi\)
−0.940115 + 0.340859i \(0.889282\pi\)
\(524\) −0.343146 0.828427i −0.0149904 0.0361900i
\(525\) −11.6173 11.6173i −0.507020 0.507020i
\(526\) −27.5122 −1.19959
\(527\) 1.03953 + 10.6107i 0.0452825 + 0.462208i
\(528\) −1.69552 −0.0737880
\(529\) 13.7550 + 13.7550i 0.598043 + 0.598043i
\(530\) −0.519409 1.25397i −0.0225617 0.0544688i
\(531\) 7.67459i 0.333049i
\(532\) 6.76242 2.80109i 0.293188 0.121443i
\(533\) −1.53874 + 3.71485i −0.0666503 + 0.160908i
\(534\) 12.7755 + 5.29177i 0.552848 + 0.228997i
\(535\) 0.663643 0.663643i 0.0286918 0.0286918i
\(536\) 11.1519 11.1519i 0.481687 0.481687i
\(537\) 8.42516 + 3.48982i 0.363573 + 0.150597i
\(538\) 3.83250 9.25247i 0.165231 0.398902i
\(539\) 7.29475 3.02158i 0.314207 0.130149i
\(540\) 0.433546i 0.0186568i
\(541\) 5.79023 + 13.9789i 0.248941 + 0.600998i 0.998115 0.0613763i \(-0.0195490\pi\)
−0.749173 + 0.662374i \(0.769549\pi\)
\(542\) 6.51209 + 6.51209i 0.279718 + 0.279718i
\(543\) 0.776691 0.0333310
\(544\) −1.94174 3.63726i −0.0832514 0.155946i
\(545\) −3.43098 −0.146967
\(546\) 0.801088 + 0.801088i 0.0342834 + 0.0342834i
\(547\) −1.01292 2.44540i −0.0433092 0.104558i 0.900745 0.434349i \(-0.143022\pi\)
−0.944054 + 0.329791i \(0.893022\pi\)
\(548\) 12.6109i 0.538710i
\(549\) 7.42788 3.07673i 0.317014 0.131312i
\(550\) 3.12228 7.53784i 0.133134 0.321415i
\(551\) 16.9124 + 7.00535i 0.720493 + 0.298438i
\(552\) 1.33182 1.33182i 0.0566861 0.0566861i
\(553\) −30.2729 + 30.2729i −1.28733 + 1.28733i
\(554\) 7.72852 + 3.20126i 0.328353 + 0.136008i
\(555\) 1.76103 4.25151i 0.0747517 0.180467i
\(556\) −15.7473 + 6.52273i −0.667832 + 0.276625i
\(557\) 12.4900i 0.529217i 0.964356 + 0.264609i \(0.0852427\pi\)
−0.964356 + 0.264609i \(0.914757\pi\)
\(558\) −0.989538 2.38896i −0.0418905 0.101133i
\(559\) 2.36823 + 2.36823i 0.100166 + 0.100166i
\(560\) −1.48022 −0.0625506
\(561\) −6.68873 2.03278i −0.282398 0.0858239i
\(562\) 10.9996 0.463991
\(563\) −1.40167 1.40167i −0.0590734 0.0590734i 0.676953 0.736026i \(-0.263300\pi\)
−0.736026 + 0.676953i \(0.763300\pi\)
\(564\) 0.910819 + 2.19891i 0.0383524 + 0.0925909i
\(565\) 3.98354i 0.167589i
\(566\) −19.5290 + 8.08918i −0.820866 + 0.340014i
\(567\) 1.30656 3.15432i 0.0548705 0.132469i
\(568\) 0.209375 + 0.0867259i 0.00878517 + 0.00363894i
\(569\) 11.8558 11.8558i 0.497020 0.497020i −0.413489 0.910509i \(-0.635690\pi\)
0.910509 + 0.413489i \(0.135690\pi\)
\(570\) −0.657228 + 0.657228i −0.0275283 + 0.0275283i
\(571\) −27.8300 11.5275i −1.16465 0.482413i −0.285228 0.958460i \(-0.592069\pi\)
−0.879420 + 0.476047i \(0.842069\pi\)
\(572\) −0.215301 + 0.519783i −0.00900220 + 0.0217332i
\(573\) 12.4029 5.13744i 0.518138 0.214620i
\(574\) 41.3725i 1.72686i
\(575\) 3.46840 + 8.37347i 0.144642 + 0.349198i
\(576\) 0.707107 + 0.707107i 0.0294628 + 0.0294628i
\(577\) 19.8204 0.825132 0.412566 0.910928i \(-0.364633\pi\)
0.412566 + 0.910928i \(0.364633\pi\)
\(578\) −3.29931 16.6768i −0.137233 0.693662i
\(579\) 5.08905 0.211494
\(580\) −2.61766 2.61766i −0.108692 0.108692i
\(581\) −1.36370 3.29226i −0.0565757 0.136586i
\(582\) 3.75539i 0.155666i
\(583\) 4.90403 2.03132i 0.203104 0.0841285i
\(584\) −4.64527 + 11.2147i −0.192222 + 0.464066i
\(585\) −0.132909 0.0550527i −0.00549511 0.00227615i
\(586\) 17.7679 17.7679i 0.733987 0.733987i
\(587\) −9.09425 + 9.09425i −0.375360 + 0.375360i −0.869425 0.494065i \(-0.835510\pi\)
