Properties

Label 1734.2.f.m.1483.3
Level $1734$
Weight $2$
Character 1734.1483
Analytic conductor $13.846$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(829,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1483.3
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1734.1483
Dual form 1734.2.f.m.829.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(0.707107 - 0.707107i) q^{3} -1.00000 q^{4} +(-0.306563 + 0.306563i) q^{5} +(0.707107 + 0.707107i) q^{6} +(-2.41421 - 2.41421i) q^{7} -1.00000i q^{8} -1.00000i q^{9} +(-0.306563 - 0.306563i) q^{10} +(-1.19891 - 1.19891i) q^{11} +(-0.707107 + 0.707107i) q^{12} +0.331821 q^{13} +(2.41421 - 2.41421i) q^{14} +0.433546i q^{15} +1.00000 q^{16} +1.00000 q^{18} +2.14386i q^{19} +(0.306563 - 0.306563i) q^{20} -3.41421 q^{21} +(1.19891 - 1.19891i) q^{22} +(1.33182 + 1.33182i) q^{23} +(-0.707107 - 0.707107i) q^{24} +4.81204i q^{25} +0.331821i q^{26} +(-0.707107 - 0.707107i) q^{27} +(2.41421 + 2.41421i) q^{28} +(-6.03780 + 6.03780i) q^{29} -0.433546 q^{30} +(1.82843 - 1.82843i) q^{31} +1.00000i q^{32} -1.69552 q^{33} +1.48022 q^{35} +1.00000i q^{36} +(-7.50548 + 7.50548i) q^{37} -2.14386 q^{38} +(0.234633 - 0.234633i) q^{39} +(0.306563 + 0.306563i) q^{40} +(-8.56854 - 8.56854i) q^{41} -3.41421i q^{42} +10.0933i q^{43} +(1.19891 + 1.19891i) q^{44} +(0.306563 + 0.306563i) q^{45} +(-1.33182 + 1.33182i) q^{46} -2.38009 q^{47} +(0.707107 - 0.707107i) q^{48} +4.65685i q^{49} -4.81204 q^{50} -0.331821 q^{52} -3.13066i q^{53} +(0.707107 - 0.707107i) q^{54} +0.735084 q^{55} +(-2.41421 + 2.41421i) q^{56} +(1.51594 + 1.51594i) q^{57} +(-6.03780 - 6.03780i) q^{58} +7.67459i q^{59} -0.433546i q^{60} +(-5.68506 - 5.68506i) q^{61} +(1.82843 + 1.82843i) q^{62} +(-2.41421 + 2.41421i) q^{63} -1.00000 q^{64} +(-0.101724 + 0.101724i) q^{65} -1.69552i q^{66} -15.7711 q^{67} +1.88348 q^{69} +1.48022i q^{70} +(0.160248 - 0.160248i) q^{71} -1.00000 q^{72} +(8.58333 - 8.58333i) q^{73} +(-7.50548 - 7.50548i) q^{74} +(3.40262 + 3.40262i) q^{75} -2.14386i q^{76} +5.78886i q^{77} +(0.234633 + 0.234633i) q^{78} +(8.86672 + 8.86672i) q^{79} +(-0.306563 + 0.306563i) q^{80} -1.00000 q^{81} +(8.56854 - 8.56854i) q^{82} -1.04373i q^{83} +3.41421 q^{84} -10.0933 q^{86} +8.53874i q^{87} +(-1.19891 + 1.19891i) q^{88} -13.8281 q^{89} +(-0.306563 + 0.306563i) q^{90} +(-0.801088 - 0.801088i) q^{91} +(-1.33182 - 1.33182i) q^{92} -2.58579i q^{93} -2.38009i q^{94} +(-0.657228 - 0.657228i) q^{95} +(0.707107 + 0.707107i) q^{96} +(2.65546 - 2.65546i) q^{97} -4.65685 q^{98} +(-1.19891 + 1.19891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 8 q^{5} - 8 q^{7} + 8 q^{10} + 8 q^{14} + 8 q^{16} + 8 q^{18} - 8 q^{20} - 16 q^{21} + 8 q^{23} + 8 q^{28} - 24 q^{29} - 8 q^{31} + 16 q^{33} - 16 q^{35} - 40 q^{37} + 16 q^{38} + 8 q^{39}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1734\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1159\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) −1.00000 −0.500000
\(5\) −0.306563 + 0.306563i −0.137099 + 0.137099i −0.772326 0.635227i \(-0.780907\pi\)
0.635227 + 0.772326i \(0.280907\pi\)
\(6\) 0.707107 + 0.707107i 0.288675 + 0.288675i
\(7\) −2.41421 2.41421i −0.912487 0.912487i 0.0839804 0.996467i \(-0.473237\pi\)
−0.996467 + 0.0839804i \(0.973237\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) −0.306563 0.306563i −0.0969437 0.0969437i
\(11\) −1.19891 1.19891i −0.361486 0.361486i 0.502874 0.864360i \(-0.332276\pi\)
−0.864360 + 0.502874i \(0.832276\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) 0.331821 0.0920307 0.0460153 0.998941i \(-0.485348\pi\)
0.0460153 + 0.998941i \(0.485348\pi\)
\(14\) 2.41421 2.41421i 0.645226 0.645226i
\(15\) 0.433546i 0.111941i
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 1.00000 0.235702
\(19\) 2.14386i 0.491835i 0.969291 + 0.245918i \(0.0790893\pi\)
−0.969291 + 0.245918i \(0.920911\pi\)
\(20\) 0.306563 0.306563i 0.0685496 0.0685496i
\(21\) −3.41421 −0.745042
\(22\) 1.19891 1.19891i 0.255609 0.255609i
\(23\) 1.33182 + 1.33182i 0.277704 + 0.277704i 0.832192 0.554488i \(-0.187086\pi\)
−0.554488 + 0.832192i \(0.687086\pi\)
\(24\) −0.707107 0.707107i −0.144338 0.144338i
\(25\) 4.81204i 0.962408i
\(26\) 0.331821i 0.0650755i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 2.41421 + 2.41421i 0.456243 + 0.456243i
\(29\) −6.03780 + 6.03780i −1.12119 + 1.12119i −0.129629 + 0.991563i \(0.541379\pi\)
−0.991563 + 0.129629i \(0.958621\pi\)
\(30\) −0.433546 −0.0791542
\(31\) 1.82843 1.82843i 0.328395 0.328395i −0.523581 0.851976i \(-0.675404\pi\)
0.851976 + 0.523581i \(0.175404\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −1.69552 −0.295152
\(34\) 0 0
\(35\) 1.48022 0.250202
\(36\) 1.00000i 0.166667i
\(37\) −7.50548 + 7.50548i −1.23389 + 1.23389i −0.271436 + 0.962456i \(0.587499\pi\)
−0.962456 + 0.271436i \(0.912501\pi\)
\(38\) −2.14386 −0.347780
\(39\) 0.234633 0.234633i 0.0375714 0.0375714i
\(40\) 0.306563 + 0.306563i 0.0484719 + 0.0484719i
\(41\) −8.56854 8.56854i −1.33818 1.33818i −0.897822 0.440358i \(-0.854851\pi\)
−0.440358 0.897822i \(-0.645149\pi\)
\(42\) 3.41421i 0.526825i
\(43\) 10.0933i 1.53922i 0.638514 + 0.769610i \(0.279549\pi\)
−0.638514 + 0.769610i \(0.720451\pi\)
\(44\) 1.19891 + 1.19891i 0.180743 + 0.180743i
\(45\) 0.306563 + 0.306563i 0.0456997 + 0.0456997i
\(46\) −1.33182 + 1.33182i −0.196366 + 0.196366i
\(47\) −2.38009 −0.347171 −0.173586 0.984819i \(-0.555535\pi\)
−0.173586 + 0.984819i \(0.555535\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 4.65685i 0.665265i
\(50\) −4.81204 −0.680525
\(51\) 0 0
\(52\) −0.331821 −0.0460153
\(53\) 3.13066i 0.430029i −0.976611 0.215014i \(-0.931020\pi\)
0.976611 0.215014i \(-0.0689798\pi\)
\(54\) 0.707107 0.707107i 0.0962250 0.0962250i
\(55\) 0.735084 0.0991187
\(56\) −2.41421 + 2.41421i −0.322613 + 0.322613i
\(57\) 1.51594 + 1.51594i 0.200791 + 0.200791i
\(58\) −6.03780 6.03780i −0.792802 0.792802i
\(59\) 7.67459i 0.999147i 0.866272 + 0.499573i \(0.166510\pi\)
−0.866272 + 0.499573i \(0.833490\pi\)
\(60\) 0.433546i 0.0559705i
\(61\) −5.68506 5.68506i −0.727897 0.727897i 0.242304 0.970200i \(-0.422097\pi\)
−0.970200 + 0.242304i \(0.922097\pi\)
\(62\) 1.82843 + 1.82843i 0.232210 + 0.232210i
\(63\) −2.41421 + 2.41421i −0.304162 + 0.304162i
\(64\) −1.00000 −0.125000
\(65\) −0.101724 + 0.101724i −0.0126173 + 0.0126173i
\(66\) 1.69552i 0.208704i
\(67\) −15.7711 −1.92675 −0.963375 0.268159i \(-0.913585\pi\)
−0.963375 + 0.268159i \(0.913585\pi\)
\(68\) 0 0
\(69\) 1.88348 0.226744
\(70\) 1.48022i 0.176920i
\(71\) 0.160248 0.160248i 0.0190180 0.0190180i −0.697534 0.716552i \(-0.745719\pi\)
0.716552 + 0.697534i \(0.245719\pi\)
\(72\) −1.00000 −0.117851
\(73\) 8.58333 8.58333i 1.00460 1.00460i 0.00461362 0.999989i \(-0.498531\pi\)
0.999989 0.00461362i \(-0.00146857\pi\)
\(74\) −7.50548 7.50548i −0.872494 0.872494i
\(75\) 3.40262 + 3.40262i 0.392901 + 0.392901i
\(76\) 2.14386i 0.245918i
\(77\) 5.78886i 0.659702i
\(78\) 0.234633 + 0.234633i 0.0265670 + 0.0265670i
\(79\) 8.86672 + 8.86672i 0.997584 + 0.997584i 0.999997 0.00241345i \(-0.000768227\pi\)
−0.00241345 + 0.999997i \(0.500768\pi\)
\(80\) −0.306563 + 0.306563i −0.0342748 + 0.0342748i
\(81\) −1.00000 −0.111111
\(82\) 8.56854 8.56854i 0.946236 0.946236i
\(83\) 1.04373i 0.114564i −0.998358 0.0572820i \(-0.981757\pi\)
0.998358 0.0572820i \(-0.0182434\pi\)
\(84\) 3.41421 0.372521
\(85\) 0 0
\(86\) −10.0933 −1.08839
\(87\) 8.53874i 0.915449i
\(88\) −1.19891 + 1.19891i −0.127804 + 0.127804i
\(89\) −13.8281 −1.46577 −0.732885 0.680352i \(-0.761827\pi\)
−0.732885 + 0.680352i \(0.761827\pi\)
\(90\) −0.306563 + 0.306563i −0.0323146 + 0.0323146i
\(91\) −0.801088 0.801088i −0.0839768 0.0839768i
\(92\) −1.33182 1.33182i −0.138852 0.138852i
\(93\) 2.58579i 0.268134i
\(94\) 2.38009i 0.245487i
\(95\) −0.657228 0.657228i −0.0674302 0.0674302i
\(96\) 0.707107 + 0.707107i 0.0721688 + 0.0721688i
\(97\) 2.65546 2.65546i 0.269621 0.269621i −0.559326 0.828948i \(-0.688940\pi\)
0.828948 + 0.559326i \(0.188940\pi\)
\(98\) −4.65685 −0.470413
\(99\) −1.19891 + 1.19891i −0.120495 + 0.120495i
\(100\) 4.81204i 0.481204i
\(101\) 0.636303 0.0633145 0.0316573 0.999499i \(-0.489921\pi\)
0.0316573 + 0.999499i \(0.489921\pi\)
\(102\) 0 0
\(103\) 8.59955 0.847339 0.423669 0.905817i \(-0.360742\pi\)
0.423669 + 0.905817i \(0.360742\pi\)
\(104\) 0.331821i 0.0325378i
\(105\) 1.04667 1.04667i 0.102145 0.102145i
\(106\) 3.13066 0.304076
\(107\) −1.53073 + 1.53073i −0.147982 + 0.147982i −0.777216 0.629234i \(-0.783369\pi\)
0.629234 + 0.777216i \(0.283369\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) 5.59588 + 5.59588i 0.535988 + 0.535988i 0.922348 0.386360i \(-0.126268\pi\)
−0.386360 + 0.922348i \(0.626268\pi\)
\(110\) 0.735084i 0.0700875i
\(111\) 10.6143i 1.00747i
\(112\) −2.41421 2.41421i −0.228122 0.228122i
\(113\) −6.49709 6.49709i −0.611195 0.611195i 0.332062 0.943257i \(-0.392256\pi\)
−0.943257 + 0.332062i \(0.892256\pi\)
\(114\) −1.51594 + 1.51594i −0.141981 + 0.141981i
\(115\) −0.816574 −0.0761459
\(116\) 6.03780 6.03780i 0.560596 0.560596i
\(117\) 0.331821i 0.0306769i
\(118\) −7.67459 −0.706504
\(119\) 0 0
\(120\) 0.433546 0.0395771
\(121\) 8.12522i 0.738656i
\(122\) 5.68506 5.68506i 0.514701 0.514701i
\(123\) −12.1177 −1.09262
\(124\) −1.82843 + 1.82843i −0.164198 + 0.164198i
\(125\) −3.00801 3.00801i −0.269044 0.269044i
\(126\) −2.41421 2.41421i −0.215075 0.215075i