0.494065 + 0.869425i \(0.335510\pi\)
\(588\) −4.30237 1.78210i −0.177427 0.0734926i
\(589\) −2.12143 + 5.12158i −0.0874120 + 0.211031i
\(590\) 3.07401 1.27330i 0.126555 0.0524208i
\(591\) 4.15449i 0.170893i
\(592\) 4.06193 + 9.80638i 0.166944 + 0.403040i
\(593\) −25.3356 25.3356i −1.04041 1.04041i −0.999148 0.0412617i \(-0.986862\pi\)
−0.0412617 0.999148i \(-0.513138\pi\)
\(594\) 1.69552 0.0695680
\(595\) −5.83938 1.77465i −0.239391 0.0727536i
\(596\) 17.5004 0.716844
\(597\) 7.57221 + 7.57221i 0.309910 + 0.309910i
\(598\) −0.239169 0.577405i −0.00978035 0.0236119i
\(599\) 21.1148i 0.862728i −0.902178 0.431364i \(-0.858032\pi\)
0.902178 0.431364i \(-0.141968\pi\)
\(600\) −4.44574 + 1.84149i −0.181497 + 0.0751784i
\(601\) 5.83004 14.0750i 0.237812 0.574130i −0.759244 0.650806i \(-0.774431\pi\)
0.997056 + 0.0766767i \(0.0244309\pi\)
\(602\) −31.8377 13.1876i −1.29761 0.537486i
\(603\) −11.1519 + 11.1519i −0.454139 + 0.454139i
\(604\) −6.81657 + 6.81657i −0.277362 + 0.277362i
\(605\) 3.25451 + 1.34806i 0.132314 + 0.0548065i
\(606\) −0.243503 + 0.587868i −0.00989162 + 0.0238805i
\(607\) −35.4629 + 14.6892i −1.43940 + 0.596217i −0.959652 0.281192i \(-0.909270\pi\)
−0.479743 + 0.877409i \(0.659270\pi\)
\(608\) 2.14386i 0.0869450i
\(609\) −11.1564 26.9339i −0.452080 1.09142i
\(610\) 2.46473 + 2.46473i 0.0997940 + 0.0997940i
\(611\) 0.789763 0.0319504
\(612\) 1.94174 + 3.63726i 0.0784902 + 0.147027i
\(613\) −1.39554 −0.0563654 −0.0281827 0.999603i \(-0.508972\pi\)
−0.0281827 + 0.999603i \(0.508972\pi\)
\(614\) −10.8494 10.8494i −0.437844 0.437844i
\(615\) 2.01046 + 4.85369i 0.0810697 + 0.195719i
\(616\) 5.78886i 0.233240i
\(617\) 7.77433 3.22023i 0.312983 0.129642i −0.220662 0.975350i \(-0.570822\pi\)
0.533645 + 0.845709i \(0.320822\pi\)
\(618\) 3.29090 7.94495i 0.132380 0.319593i
\(619\) −4.93657 2.04479i −0.198417 0.0821872i 0.281262 0.959631i \(-0.409247\pi\)
−0.479679 + 0.877444i \(0.659247\pi\)
\(620\) 0.792706 0.792706i 0.0318359 0.0318359i
\(621\) −1.33182 + 1.33182i −0.0534442 + 0.0534442i
\(622\) −20.0320 8.29752i −0.803210 0.332700i
\(623\) −18.0672 + 43.6181i −0.723848 + 1.74752i
\(624\) 0.306563 0.126983i 0.0122723 0.00508337i
\(625\) 22.2159i 0.888636i
\(626\) 3.21013 + 7.74993i 0.128302 + 0.309750i
\(627\) −2.57030 2.57030i −0.102648 0.102648i
\(628\) 4.78976 0.191132
\(629\) 4.26713 + 43.5555i 0.170142 + 1.73667i
\(630\) 1.48022 0.0589733
\(631\) 1.03437 + 1.03437i 0.0411776 + 0.0411776i 0.727396 0.686218i \(-0.240730\pi\)
−0.686218 + 0.727396i \(0.740730\pi\)
\(632\) 4.79863 + 11.5849i 0.190879 + 0.460824i
\(633\) 4.72151i 0.187663i
\(634\) −22.1549 + 9.17686i −0.879884 + 0.364460i
\(635\) −2.00491 + 4.84028i −0.0795624 + 0.192081i
\(636\) −2.89235 1.19805i −0.114689 0.0475058i
\(637\) −1.09265 + 1.09265i −0.0432925 + 0.0432925i
\(638\) 10.2372 10.2372i 0.405295 0.405295i
\(639\) −0.209375 0.0867259i −0.00828274 0.00343082i
\(640\) −0.165911 + 0.400544i −0.00655820 + 0.0158329i
\(641\) −0.442882 + 0.183448i −0.0174928 + 0.00724574i −0.391413 0.920215i \(-0.628013\pi\)
0.373920 + 0.927461i \(0.378013\pi\)
\(642\) 2.16478i 0.0854372i
\(643\) −12.2860 29.6610i −0.484512 1.16972i −0.957444 0.288617i \(-0.906804\pi\)
0.472932 0.881099i \(-0.343196\pi\)
\(644\) 4.54712 + 4.54712i 0.179182 + 0.179182i
\(645\) 4.37592 0.172302
\(646\) 2.57030 8.45741i 0.101127 0.332752i