\(127\) 12.0843i 1.07231i 0.844121 + 0.536153i \(0.180123\pi\)
−0.844121 + 0.536153i \(0.819877\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 7.13707 + 7.13707i 0.628384 + 0.628384i
\(130\) −0.101724 0.101724i −0.00892180 0.00892180i
\(131\) −0.634051 + 0.634051i −0.0553973 + 0.0553973i −0.734263 0.678865i \(-0.762472\pi\)
0.678865 + 0.734263i \(0.262472\pi\)
\(132\) 1.69552 0.147576
\(133\) 5.17574 5.17574i 0.448793 0.448793i
\(134\) 15.7711i 1.36242i
\(135\) 0.433546 0.0373137
\(136\) 0 0
\(137\) 12.6109 1.07742 0.538710 0.842491i \(-0.318912\pi\)
0.538710 + 0.842491i \(0.318912\pi\)
\(138\) 1.88348i 0.160332i
\(139\) 12.0524 12.0524i 1.02227 1.02227i 0.0225272 0.999746i \(-0.492829\pi\)
0.999746 0.0225272i \(-0.00717125\pi\)
\(140\) −1.48022 −0.125101
\(141\) −1.68297 + 1.68297i −0.141732 + 0.141732i
\(142\) 0.160248 + 0.160248i 0.0134478 + 0.0134478i
\(143\) −0.397825 0.397825i −0.0332678 0.0332678i
\(144\) 1.00000i 0.0833333i
\(145\) 3.70193i 0.307429i
\(146\) 8.58333 + 8.58333i 0.710362 + 0.710362i
\(147\) 3.29289 + 3.29289i 0.271593 + 0.271593i
\(148\) 7.50548 7.50548i 0.616946 0.616946i
\(149\) −17.5004 −1.43369 −0.716844 0.697234i \(-0.754414\pi\)
−0.716844 + 0.697234i \(0.754414\pi\)
\(150\) −3.40262 + 3.40262i −0.277823 + 0.277823i
\(151\) 9.64009i 0.784500i 0.919859 + 0.392250i \(0.128303\pi\)
−0.919859 + 0.392250i \(0.871697\pi\)
\(152\) 2.14386 0.173890
\(153\) 0 0
\(154\) −5.78886 −0.466480
\(155\) 1.12106i 0.0900454i
\(156\) −0.234633 + 0.234633i −0.0187857 + 0.0187857i
\(157\) 4.78976 0.382265 0.191132 0.981564i \(-0.438784\pi\)
0.191132 + 0.981564i \(0.438784\pi\)
\(158\) −8.86672 + 8.86672i −0.705398 + 0.705398i
\(159\) −2.21371 2.21371i −0.175558 0.175558i
\(160\) −0.306563 0.306563i −0.0242359 0.0242359i
\(161\) 6.43060i 0.506802i
\(162\) 1.00000i 0.0785674i
\(163\) −12.5899 12.5899i −0.986121 0.986121i 0.0137841 0.999905i \(-0.495612\pi\)
−0.999905 + 0.0137841i \(0.995612\pi\)
\(164\) 8.56854 + 8.56854i 0.669090 + 0.669090i
\(165\) 0.519783 0.519783i 0.0404651 0.0404651i
\(166\) 1.04373 0.0810090
\(167\) −12.4416 + 12.4416i −0.962756 + 0.962756i −0.999331 0.0365746i \(-0.988355\pi\)
0.0365746 + 0.999331i \(0.488355\pi\)
\(168\) 3.41421i 0.263412i
\(169\) −12.8899 −0.991530
\(170\) 0 0
\(171\) 2.14386 0.163945
\(172\) 10.0933i 0.769610i
\(173\) −13.6799 + 13.6799i −1.04006 + 1.04006i −0.0408971 + 0.999163i \(0.513022\pi\)
−0.999163 + 0.0408971i \(0.986978\pi\)
\(174\) −8.53874 −0.647320
\(175\) 11.6173 11.6173i 0.878184 0.878184i
\(176\) −1.19891 1.19891i −0.0903714 0.0903714i
\(177\) 5.42676 + 5.42676i 0.407900 + 0.407900i
\(178\) 13.8281i 1.03646i
\(179\) 9.11933i 0.681611i 0.940134 + 0.340805i \(0.110700\pi\)
−0.940134 + 0.340805i \(0.889300\pi\)
\(180\) −0.306563 0.306563i −0.0228499 0.0228499i
\(181\) −0.549204 0.549204i −0.0408220 0.0408220i 0.686401 0.727223i \(-0.259189\pi\)
−0.727223 + 0.686401i \(0.759189\pi\)
\(182\) 0.801088 0.801088i 0.0593806 0.0593806i
\(183\) −8.03988 −0.594325
\(184\) 1.33182 1.33182i 0.0981832 0.0981832i
\(185\) 4.60180i 0.338331i
\(186\) 2.58579 0.189599
\(187\) 0 0
\(188\) 2.38009 0.173586
\(189\) 3.41421i 0.248347i
\(190\) 0.657228 0.657228i 0.0476803 0.0476803i
\(191\) 13.4248 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) 3.59850 + 3.59850i 0.259026 + 0.259026i 0.824658 0.565632i \(-0.191368\pi\)
−0.565632 + 0.824658i \(0.691368\pi\)
\(194\) 2.65546 + 2.65546i 0.190651 + 0.190651i
\(195\) 0.143860i 0.0103020i
\(196\) 4.65685i 0.332632i
\(197\) 2.93767 + 2.93767i 0.209300 + 0.209300i 0.803970 0.594670i \(-0.202717\pi\)
−0.594670 + 0.803970i \(0.702717\pi\)
\(198\) −1.19891 1.19891i −0.0852030 0.0852030i
\(199\) 7.57221 7.57221i 0.536780 0.536780i −0.385802 0.922582i \(-0.626075\pi\)
0.922582 + 0.385802i \(0.126075\pi\)
\(200\) 4.81204 0.340262
\(201\) −11.1519 + 11.1519i −0.786592 + 0.786592i
\(202\) 0.636303i 0.0447701i
\(203\) 29.1531 2.04615
\(204\) 0 0
\(205\) 5.25359 0.366927
\(206\) 8.59955i 0.599159i
\(207\) 1.33182 1.33182i 0.0925680 0.0925680i
\(208\) 0.331821 0.0230077
\(209\) 2.57030 2.57030i 0.177791 0.177791i
\(210\) 1.04667 + 1.04667i 0.0722272 + 0.0722272i
\(211\) 3.33861 + 3.33861i 0.229839 + 0.229839i 0.812626 0.582786i \(-0.198037\pi\)
−0.582786 + 0.812626i \(0.698037\pi\)
\(212\) 3.13066i 0.215014i
\(213\) 0.226626i 0.0155281i
\(214\) −1.53073 1.53073i −0.104639 0.104639i
\(215\) −3.09425 3.09425i −0.211026 0.211026i
\(216\) −0.707107 + 0.707107i −0.0481125 + 0.0481125i
\(217\) −8.82843 −0.599313
\(218\) −5.59588 + 5.59588i −0.379000 + 0.379000i
\(219\) 12.1387i 0.820255i
\(220\) −0.735084 −0.0495594
\(221\) 0 0
\(222\) −10.6143 −0.712388