\(647\) 23.4802 0.923103 0.461551 0.887114i \(-0.347293\pi\)
0.461551 + 0.887114i \(0.347293\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) 4.97963 + 12.0219i 0.195468 + 0.471901i
\(650\) 1.59674i 0.0626292i
\(651\) 8.15640 3.37849i 0.319675 0.132414i
\(652\) 6.81363 16.4496i 0.266842 0.644215i
\(653\) 41.9154 + 17.3619i 1.64027 + 0.679424i 0.996326 0.0856443i \(-0.0272949\pi\)
0.643949 + 0.765068i \(0.277295\pi\)
\(654\) −5.59588 + 5.59588i −0.218816 + 0.218816i
\(655\) −0.274890 + 0.274890i −0.0107408 + 0.0107408i
\(656\) −11.1953 4.63726i −0.437104 0.181055i
\(657\) 4.64527 11.2147i 0.181229 0.437526i
\(658\) −7.50756 + 3.10973i −0.292675 + 0.121230i
\(659\) 12.8417i 0.500240i −0.968215 0.250120i \(-0.919530\pi\)
0.968215 0.250120i \(-0.0804701\pi\)
\(660\) 0.281305 + 0.679129i 0.0109498 + 0.0264351i
\(661\) −19.2247 19.2247i −0.747753 0.747753i 0.226304 0.974057i \(-0.427336\pi\)
−0.974057 + 0.226304i \(0.927336\pi\)
\(662\) 4.07733 0.158470
\(663\) 1.36162 0.133397i 0.0528808 0.00518072i
\(664\) −1.04373 −0.0405045
\(665\) −2.24392 2.24392i −0.0870154 0.0870154i
\(666\) −4.06193 9.80638i −0.157397 0.379989i
\(667\) 16.0825i 0.622719i
\(668\) −16.2557 + 6.73332i −0.628951 + 0.260520i
\(669\) −5.98361 + 14.4457i −0.231340 + 0.558504i
\(670\) −6.31703 2.61660i −0.244048 0.101088i
\(671\) −9.63912 + 9.63912i −0.372114 + 0.372114i
\(672\) −2.41421 + 2.41421i −0.0931303 + 0.0931303i
\(673\) 15.4077 + 6.38207i 0.593923 + 0.246011i 0.659337 0.751847i \(-0.270837\pi\)
−0.0654145 + 0.997858i \(0.520837\pi\)
\(674\) −3.83323 + 9.25423i −0.147650 + 0.356460i
\(675\) 4.44574 1.84149i 0.171117 0.0708789i
\(676\) 12.8899i 0.495765i
\(677\) 0.996062 + 2.40471i 0.0382818 + 0.0924204i 0.941864 0.335994i \(-0.109072\pi\)
−0.903582 + 0.428415i \(0.859072\pi\)
\(678\) −6.49709 6.49709i −0.249519 0.249519i
\(679\) 12.8217 0.492052
\(680\) −1.13473 + 1.38121i −0.0435147 + 0.0529671i
\(681\) −11.0615 −0.423876
\(682\) 3.10013 + 3.10013i 0.118710 + 0.118710i
\(683\) 4.68507 + 11.3108i 0.179269 + 0.432794i 0.987814 0.155641i \(-0.0497442\pi\)
−0.808544 + 0.588435i \(0.799744\pi\)
\(684\) 2.14386i 0.0819725i
\(685\) 5.05121 2.09228i 0.192997 0.0799419i
\(686\) −3.06147 + 7.39104i −0.116887 + 0.282191i
\(687\) −14.2140 5.88764i −0.542299 0.224628i
\(688\) −7.13707 + 7.13707i −0.272098 + 0.272098i
\(689\) −0.734556 + 0.734556i −0.0279843 + 0.0279843i
\(690\) −0.754416 0.312489i −0.0287201 0.0118963i
\(691\) −5.99803 + 14.4805i −0.228176 + 0.550865i −0.995955 0.0898487i \(-0.971362\pi\)
0.767779 + 0.640714i \(0.221362\pi\)
\(692\) 17.8736 7.40349i 0.679452 0.281438i
\(693\) 5.78886i 0.219901i
\(694\) 3.30798 + 7.98618i 0.125569 + 0.303151i
\(695\) 5.22528 + 5.22528i 0.198206 + 0.198206i
\(696\) −8.53874 −0.323660
\(697\) −38.6053 31.7160i −1.46228 1.20133i
\(698\) 20.8126 0.787768
\(699\) −7.33806 7.33806i −0.277551 0.277551i
\(700\) −6.28723 15.1787i −0.237635 0.573702i
\(701\) 30.8222i 1.16414i 0.813139 + 0.582070i \(0.197757\pi\)
−0.813139 + 0.582070i \(0.802243\pi\)
\(702\) −0.306563 + 0.126983i −0.0115705 + 0.00479265i
\(703\) −8.70822 + 21.0235i −0.328437 + 0.792916i
\(704\) −1.56645 0.648847i −0.0590380 0.0244543i
\(705\) 0.729646 0.729646i 0.0274801 0.0274801i
\(706\) 14.2163 14.2163i 0.535037 0.535037i
\(707\) −2.00711 0.831370i −0.0754850 0.0312669i
\(708\) 2.93694 7.09040i 0.110377 0.266474i
\(709\) 0.364823 0.151115i 0.0137012 0.00567523i −0.375822 0.926692i \(-0.622640\pi\)
0.389524 + 0.921017i \(0.372640\pi\)
\(710\) 0.0982525i 0.00368735i
\(711\) −4.79863 11.5849i −0.179963 0.434469i
\(712\) 9.77791 + 9.77791i 0.366443 + 0.366443i
\(713\) −4.87028 −0.182393
\(714\) −12.4184 + 6.62951i −0.464746 + 0.248103i
\(715\) 0.243917 0.00912197
\(716\) 6.44834 + 6.44834i 0.240986 + 0.240986i
\(717\) −9.48303 22.8941i −0.354150 0.854994i
\(718\) 25.3001i 0.944193i
\(719\) −10.2515 + 4.24631i −0.382317 + 0.158361i −0.565561 0.824707i \(-0.691340\pi\)
0.183244 + 0.983067i \(0.441340\pi\)
\(720\) 0.165911 0.400544i 0.00618313 0.0149274i
\(721\) 27.1257 + 11.2359i 1.01022 + 0.418445i
\(722\) −10.1851 + 10.1851i −0.379049 + 0.379049i
\(723\) 3.04422 3.04422i 0.113216 0.113216i
\(724\) 0.717569 + 0.297227i 0.0266682 + 0.0110463i
\(725\) 15.7240 37.9611i 0.583974 1.40984i
\(726\) 7.50672 3.10939i 0.278601 0.115400i
\(727\) 27.2866i 1.01200i −0.862533 0.506001i \(-0.831123\pi\)
0.862533 0.506001i \(-0.168877\pi\)
\(728\) 0.433546 + 1.04667i 0.0160683 + 0.0387922i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) 5.26266 0.194780
\(731\) −36.7121 + 19.5986i −1.35785 + 0.724882i
\(732\) 8.03988 0.297163
\(733\) 20.7090 + 20.7090i 0.764906 + 0.764906i 0.977205 0.212299i \(-0.0680951\pi\)
−0.212299 + 0.977205i \(0.568095\pi\)
\(734\) 3.94928 + 9.53441i 0.145771 + 0.351921i
\(735\) 2.01896i 0.0744704i
\(736\) 1.74011 0.720777i 0.0641412 0.0265682i
\(737\) 10.2330 24.7047i 0.376939 0.910011i
\(738\) 11.1953 + 4.63726i 0.412106 + 0.170700i
\(739\) 26.2007 26.2007i 0.963810 0.963810i −0.0355580 0.999368i \(-0.511321\pi\)
0.999368 + 0.0355580i \(0.0113209\pi\)
\(740\) 3.25397 3.25397i 0.119618 0.119618i
\(741\) 0.657228 + 0.272233i 0.0241439 + 0.0100007i
\(742\) 4.09040 9.87510i 0.150163 0.362526i
\(743\) 13.3844 5.54401i 0.491027 0.203390i −0.123410 0.992356i \(-0.539383\pi\)
0.614437 + 0.788966i \(0.289383\pi\)
\(744\) 2.58579i 0.0947995i
\(745\) −2.90350 7.00967i −0.106376 0.256815i
\(746\) 12.9202 + 12.9202i 0.473041 + 0.473041i
\(747\) 1.04373 0.0381880
\(748\) −5.40167 4.43771i −0.197505 0.162259i
\(749\) 7.39104 0.270063
\(750\) 3.00801 + 3.00801i 0.109837 + 0.109837i
\(751\) 16.8240 + 40.6167i 0.613917 + 1.48213i 0.858664 + 0.512539i \(0.171295\pi\)
−0.244747 + 0.969587i \(0.578705\pi\)
\(752\) 2.38009i 0.0867928i
\(753\) −17.6128 + 7.29544i −0.641844 + 0.265861i
\(754\) −1.08427 + 2.61766i −0.0394868 + 0.0953296i
\(755\) 3.86128 + 1.59939i 0.140526 + 0.0582079i
\(756\) 2.41421 2.41421i 0.0878041 0.0878041i
\(757\) 26.7702 26.7702i 0.972980 0.972980i −0.0266643 0.999644i \(-0.508489\pi\)
0.999644 + 0.0266643i \(0.00848850\pi\)
\(758\) −19.3386 8.01029i −0.702408 0.290947i
\(759\) 1.22209 2.95039i 0.0443590 0.107092i
\(760\) −0.858710 + 0.355689i −0.0311487 + 0.0129022i
\(761\) 9.82880i 0.356294i 0.984004 + 0.178147i \(0.0570102\pi\)
−0.984004 + 0.178147i \(0.942990\pi\)
\(762\) 4.62445 + 11.1644i 0.167526 + 0.404444i
\(763\) −19.1055 19.1055i −0.691666 0.691666i
\(764\) 13.4248 0.485692
\(765\) 1.13473 1.38121i 0.0410261 0.0499378i
\(766\) 22.9974 0.830929
\(767\) −1.80071 1.80071i −0.0650200 0.0650200i
\(768\) 0.382683 + 0.923880i 0.0138089 + 0.0333376i
\(769\) 41.1522i 1.48398i 0.670408 + 0.741992i \(0.266119\pi\)
−0.670408 + 0.741992i \(0.733881\pi\)