\(223\) 15.6359i 1.04706i −0.852007 0.523530i \(-0.824615\pi\)
0.852007 0.523530i \(-0.175385\pi\)
\(224\) 2.41421 2.41421i 0.161306 0.161306i
\(225\) 4.81204 0.320803
\(226\) 6.49709 6.49709i 0.432180 0.432180i
\(227\) −7.82164 7.82164i −0.519140 0.519140i 0.398171 0.917311i \(-0.369645\pi\)
−0.917311 + 0.398171i \(0.869645\pi\)
\(228\) −1.51594 1.51594i −0.100395 0.100395i
\(229\) 15.3852i 1.01668i 0.861157 + 0.508340i \(0.169741\pi\)
−0.861157 + 0.508340i \(0.830259\pi\)
\(230\) 0.816574i 0.0538433i
\(231\) 4.09334 + 4.09334i 0.269322 + 0.269322i
\(232\) 6.03780 + 6.03780i 0.396401 + 0.396401i
\(233\) −7.33806 + 7.33806i −0.480733 + 0.480733i −0.905366 0.424633i \(-0.860403\pi\)
0.424633 + 0.905366i \(0.360403\pi\)
\(234\) 0.331821 0.0216918
\(235\) 0.729646 0.729646i 0.0475969 0.0475969i
\(236\) 7.67459i 0.499573i
\(237\) 12.5394 0.814524
\(238\) 0 0
\(239\) −24.7803 −1.60291 −0.801454 0.598057i \(-0.795940\pi\)
−0.801454 + 0.598057i \(0.795940\pi\)
\(240\) 0.433546i 0.0279852i
\(241\) −3.04422 + 3.04422i −0.196095 + 0.196095i −0.798324 0.602229i \(-0.794280\pi\)
0.602229 + 0.798324i \(0.294280\pi\)
\(242\) 8.12522 0.522309
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 5.68506 + 5.68506i 0.363948 + 0.363948i
\(245\) −1.42762 1.42762i −0.0912072 0.0912072i
\(246\) 12.1177i 0.772599i
\(247\) 0.711378i 0.0452639i
\(248\) −1.82843 1.82843i −0.116105 0.116105i
\(249\) −0.738027 0.738027i −0.0467706 0.0467706i
\(250\) 3.00801 3.00801i 0.190243 0.190243i
\(251\) 19.0639 1.20330 0.601652 0.798759i \(-0.294510\pi\)
0.601652 + 0.798759i \(0.294510\pi\)
\(252\) 2.41421 2.41421i 0.152081 0.152081i
\(253\) 3.19347i 0.200772i
\(254\) −12.0843 −0.758235
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 26.7594i 1.66921i −0.550851 0.834603i \(-0.685697\pi\)
0.550851 0.834603i \(-0.314303\pi\)
\(258\) −7.13707 + 7.13707i −0.444335 + 0.444335i
\(259\) 36.2396 2.25182
\(260\) 0.101724 0.101724i 0.00630866 0.00630866i
\(261\) 6.03780 + 6.03780i 0.373731 + 0.373731i
\(262\) −0.634051 0.634051i −0.0391718 0.0391718i
\(263\) 27.5122i 1.69648i −0.529614 0.848239i \(-0.677663\pi\)
0.529614 0.848239i \(-0.322337\pi\)
\(264\) 1.69552i 0.104352i
\(265\) 0.959743 + 0.959743i 0.0589566 + 0.0589566i
\(266\) 5.17574 + 5.17574i 0.317345 + 0.317345i
\(267\) −9.77791 + 9.77791i −0.598398 + 0.598398i
\(268\) 15.7711 0.963375
\(269\) −7.08153 + 7.08153i −0.431769 + 0.431769i −0.889230 0.457461i \(-0.848759\pi\)
0.457461 + 0.889230i \(0.348759\pi\)
\(270\) 0.433546i 0.0263847i
\(271\) 9.20949 0.559437 0.279718 0.960082i \(-0.409759\pi\)
0.279718 + 0.960082i \(0.409759\pi\)
\(272\) 0 0
\(273\) −1.13291 −0.0685668
\(274\) 12.6109i 0.761851i
\(275\) 5.76921 5.76921i 0.347897 0.347897i
\(276\) −1.88348 −0.113372
\(277\) 5.91515 5.91515i 0.355407 0.355407i −0.506710 0.862117i \(-0.669138\pi\)
0.862117 + 0.506710i \(0.169138\pi\)
\(278\) 12.0524 + 12.0524i 0.722857 + 0.722857i
\(279\) −1.82843 1.82843i −0.109465 0.109465i
\(280\) 1.48022i 0.0884599i
\(281\) 10.9996i 0.656183i −0.944646 0.328091i \(-0.893595\pi\)
0.944646 0.328091i \(-0.106405\pi\)
\(282\) −1.68297 1.68297i −0.100220 0.100220i
\(283\) −14.9469 14.9469i −0.888498 0.888498i 0.105880 0.994379i \(-0.466234\pi\)
−0.994379 + 0.105880i \(0.966234\pi\)
\(284\) −0.160248 + 0.160248i −0.00950900 + 0.00950900i
\(285\) −0.929461 −0.0550565
\(286\) 0.397825 0.397825i 0.0235239 0.0235239i
\(287\) 41.3725i 2.44214i
\(288\) 1.00000 0.0589256
\(289\) 0 0
\(290\) 3.70193 0.217385
\(291\) 3.75539i 0.220145i
\(292\) −8.58333 + 8.58333i −0.502301 + 0.502301i
\(293\) −25.1277 −1.46797 −0.733987 0.679164i \(-0.762343\pi\)
−0.733987 + 0.679164i \(0.762343\pi\)
\(294\) −3.29289 + 3.29289i −0.192045 + 0.192045i
\(295\) −2.35275 2.35275i −0.136982 0.136982i
\(296\) 7.50548 + 7.50548i 0.436247 + 0.436247i
\(297\) 1.69552i 0.0983839i
\(298\) 17.5004i 1.01377i
\(299\) 0.441927 + 0.441927i 0.0255573 + 0.0255573i
\(300\) −3.40262 3.40262i −0.196451 0.196451i
\(301\) 24.3675 24.3675i 1.40452 1.40452i
\(302\) −9.64009 −0.554725
\(303\) 0.449934 0.449934i 0.0258481 0.0258481i
\(304\) 2.14386i 0.122959i
\(305\) 3.48566 0.199588
\(306\) 0 0
\(307\) 15.3433 0.875688 0.437844 0.899051i \(-0.355742\pi\)
0.437844 + 0.899051i \(0.355742\pi\)
\(308\) 5.78886i 0.329851i
\(309\) 6.08080 6.08080i 0.345925 0.345925i
\(310\) −1.12106 −0.0636717
\(311\) −15.3318 + 15.3318i −0.869388 + 0.869388i −0.992405 0.123017i \(-0.960743\pi\)
0.123017 + 0.992405i \(0.460743\pi\)
\(312\) −0.234633 0.234633i −0.0132835 0.0132835i
\(313\) 5.93154 + 5.93154i 0.335271 + 0.335271i 0.854584 0.519313i \(-0.173812\pi\)
−0.519313 + 0.854584i \(0.673812\pi\)
\(314\) 4.78976i 0.270302i
\(315\) 1.48022i 0.0834008i