\(770\) −2.31869 + 0.960434i −0.0835599 + 0.0346116i
\(771\) −10.2404 + 24.7225i −0.368799 + 0.890359i
\(772\) 4.70167 + 1.94749i 0.169217 + 0.0700919i
\(773\) 15.3765 15.3765i 0.553054 0.553054i −0.374267 0.927321i \(-0.622106\pi\)
0.927321 + 0.374267i \(0.122106\pi\)
\(774\) 7.13707 7.13707i 0.256537 0.256537i
\(775\) 11.4957 + 4.76169i 0.412939 + 0.171045i
\(776\) 1.43713 3.46953i 0.0515898 0.124549i
\(777\) 33.4811 13.8683i 1.20113 0.497523i
\(778\) 9.07748i 0.325444i
\(779\) −9.94163 24.0012i −0.356196 0.859933i
\(780\) −0.101724 0.101724i −0.00364231 0.00364231i
\(781\) 0.384248 0.0137495
\(782\) 7.72878 0.757188i 0.276381 0.0270770i
\(783\) 8.53874 0.305150
\(784\) −3.29289 3.29289i −0.117603 0.117603i
\(785\) −0.794673 1.91851i −0.0283631 0.0684746i
\(786\) 0.896683i 0.0319836i
\(787\) 43.9786 18.2165i 1.56767 0.649349i 0.581267 0.813713i \(-0.302557\pi\)
0.986400 + 0.164364i \(0.0525572\pi\)
\(788\) −1.58986 + 3.83825i −0.0566363 + 0.136732i
\(789\) 25.4180 + 10.5285i 0.904905 + 0.374824i
\(790\) 3.84413 3.84413i 0.136768 0.136768i
\(791\) 22.1825 22.1825i 0.788718 0.788718i
\(792\) 1.56645 + 0.648847i 0.0556615 + 0.0230558i
\(793\) 1.02092 2.46473i 0.0362541 0.0875251i
\(794\) 7.21417 2.98821i 0.256021 0.106048i
\(795\) 1.35728i 0.0481378i
\(796\) 4.09805 + 9.89357i 0.145252 + 0.350668i
\(797\) −26.7982 26.7982i −0.949242 0.949242i 0.0495310 0.998773i \(-0.484227\pi\)
−0.998773 + 0.0495310i \(0.984227\pi\)
\(798\) −7.31959 −0.259111
\(799\) −2.85351 + 9.38931i −0.100950 + 0.332170i
\(800\) −4.81204 −0.170131
\(801\) −9.77791 9.77791i −0.345485 0.345485i
\(802\) 6.64367 + 16.0392i 0.234596 + 0.566365i
\(803\) 20.5813i 0.726299i
\(804\) −14.5706 + 6.03535i −0.513866 + 0.212850i
\(805\) 1.06691 2.57574i 0.0376035 0.0907828i
\(806\) −0.792706 0.328350i −0.0279219 0.0115656i
\(807\) −7.08153 + 7.08153i −0.249282 + 0.249282i
\(808\) −0.449934 + 0.449934i −0.0158286 + 0.0158286i
\(809\) −35.6369 14.7613i −1.25293 0.518979i −0.345195 0.938531i \(-0.612187\pi\)
−0.907731 + 0.419552i \(0.862187\pi\)
\(810\) −0.165911 + 0.400544i −0.00582951 + 0.0140737i
\(811\) −17.9596 + 7.43911i −0.630647 + 0.261223i −0.675028 0.737792i \(-0.735869\pi\)
0.0443808 + 0.999015i \(0.485869\pi\)
\(812\) 29.1531i 1.02307i
\(813\) −3.52432 8.50846i −0.123603 0.298405i
\(814\) 12.7257 + 12.7257i 0.446034 + 0.446034i
\(815\) −7.71922 −0.270393
\(816\) 0.402015 + 4.10346i 0.0140734 + 0.143650i
\(817\) −21.6387 −0.757043
\(818\) −3.12649 3.12649i −0.109315 0.109315i
\(819\) −0.433546 1.04667i −0.0151493 0.0365737i
\(820\) 5.25359i 0.183463i
\(821\) 0.214175 0.0887142i 0.00747476 0.00309615i −0.378943 0.925420i \(-0.623712\pi\)
0.386418 + 0.922324i \(0.373712\pi\)
\(822\) 4.82597 11.6509i 0.168325 0.406373i
\(823\) −20.7809 8.60773i −0.724376 0.300047i −0.0101376 0.999949i \(-0.503227\pi\)
−0.714239 + 0.699902i \(0.753227\pi\)
\(824\) 6.08080 6.08080i 0.211835 0.211835i
\(825\) −5.76921 + 5.76921i −0.200858 + 0.200858i
\(826\) 24.2081 + 10.0273i 0.842309 + 0.348896i
\(827\) −20.0190 + 48.3300i −0.696127 + 1.68060i 0.0359274 + 0.999354i \(0.488561\pi\)
−0.732055 + 0.681246i \(0.761439\pi\)
\(828\) −1.74011 + 0.720777i −0.0604729 + 0.0250487i
\(829\) 23.3260i 0.810144i −0.914285 0.405072i \(-0.867246\pi\)
0.914285 0.405072i \(-0.132754\pi\)
\(830\) 0.173166 + 0.418059i 0.00601067 + 0.0145110i
\(831\) −5.91515 5.91515i −0.205194 0.205194i
\(832\) 0.331821 0.0115038
\(833\) −9.04240 16.9382i −0.313301 0.586873i
\(834\) 17.0447 0.590210
\(835\) 5.39398 + 5.39398i 0.186666 + 0.186666i
\(836\) −1.39104 3.35826i −0.0481100 0.116148i
\(837\) 2.58579i 0.0893779i
\(838\) −21.4029 + 8.86537i −0.739351 + 0.306249i
\(839\) −5.13605 + 12.3995i −0.177316 + 0.428079i −0.987402 0.158232i \(-0.949421\pi\)
0.810086 + 0.586312i \(0.199421\pi\)
\(840\) 1.36754 + 0.566454i 0.0471847 + 0.0195445i
\(841\) 31.0491 31.0491i 1.07066 1.07066i
\(842\) 14.1792 14.1792i 0.488648 0.488648i
\(843\) −10.1623 4.20937i −0.350009 0.144979i
\(844\) 1.80684 4.36210i 0.0621941 0.150150i
\(845\) 5.16297 2.13857i 0.177611 0.0735691i
\(846\) 2.38009i 0.0818290i
\(847\) 10.6161 + 25.6296i 0.364774 + 0.880642i
\(848\) −2.21371 2.21371i −0.0760191 0.0760191i
\(849\) 21.1380 0.725456
\(850\) −18.9832 5.76921i −0.651120 0.197882i
\(851\) −19.9919 −0.685314
\(852\) −0.160248 0.160248i −0.00549002 0.00549002i
\(853\) −19.1093 46.1339i −0.654290 1.57960i −0.806491 0.591246i \(-0.798636\pi\)
0.152202 0.988349i \(-0.451364\pi\)
\(854\) 27.4499i 0.939315i
\(855\) 0.858710 0.355689i 0.0293673 0.0121643i
\(856\) 0.828427 2.00000i 0.0283151 0.0683586i
\(857\) 15.8686 + 6.57298i 0.542060 + 0.224529i 0.636876 0.770966i \(-0.280226\pi\)
−0.0948160 + 0.995495i \(0.530226\pi\)
\(858\) 0.397825 0.397825i 0.0135815 0.0135815i
\(859\) −6.19681 + 6.19681i −0.211433 + 0.211433i −0.804876 0.593443i \(-0.797768\pi\)
0.593443 + 0.804876i \(0.297768\pi\)
\(860\) 4.04283 + 1.67459i 0.137859 + 0.0571032i
\(861\) −15.8326 + 38.2233i −0.539573 + 1.30264i
\(862\) −37.0908 + 15.3635i −1.26332 + 0.523283i
\(863\) 35.9177i 1.22265i −0.791379 0.611326i \(-0.790636\pi\)
0.791379 0.611326i \(-0.209364\pi\)
\(864\) −0.382683 0.923880i −0.0130192 0.0314310i
\(865\) −5.93084 5.93084i −0.201655 0.201655i
\(866\) 21.8499 0.742490
\(867\) −3.33376 + 16.6699i −0.113220 + 0.566140i
\(868\) 8.82843 0.299656
\(869\) 15.0337 + 15.0337i 0.509983 + 0.509983i
\(870\) 1.41667 + 3.42014i 0.0480296 + 0.115954i
\(871\) 5.23320i 0.177320i
\(872\) −7.31136 + 3.02847i −0.247594 + 0.102557i
\(873\) −1.43713 + 3.46953i −0.0486394 + 0.117426i
\(874\) 3.73055 + 1.54524i 0.126188 + 0.0522686i
\(875\) −10.2700 + 10.2700i −0.347189 + 0.347189i
\(876\) 8.58333 8.58333i 0.290004 0.290004i
\(877\) −3.90356 1.61691i −0.131814 0.0545991i 0.315801 0.948825i \(-0.397727\pi\)
−0.447615 + 0.894226i \(0.647727\pi\)
\(878\) 0.320985 0.774927i 0.0108327 0.0261525i
\(879\) −23.2149 + 9.61594i −0.783020 + 0.324338i
\(880\) 0.735084i 0.0247797i
\(881\) −11.4789 27.7125i −0.386734 0.933657i −0.990627 0.136593i \(-0.956385\pi\)
0.603894 0.797065i \(-0.293615\pi\)
\(882\) 3.29289 + 3.29289i 0.110877 + 0.110877i
\(883\) −13.9714 −0.470175 −0.235087 0.971974i \(-0.575538\pi\)
−0.235087 + 0.971974i \(0.575538\pi\)
\(884\) 1.30902 + 0.397825i 0.0440270 + 0.0133803i
\(885\) −3.32729 −0.111845
\(886\) 2.27170 + 2.27170i 0.0763194 + 0.0763194i
\(887\) −8.42959 20.3508i −0.283038 0.683314i 0.716866 0.697211i \(-0.245576\pi\)
−0.999903 + 0.0138977i \(0.995576\pi\)
\(888\) 10.6143i 0.356194i
\(889\) −38.1177 + 15.7889i −1.27843 + 0.529541i
\(890\) 2.29422 5.53874i 0.0769025 0.185659i
\(891\) −1.56645 0.648847i −0.0524782 0.0217372i
\(892\) −11.0563 + 11.0563i −0.370191 + 0.370191i
\(893\) −3.60806 + 3.60806i −0.120739 + 0.120739i