\(316\) −8.86672 8.86672i −0.498792 0.498792i
\(317\) −16.9566 16.9566i −0.952379 0.952379i 0.0465374 0.998917i \(-0.485181\pi\)
−0.998917 + 0.0465374i \(0.985181\pi\)
\(318\) 2.21371 2.21371i 0.124139 0.124139i
\(319\) 14.4776 0.810589
\(320\) 0.306563 0.306563i 0.0171374 0.0171374i
\(321\) 2.16478i 0.120826i
\(322\) 6.43060 0.358363
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 1.59674i 0.0885710i
\(326\) 12.5899 12.5899i 0.697293 0.697293i
\(327\) 7.91376 0.437632
\(328\) −8.56854 + 8.56854i −0.473118 + 0.473118i
\(329\) 5.74603 + 5.74603i 0.316789 + 0.316789i
\(330\) 0.519783 + 0.519783i 0.0286131 + 0.0286131i
\(331\) 4.07733i 0.224110i 0.993702 + 0.112055i \(0.0357433\pi\)
−0.993702 + 0.112055i \(0.964257\pi\)
\(332\) 1.04373i 0.0572820i
\(333\) 7.50548 + 7.50548i 0.411298 + 0.411298i
\(334\) −12.4416 12.4416i −0.680771 0.680771i
\(335\) 4.83484 4.83484i 0.264156 0.264156i
\(336\) −3.41421 −0.186261
\(337\) 7.08288 7.08288i 0.385829 0.385829i −0.487368 0.873197i \(-0.662043\pi\)
0.873197 + 0.487368i \(0.162043\pi\)
\(338\) 12.8899i 0.701118i
\(339\) −9.18828 −0.499039
\(340\) 0 0
\(341\) −4.38425 −0.237420
\(342\) 2.14386i 0.115927i
\(343\) −5.65685 + 5.65685i −0.305441 + 0.305441i
\(344\) 10.0933 0.544197
\(345\) −0.577405 + 0.577405i −0.0310864 + 0.0310864i
\(346\) −13.6799 13.6799i −0.735434 0.735434i
\(347\) 6.11236 + 6.11236i 0.328129 + 0.328129i 0.851875 0.523746i \(-0.175466\pi\)
−0.523746 + 0.851875i \(0.675466\pi\)
\(348\) 8.53874i 0.457725i
\(349\) 20.8126i 1.11407i −0.830488 0.557036i \(-0.811938\pi\)
0.830488 0.557036i \(-0.188062\pi\)
\(350\) 11.6173 + 11.6173i 0.620970 + 0.620970i
\(351\) −0.234633 0.234633i −0.0125238 0.0125238i
\(352\) 1.19891 1.19891i 0.0639022 0.0639022i
\(353\) 20.1049 1.07007 0.535037 0.844829i \(-0.320298\pi\)
0.535037 + 0.844829i \(0.320298\pi\)
\(354\) −5.42676 + 5.42676i −0.288429 + 0.288429i
\(355\) 0.0982525i 0.00521470i
\(356\) 13.8281 0.732885
\(357\) 0 0
\(358\) −9.11933 −0.481972
\(359\) 25.3001i 1.33529i 0.744480 + 0.667645i \(0.232698\pi\)
−0.744480 + 0.667645i \(0.767302\pi\)
\(360\) 0.306563 0.306563i 0.0161573 0.0161573i
\(361\) 14.4039 0.758098
\(362\) 0.549204 0.549204i 0.0288655 0.0288655i
\(363\) −5.74540 5.74540i −0.301555 0.301555i
\(364\) 0.801088 + 0.801088i 0.0419884 + 0.0419884i
\(365\) 5.26266i 0.275460i
\(366\) 8.03988i 0.420251i
\(367\) −7.29732 7.29732i −0.380917 0.380917i 0.490515 0.871432i \(-0.336809\pi\)
−0.871432 + 0.490515i \(0.836809\pi\)
\(368\) 1.33182 + 1.33182i 0.0694260 + 0.0694260i
\(369\) −8.56854 + 8.56854i −0.446060 + 0.446060i
\(370\) 4.60180 0.239236
\(371\) −7.55807 + 7.55807i −0.392396 + 0.392396i
\(372\) 2.58579i 0.134067i
\(373\) 18.2719 0.946083 0.473041 0.881040i \(-0.343156\pi\)
0.473041 + 0.881040i \(0.343156\pi\)
\(374\) 0 0
\(375\) −4.25397 −0.219674
\(376\) 2.38009i 0.122744i
\(377\) −2.00347 + 2.00347i −0.103184 + 0.103184i
\(378\) −3.41421 −0.175608
\(379\) −14.8011 + 14.8011i −0.760281 + 0.760281i −0.976373 0.216092i \(-0.930669\pi\)
0.216092 + 0.976373i \(0.430669\pi\)
\(380\) 0.657228 + 0.657228i 0.0337151 + 0.0337151i
\(381\) 8.54487 + 8.54487i 0.437767 + 0.437767i
\(382\) 13.4248i 0.686872i
\(383\) 22.9974i 1.17511i −0.809184 0.587555i \(-0.800090\pi\)
0.809184 0.587555i \(-0.199910\pi\)
\(384\) −0.707107 0.707107i −0.0360844 0.0360844i
\(385\) −1.77465 1.77465i −0.0904446 0.0904446i
\(386\) −3.59850 + 3.59850i −0.183159 + 0.183159i
\(387\) 10.0933 0.513073
\(388\) −2.65546 + 2.65546i −0.134811 + 0.134811i
\(389\) 9.07748i 0.460247i −0.973161 0.230123i \(-0.926087\pi\)
0.973161 0.230123i \(-0.0739130\pi\)
\(390\) −0.143860 −0.00728462
\(391\) 0 0
\(392\) 4.65685 0.235207
\(393\) 0.896683i 0.0452317i
\(394\) −2.93767 + 2.93767i −0.147998 + 0.147998i
\(395\) −5.43641 −0.273536
\(396\) 1.19891 1.19891i 0.0602476 0.0602476i
\(397\) −5.52149 5.52149i −0.277116 0.277116i 0.554841 0.831957i \(-0.312779\pi\)
−0.831957 + 0.554841i \(0.812779\pi\)
\(398\) 7.57221 + 7.57221i 0.379561 + 0.379561i
\(399\) 7.31959i 0.366438i
\(400\) 4.81204i 0.240602i
\(401\) −12.2759 12.2759i −0.613030 0.613030i 0.330705 0.943734i \(-0.392714\pi\)
−0.943734 + 0.330705i \(0.892714\pi\)
\(402\) −11.1519 11.1519i −0.556205 0.556205i
\(403\) 0.606711 0.606711i 0.0302224 0.0302224i
\(404\) −0.636303 −0.0316573
\(405\) 0.306563 0.306563i 0.0152332 0.0152332i
\(406\) 29.1531i 1.44684i
\(407\) 17.9968 0.892069
\(408\) 0 0
\(409\) 4.42153 0.218631 0.109315 0.994007i \(-0.465134\pi\)
0.109315 + 0.994007i \(0.465134\pi\)
\(410\) 5.25359i 0.259456i
\(411\) 8.91723 8.91723i 0.439855 0.439855i
\(412\) −8.59955 −0.423669
\(413\) 18.5281 18.5281i 0.911709 0.911709i
\(414\) 1.33182 + 1.33182i 0.0654554 + 0.0654554i
\(415\) 0.319968 + 0.319968i 0.0157066 + 0.0157066i
\(416\) 0.331821i 0.0162689i
\(417\) 17.0447i 0.834683i
\(418\) 2.57030 + 2.57030i 0.125717 + 0.125717i
\(419\) −16.3811 16.3811i −0.800267 0.800267i 0.182870 0.983137i \(-0.441461\pi\)
−0.983137 + 0.182870i \(0.941461\pi\)
\(420\) −1.04667 + 1.04667i −0.0510723 + 0.0510723i
\(421\) 20.0524 0.977295 0.488648 0.872481i \(-0.337490\pi\)
0.488648 + 0.872481i \(0.337490\pi\)
\(422\) −3.33861 + 3.33861i −0.162521 + 0.162521i
\(423\) 2.38009i 0.115724i
\(424\) −3.13066 −0.152038
\(425\) 0 0
\(426\) 0.226626 0.0109800
\(427\) 27.4499i 1.32839i
\(428\) 1.53073 1.53073i 0.0739908 0.0739908i
\(429\) −0.562609 −0.0271630
\(430\) 3.09425 3.09425i 0.149218 0.149218i
\(431\) 28.3880 + 28.3880i 1.36740 + 1.36740i 0.864123 + 0.503280i \(0.167874\pi\)
0.503280 + 0.864123i \(0.332126\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) 21.8499i 1.05004i 0.851090 + 0.525020i \(0.175942\pi\)
−0.851090 + 0.525020i \(0.824058\pi\)
\(434\) 8.82843i 0.423778i
\(435\) −2.61766 2.61766i −0.125507 0.125507i
\(436\) −5.59588 5.59588i −0.267994 0.267994i
\(437\) −2.85524 + 2.85524i −0.136585 + 0.136585i
\(438\) 12.1387 0.580008
\(439\) −0.593103 + 0.593103i −0.0283073 + 0.0283073i −0.721119 0.692811i \(-0.756372\pi\)
0.692811 + 0.721119i \(0.256372\pi\)
\(440\) 0.735084i 0.0350438i
\(441\) 4.65685 0.221755
\(442\) 0 0
\(443\) −3.21267 −0.152639 −0.0763194 0.997083i \(-0.524317\pi\)
−0.0763194 + 0.997083i \(0.524317\pi\)
\(444\) 10.6143i 0.503735i
\(445\) 4.23917 4.23917i 0.200956 0.200956i
\(446\) 15.6359 0.740383
\(447\) −12.3746 + 12.3746i −0.585301 + 0.585301i
\(448\) 2.41421 + 2.41421i 0.114061 + 0.114061i
\(449\) 20.3281 + 20.3281i 0.959342 + 0.959342i 0.999205 0.0398632i \(-0.0126922\pi\)
−0.0398632 + 0.999205i \(0.512692\pi\)
\(450\) 4.81204i 0.226842i
\(451\) 20.5458i 0.967466i
\(452\) 6.49709 + 6.49709i 0.305598 + 0.305598i
\(453\) 6.81657 + 6.81657i 0.320271 + 0.320271i
\(454\) 7.82164 7.82164i 0.367088 0.367088i
\(455\) 0.491168 0.0230263
\(456\) 1.51594 1.51594i 0.0709903 0.0709903i
\(457\) 7.45097i 0.348542i −0.984698 0.174271i \(-0.944243\pi\)
0.984698 0.174271i \(-0.0557568\pi\)
\(458\) −15.3852 −0.718901
\(459\) 0 0
\(460\) 0.816574 0.0380730
\(461\) 25.6378i 1.19407i 0.802214 + 0.597037i \(0.203655\pi\)
−0.802214 + 0.597037i \(0.796345\pi\)
\(462\) −4.09334 + 4.09334i −0.190440 + 0.190440i
\(463\) 10.7747 0.500744 0.250372 0.968150i \(-0.419447\pi\)
0.250372 + 0.968150i \(0.419447\pi\)
\(464\) −6.03780 + 6.03780i −0.280298 + 0.280298i
\(465\) 0.792706 + 0.792706i 0.0367609 + 0.0367609i
\(466\) −7.33806 7.33806i −0.339929 0.339929i
\(467\) 35.6492i 1.64965i −0.565391 0.824823i \(-0.691275\pi\)
0.565391 0.824823i \(-0.308725\pi\)
\(468\) 0.331821i 0.0153384i
\(469\) 38.0749 + 38.0749i 1.75813 + 1.75813i
\(470\) 0.729646 + 0.729646i 0.0336561 + 0.0336561i
\(471\) 3.38687 3.38687i 0.156059 0.156059i
\(472\) 7.67459 0.353252
\(473\) 12.1010 12.1010i 0.556406 0.556406i
\(474\) 12.5394i 0.575955i
\(475\) −10.3163 −0.473346
\(476\) 0 0
\(477\) −3.13066 −0.143343
\(478\) 24.7803i 1.13343i
\(479\) −9.94911 + 9.94911i −0.454586 + 0.454586i −0.896874 0.442287i \(-0.854167\pi\)
0.442287 + 0.896874i \(0.354167\pi\)
\(480\) −0.433546 −0.0197886
\(481\) −2.49048 + 2.49048i −0.113556 + 0.113556i
\(482\) −3.04422 3.04422i −0.138660 0.138660i
\(483\) −4.54712 4.54712i −0.206901 0.206901i
\(484\) 8.12522i 0.369328i
\(485\) 1.62813i 0.0739297i
\(486\) −0.707107 0.707107i −0.0320750 0.0320750i
\(487\) 17.0643 + 17.0643i 0.773256 + 0.773256i 0.978674 0.205418i \(-0.0658554\pi\)
−0.205418 + 0.978674i \(0.565855\pi\)
\(488\) −5.68506 + 5.68506i −0.257350 + 0.257350i
\(489\) −17.8049 −0.805164
\(490\) 1.42762 1.42762i 0.0644933 0.0644933i
\(491\) 26.5200i 1.19683i 0.801186 + 0.598416i \(0.204203\pi\)
−0.801186 + 0.598416i \(0.795797\pi\)
\(492\) 12.1177 0.546310
\(493\) 0 0
\(494\) −0.711378 −0.0320064
\(495\) 0.735084i 0.0330396i
\(496\) 1.82843 1.82843i 0.0820988 0.0820988i
\(497\) −0.773748 −0.0347073
\(498\) 0.738027 0.738027i 0.0330718 0.0330718i
\(499\) −3.21024 3.21024i −0.143710 0.143710i 0.631591 0.775301i \(-0.282402\pi\)
−0.775301 + 0.631591i \(0.782402\pi\)
\(500\) 3.00801 + 3.00801i 0.134522 + 0.134522i
\(501\) 17.5950i 0.786087i
\(502\) 19.0639i 0.850864i
\(503\) 2.82655 + 2.82655i 0.126030 + 0.126030i 0.767308 0.641279i \(-0.221596\pi\)
−0.641279 + 0.767308i \(0.721596\pi\)
\(504\) 2.41421 + 2.41421i 0.107538 + 0.107538i
\(505\) −0.195067 + 0.195067i −0.00868037 + 0.00868037i
\(506\) 3.19347 0.141967
\(507\) −9.11453 + 9.11453i −0.404791 + 0.404791i
\(508\) 12.0843i 0.536153i
\(509\) −22.9751 −1.01835 −0.509176 0.860662i \(-0.670050\pi\)