\(894\) −16.1683 6.69711i −0.540747 0.223985i
\(895\) 1.51299 3.65269i 0.0505738 0.122096i
\(896\) −3.15432 + 1.30656i −0.105379 + 0.0436492i
\(897\) 0.624979i 0.0208674i
\(898\) 11.0015 + 26.5599i 0.367124 + 0.886316i
\(899\) 15.6125 + 15.6125i 0.520705 + 0.520705i
\(900\) 4.81204 0.160401
\(901\) −6.07892 11.3870i −0.202518 0.379356i
\(902\) −20.5458 −0.684102
\(903\) 24.3675 + 24.3675i 0.810899 + 0.810899i
\(904\) −3.51620 8.48886i −0.116947 0.282335i
\(905\) 0.336731i 0.0111933i
\(906\) 8.90628 3.68910i 0.295891 0.122562i
\(907\) −10.2983 + 24.8622i −0.341948 + 0.825535i 0.655571 + 0.755134i \(0.272428\pi\)
−0.997519 + 0.0704015i \(0.977572\pi\)
\(908\) −10.2195 4.23304i −0.339145 0.140478i
\(909\) 0.449934 0.449934i 0.0149234 0.0149234i
\(910\) 0.347308 0.347308i 0.0115131 0.0115131i
\(911\) −32.7838 13.5795i −1.08618 0.449908i −0.233504 0.972356i \(-0.575019\pi\)
−0.852671 + 0.522447i \(0.825019\pi\)
\(912\) −0.820420 + 1.98067i −0.0271668 + 0.0655865i
\(913\) −1.63495 + 0.677220i −0.0541090 + 0.0224127i
\(914\) 7.45097i 0.246456i
\(915\) −1.33390 3.22033i −0.0440975 0.106461i
\(916\) −10.8789 10.8789i −0.359450 0.359450i
\(917\) −3.06147 −0.101099
\(918\) −0.402015 4.10346i −0.0132685 0.135434i
\(919\) −38.6107 −1.27365 −0.636824 0.771009i \(-0.719752\pi\)
−0.636824 + 0.771009i \(0.719752\pi\)
\(920\) −0.577405 0.577405i −0.0190365 0.0190365i
\(921\) 5.87163 + 14.1754i 0.193477 + 0.467094i
\(922\) 25.6378i 0.844337i
\(923\) −0.0694750 + 0.0287775i −0.00228680 + 0.000947223i
\(924\) −2.21530 + 5.34821i −0.0728781 + 0.175943i
\(925\) 47.1887 + 19.5462i 1.55155 + 0.642675i
\(926\) −7.61888 + 7.61888i −0.250372 + 0.250372i
\(927\) −6.08080 + 6.08080i −0.199720 + 0.199720i
\(928\) −7.88877 3.26763i −0.258962 0.107265i
\(929\) 8.76150 21.1521i 0.287455 0.693979i −0.712515 0.701657i \(-0.752444\pi\)
0.999971 + 0.00767791i \(0.00244398\pi\)
\(930\) −1.03572 + 0.429010i −0.0339626 + 0.0140678i
\(931\) 9.98364i 0.327201i
\(932\) −3.97133 9.58764i −0.130085 0.314054i
\(933\) 15.3318 + 15.3318i 0.501941 + 0.501941i
\(934\) −35.6492 −1.16648
\(935\) −0.881302 + 2.89987i −0.0288216 + 0.0948358i
\(936\) −0.331821 −0.0108459
\(937\) −28.0575 28.0575i −0.916598 0.916598i 0.0801820 0.996780i \(-0.474450\pi\)
−0.996780 + 0.0801820i \(0.974450\pi\)
\(938\) −20.6060 49.7472i −0.672809 1.62430i
\(939\) 8.38847i 0.273747i
\(940\) 0.953329 0.394882i 0.0310941 0.0128796i
\(941\) −20.1541 + 48.6562i −0.657004 + 1.58615i 0.145405 + 0.989372i \(0.453551\pi\)
−0.802409 + 0.596775i \(0.796449\pi\)
\(942\) −4.42516 1.83296i −0.144180 0.0597212i
\(943\) 16.1387 16.1387i 0.525547 0.525547i
\(944\) 5.42676 5.42676i 0.176626 0.176626i
\(945\) −1.36754 0.566454i −0.0444861 0.0184268i
\(946\) −6.54903 + 15.8108i −0.212927 + 0.514052i
\(947\) −1.41074 + 0.584348i −0.0458430 + 0.0189888i −0.405487 0.914101i \(-0.632898\pi\)
0.359644 + 0.933090i \(0.382898\pi\)
\(948\) 12.5394i 0.407262i
\(949\) −1.54140 3.72126i −0.0500359 0.120797i
\(950\) −7.29475 7.29475i −0.236673 0.236673i
\(951\) 23.9803 0.777614
\(952\) −14.0101 + 1.37257i −0.454070 + 0.0444851i
\(953\) 9.95360 0.322429 0.161214 0.986919i \(-0.448459\pi\)
0.161214 + 0.986919i \(0.448459\pi\)
\(954\) 2.21371 + 2.21371i 0.0716715 + 0.0716715i
\(955\) −2.22732 5.37722i −0.0720743 0.174003i
\(956\) 24.7803i 0.801454i
\(957\) −13.3755 + 5.54033i −0.432370 + 0.179094i