−0.509176 + 0.860662i \(0.670050\pi\)
\(510\) 0 0
\(511\) −41.4440 −1.83337
\(512\) 1.00000i 0.0441942i
\(513\) 1.51594 1.51594i 0.0669303 0.0669303i
\(514\) 26.7594 1.18031
\(515\) −2.63630 + 2.63630i −0.116169 + 0.116169i
\(516\) −7.13707 7.13707i −0.314192 0.314192i
\(517\) 2.85351 + 2.85351i 0.125497 + 0.125497i
\(518\) 36.2396i 1.59228i
\(519\) 19.3462i 0.849206i
\(520\) 0.101724 + 0.101724i 0.00446090 + 0.00446090i
\(521\) 11.9380 + 11.9380i 0.523011 + 0.523011i 0.918480 0.395468i \(-0.129418\pi\)
−0.395468 + 0.918480i \(0.629418\pi\)
\(522\) −6.03780 + 6.03780i −0.264267 + 0.264267i
\(523\) 15.5903 0.681717 0.340859 0.940115i \(-0.389282\pi\)
0.340859 + 0.940115i \(0.389282\pi\)
\(524\) 0.634051 0.634051i 0.0276986 0.0276986i
\(525\) 16.4293i 0.717035i
\(526\) 27.5122 1.19959
\(527\) 0 0
\(528\) −1.69552 −0.0737880
\(529\) 19.4525i 0.845761i
\(530\) −0.959743 + 0.959743i −0.0416886 + 0.0416886i
\(531\) 7.67459 0.333049
\(532\) −5.17574 + 5.17574i −0.224397 + 0.224397i
\(533\) −2.84322 2.84322i −0.123154 0.123154i
\(534\) −9.77791 9.77791i −0.423132 0.423132i
\(535\) 0.938533i 0.0405763i
\(536\) 15.7711i 0.681209i
\(537\) 6.44834 + 6.44834i 0.278266 + 0.278266i
\(538\) −7.08153 7.08153i −0.305306 0.305306i
\(539\) 5.58316 5.58316i 0.240484 0.240484i
\(540\) −0.433546 −0.0186568
\(541\) −10.6989 + 10.6989i −0.459984 + 0.459984i −0.898650 0.438666i \(-0.855451\pi\)
0.438666 + 0.898650i \(0.355451\pi\)
\(542\) 9.20949i 0.395581i
\(543\) −0.776691 −0.0333310
\(544\) 0 0
\(545\) −3.43098 −0.146967
\(546\) 1.13291i 0.0484840i
\(547\) −1.87163 + 1.87163i −0.0800250 + 0.0800250i −0.745986 0.665961i \(-0.768022\pi\)
0.665961 + 0.745986i \(0.268022\pi\)
\(548\) −12.6109 −0.538710
\(549\) −5.68506 + 5.68506i −0.242632 + 0.242632i
\(550\) 5.76921 + 5.76921i 0.246000 + 0.246000i
\(551\) −12.9442 12.9442i −0.551441 0.551441i
\(552\) 1.88348i 0.0801662i
\(553\) 42.8123i 1.82056i
\(554\) 5.91515 + 5.91515i 0.251311 + 0.251311i
\(555\) −3.25397 3.25397i −0.138123 0.138123i
\(556\) −12.0524 + 12.0524i −0.511137 + 0.511137i
\(557\) 12.4900 0.529217 0.264609 0.964356i \(-0.414757\pi\)
0.264609 + 0.964356i \(0.414757\pi\)
\(558\) 1.82843 1.82843i 0.0774035 0.0774035i
\(559\) 3.34919i 0.141656i
\(560\) 1.48022 0.0625506
\(561\) 0 0
\(562\) 10.9996 0.463991
\(563\) 1.98226i 0.0835423i 0.999127 + 0.0417712i \(0.0133000\pi\)
−0.999127 + 0.0417712i \(0.986700\pi\)
\(564\) 1.68297 1.68297i 0.0708660 0.0708660i
\(565\) 3.98354 0.167589
\(566\) 14.9469 14.9469i 0.628263 0.628263i
\(567\) 2.41421 + 2.41421i 0.101387 + 0.101387i
\(568\) −0.160248 0.160248i −0.00672388 0.00672388i
\(569\) 16.7666i 0.702892i −0.936208 0.351446i \(-0.885690\pi\)
0.936208 0.351446i \(-0.114310\pi\)
\(570\) 0.929461i 0.0389308i
\(571\) −21.3001 21.3001i −0.891383 0.891383i 0.103271 0.994653i \(-0.467069\pi\)
−0.994653 + 0.103271i \(0.967069\pi\)
\(572\) 0.397825 + 0.397825i 0.0166339 + 0.0166339i
\(573\) 9.49276 9.49276i 0.396566 0.396566i
\(574\) −41.3725 −1.72686
\(575\) −6.40878 + 6.40878i −0.267264 + 0.267264i
\(576\) 1.00000i 0.0416667i
\(577\) −19.8204 −0.825132 −0.412566 0.910928i \(-0.635367\pi\)
−0.412566 + 0.910928i \(0.635367\pi\)
\(578\) 0 0
\(579\) 5.08905 0.211494
\(580\) 3.70193i 0.153714i
\(581\) −2.51978 + 2.51978i −0.104538 + 0.104538i
\(582\) 3.75539 0.155666
\(583\) −3.75338 + 3.75338i −0.155449 + 0.155449i
\(584\) −8.58333 8.58333i −0.355181 0.355181i
\(585\) 0.101724 + 0.101724i 0.00420578 + 0.00420578i
\(586\) 25.1277i 1.03801i
\(587\) 12.8612i 0.530839i −0.964133 0.265419i \(-0.914490\pi\)
0.964133 0.265419i \(-0.0855104\pi\)
\(588\) −3.29289 3.29289i −0.135797 0.135797i
\(589\) 3.91989 + 3.91989i 0.161516 + 0.161516i
\(590\) 2.35275 2.35275i 0.0968610 0.0968610i
\(591\) 4.15449 0.170893
\(592\) −7.50548 + 7.50548i −0.308473 + 0.308473i
\(593\) 35.8300i 1.47136i −0.677328 0.735681i \(-0.736862\pi\)
0.677328 0.735681i \(-0.263138\pi\)
\(594\) −1.69552 −0.0695680
\(595\) 0 0
\(596\) 17.5004 0.716844
\(597\) 10.7087i 0.438279i
\(598\) −0.441927 + 0.441927i −0.0180717 + 0.0180717i
\(599\) 21.1148 0.862728 0.431364 0.902178i \(-0.358032\pi\)
0.431364 + 0.902178i \(0.358032\pi\)
\(600\) 3.40262 3.40262i 0.138912 0.138912i
\(601\) 10.7725 + 10.7725i 0.439420 + 0.439420i 0.891817 0.452397i \(-0.149431\pi\)
−0.452397 + 0.891817i \(0.649431\pi\)
\(602\) 24.3675 + 24.3675i 0.993145 + 0.993145i
\(603\) 15.7711i 0.642250i
\(604\) 9.64009i 0.392250i
\(605\) 2.49089 + 2.49089i 0.101269 + 0.101269i
\(606\) 0.449934 + 0.449934i 0.0182773 + 0.0182773i
\(607\) −27.1421 + 27.1421i −1.10167 + 1.10167i −0.107455 + 0.994210i \(0.534270\pi\)
−0.994210 + 0.107455i \(0.965730\pi\)
\(608\) −2.14386 −0.0869450
\(609\) 20.6143 20.6143i 0.835335 0.835335i