\(958\) −5.38442 + 12.9991i −0.173963 + 0.419983i
\(959\) 39.7788 + 16.4769i 1.28452 + 0.532067i
\(960\) 0.306563 0.306563i 0.00989428 0.00989428i
\(961\) 17.1924 17.1924i 0.554593 0.554593i
\(962\) −3.25397 1.34784i −0.104912 0.0434560i
\(963\) −0.828427 + 2.00000i −0.0266957 + 0.0644491i
\(964\) 3.97746 1.64752i 0.128105 0.0530630i
\(965\) 2.20633i 0.0710244i
\(966\) −2.46088 5.94110i −0.0791777 0.191152i
\(967\) 4.16375 + 4.16375i 0.133897 + 0.133897i 0.770879 0.636982i \(-0.219817\pi\)
−0.636982 + 0.770879i \(0.719817\pi\)
\(968\) 8.12522 0.261154
\(969\) −5.61116 + 6.83002i −0.180256 + 0.219412i
\(970\) −1.62813 −0.0522762
\(971\) −13.4117 13.4117i −0.430403 0.430403i 0.458363 0.888765i \(-0.348436\pi\)
−0.888765 + 0.458363i \(0.848436\pi\)
\(972\) 0.382683 + 0.923880i 0.0122746 + 0.0296334i
\(973\) 58.1943i 1.86562i
\(974\) 22.2956 9.23512i 0.714396 0.295912i
\(975\) 0.611045 1.47519i 0.0195691 0.0472440i
\(976\) 7.42788 + 3.07673i 0.237761 + 0.0984837i
\(977\) 22.8517 22.8517i 0.731090 0.731090i −0.239746 0.970836i \(-0.577064\pi\)
0.970836 + 0.239746i \(0.0770641\pi\)
\(978\) −12.5899 + 12.5899i −0.402582 + 0.402582i
\(979\) 21.6610 + 8.97229i 0.692289 + 0.286756i
\(980\) −0.772622 + 1.86527i −0.0246805 + 0.0595840i
\(981\) 7.31136 3.02847i 0.233434 0.0966915i
\(982\) 26.5200i 0.846288i
\(983\) −12.4128 29.9672i −0.395908 0.955805i −0.988626 0.150396i \(-0.951945\pi\)
0.592718 0.805410i \(-0.298055\pi\)
\(984\) 8.56854 + 8.56854i 0.273155 + 0.273155i
\(985\) 1.80116 0.0573898
\(986\) −27.2032 22.3486i −0.866325 0.711724i
\(987\) 8.12612 0.258657
\(988\) 0.503021 + 0.503021i 0.0160032 + 0.0160032i
\(989\) −7.27504 17.5635i −0.231333 0.558487i
\(990\) 0.735084i 0.0233625i
\(991\) 43.3309 17.9482i 1.37645 0.570145i 0.432921 0.901432i \(-0.357483\pi\)
0.943530 + 0.331287i \(0.107483\pi\)
\(992\) 0.989538 2.38896i 0.0314179 0.0758494i
\(993\) −3.76696 1.56033i −0.119541 0.0495154i
\(994\) 0.547123 0.547123i 0.0173537 0.0173537i
\(995\) 3.28290 3.28290i 0.104075 0.104075i
\(996\) 0.964279 + 0.399418i 0.0305544 + 0.0126560i
\(997\) −18.1610 + 43.8446i −0.575166 + 1.38857i 0.321941 + 0.946760i \(0.395665\pi\)
−0.897107 + 0.441813i \(0.854335\pi\)
\(998\) 4.19438 1.73737i 0.132771 0.0549954i
\(999\) 10.6143i 0.335823i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.2.h.a.49.2 yes 8
3.2 odd 2 306.2.l.d.253.2 8
4.3 odd 2 816.2.bq.b.49.1 8
17.3 odd 16 1734.2.b.k.577.6 8
17.5 odd 16 1734.2.a.v.1.3 4
17.6 odd 16 1734.2.f.m.829.3 8
17.7 odd 16 1734.2.f.m.1483.3 8
17.8 even 8 inner 102.2.h.a.25.2 8
17.10 odd 16 1734.2.f.j.1483.2 8
17.11 odd 16 1734.2.f.j.829.2 8
17.12 odd 16 1734.2.a.w.1.2 4
17.14 odd 16 1734.2.b.k.577.3 8
51.5 even 16 5202.2.a.br.1.2 4
51.8 odd 8 306.2.l.d.127.2 8
51.29 even 16 5202.2.a.bt.1.3 4
68.59 odd 8 816.2.bq.b.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.a.25.2 8 17.8 even 8 inner
102.2.h.a.49.2 yes 8 1.1 even 1 trivial
306.2.l.d.127.2 8 51.8 odd 8
306.2.l.d.253.2 8 3.2 odd 2
816.2.bq.b.49.1 8 4.3 odd 2
816.2.bq.b.433.1 8 68.59 odd 8
1734.2.a.v.1.3 4 17.5 odd 16
1734.2.a.w.1.2 4 17.12 odd 16
1734.2.b.k.577.3 8 17.14 odd 16
1734.2.b.k.577.6 8 17.3 odd 16
1734.2.f.j.829.2 8 17.11 odd 16
1734.2.f.j.1483.2 8 17.10 odd 16
1734.2.f.m.829.3 8 17.6 odd 16
1734.2.f.m.1483.3 8 17.7 odd 16
5202.2.a.br.1.2 4 51.5 even 16
5202.2.a.bt.1.3 4 51.29 even 16