\(610\) 3.48566i 0.141130i
\(611\) −0.789763 −0.0319504
\(612\) 0 0
\(613\) −1.39554 −0.0563654 −0.0281827 0.999603i \(-0.508972\pi\)
−0.0281827 + 0.999603i \(0.508972\pi\)
\(614\) 15.3433i 0.619205i
\(615\) 3.71485 3.71485i 0.149797 0.149797i
\(616\) 5.78886 0.233240
\(617\) −5.95021 + 5.95021i −0.239547 + 0.239547i −0.816662 0.577116i \(-0.804178\pi\)
0.577116 + 0.816662i \(0.304178\pi\)
\(618\) 6.08080 + 6.08080i 0.244606 + 0.244606i
\(619\) 3.77828 + 3.77828i 0.151862 + 0.151862i 0.778949 0.627087i \(-0.215753\pi\)
−0.627087 + 0.778949i \(0.715753\pi\)
\(620\) 1.12106i 0.0450227i
\(621\) 1.88348i 0.0755814i
\(622\) −15.3318 15.3318i −0.614750 0.614750i
\(623\) 33.3839 + 33.3839i 1.33750 + 1.33750i
\(624\) 0.234633 0.234633i 0.00939284 0.00939284i
\(625\) −22.2159 −0.888636
\(626\) −5.93154 + 5.93154i −0.237072 + 0.237072i
\(627\) 3.63495i 0.145166i
\(628\) −4.78976 −0.191132
\(629\) 0 0
\(630\) 1.48022 0.0589733
\(631\) 1.46282i 0.0582340i −0.999576 0.0291170i \(-0.990730\pi\)
0.999576 0.0291170i \(-0.00926953\pi\)
\(632\) 8.86672 8.86672i 0.352699 0.352699i
\(633\) 4.72151 0.187663
\(634\) 16.9566 16.9566i 0.673434 0.673434i
\(635\) −3.70459 3.70459i −0.147012 0.147012i
\(636\) 2.21371 + 2.21371i 0.0877792 + 0.0877792i
\(637\) 1.54524i 0.0612248i
\(638\) 14.4776i 0.573173i
\(639\) −0.160248 0.160248i −0.00633933 0.00633933i
\(640\) 0.306563 + 0.306563i 0.0121180 + 0.0121180i
\(641\) −0.338967 + 0.338967i −0.0133884 + 0.0133884i −0.713769 0.700381i \(-0.753013\pi\)
0.700381 + 0.713769i \(0.253013\pi\)
\(642\) −2.16478 −0.0854372
\(643\) 22.7016 22.7016i 0.895262 0.895262i −0.0997504 0.995012i \(-0.531804\pi\)
0.995012 + 0.0997504i \(0.0318044\pi\)
\(644\) 6.43060i 0.253401i
\(645\) −4.37592 −0.172302
\(646\) 0 0
\(647\) 23.4802 0.923103 0.461551 0.887114i \(-0.347293\pi\)
0.461551 + 0.887114i \(0.347293\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 9.20116 9.20116i 0.361177 0.361177i
\(650\) −1.59674 −0.0626292
\(651\) −6.24264 + 6.24264i −0.244668 + 0.244668i
\(652\) 12.5899 + 12.5899i 0.493060 + 0.493060i
\(653\) −32.0806 32.0806i −1.25541 1.25541i −0.953260 0.302152i \(-0.902295\pi\)
−0.302152 0.953260i \(-0.597705\pi\)
\(654\) 7.91376i 0.309453i
\(655\) 0.388753i 0.0151898i
\(656\) −8.56854 8.56854i −0.334545 0.334545i
\(657\) −8.58333 8.58333i −0.334868 0.334868i
\(658\) −5.74603 + 5.74603i −0.224004 + 0.224004i
\(659\) −12.8417 −0.500240 −0.250120 0.968215i \(-0.580470\pi\)
−0.250120 + 0.968215i \(0.580470\pi\)
\(660\) −0.519783 + 0.519783i −0.0202325 + 0.0202325i
\(661\) 27.1878i 1.05748i −0.848783 0.528741i \(-0.822664\pi\)
0.848783 0.528741i \(-0.177336\pi\)
\(662\) −4.07733 −0.158470
\(663\) 0 0
\(664\) −1.04373 −0.0405045
\(665\) 3.17338i 0.123058i
\(666\) −7.50548 + 7.50548i −0.290831 + 0.290831i
\(667\) −16.0825 −0.622719
\(668\) 12.4416 12.4416i 0.481378 0.481378i
\(669\) −11.0563 11.0563i −0.427460 0.427460i
\(670\) 4.83484 + 4.83484i 0.186786 + 0.186786i
\(671\) 13.6318i 0.526249i
\(672\) 3.41421i 0.131706i
\(673\) 11.7925 + 11.7925i 0.454569 + 0.454569i 0.896868 0.442299i \(-0.145837\pi\)
−0.442299 + 0.896868i \(0.645837\pi\)
\(674\) 7.08288 + 7.08288i 0.272822 + 0.272822i
\(675\) 3.40262 3.40262i 0.130967 0.130967i
\(676\) 12.8899 0.495765
\(677\) −1.84048 + 1.84048i −0.0707355 + 0.0707355i −0.741589 0.670854i \(-0.765928\pi\)
0.670854 + 0.741589i \(0.265928\pi\)
\(678\) 9.18828i 0.352874i
\(679\) −12.8217 −0.492052
\(680\) 0 0
\(681\) −11.0615 −0.423876
\(682\) 4.38425i 0.167882i
\(683\) 8.65689 8.65689i 0.331247 0.331247i −0.521813 0.853060i \(-0.674744\pi\)
0.853060 + 0.521813i \(0.174744\pi\)
\(684\) −2.14386 −0.0819725
\(685\) −3.86603 + 3.86603i −0.147713 + 0.147713i
\(686\) −5.65685 5.65685i −0.215980 0.215980i
\(687\) 10.8789 + 10.8789i 0.415058 + 0.415058i
\(688\) 10.0933i 0.384805i
\(689\) 1.03882i 0.0395758i
\(690\) −0.577405 0.577405i −0.0219814 0.0219814i
\(691\) 11.0829 + 11.0829i 0.421614 + 0.421614i 0.885759 0.464145i \(-0.153638\pi\)
−0.464145 + 0.885759i \(0.653638\pi\)
\(692\) 13.6799 13.6799i 0.520030 0.520030i
\(693\) 5.78886 0.219901
\(694\) −6.11236 + 6.11236i −0.232022 + 0.232022i
\(695\) 7.38966i 0.280306i
\(696\) 8.53874 0.323660
\(697\) 0 0
\(698\) 20.8126 0.787768
\(699\) 10.3776i 0.392517i
\(700\) −11.6173 + 11.6173i −0.439092 + 0.439092i
\(701\) −30.8222 −1.16414 −0.582070 0.813139i \(-0.697757\pi\)
−0.582070 + 0.813139i \(0.697757\pi\)
\(702\) 0.234633 0.234633i 0.00885566 0.00885566i
\(703\) −16.0907 16.0907i −0.606872 0.606872i
\(704\) 1.19891 + 1.19891i 0.0451857 + 0.0451857i
\(705\) 1.03188i 0.0388627i
\(706\) 20.1049i 0.756656i
\(707\) −1.53617 1.53617i −0.0577737 0.0577737i
\(708\) −5.42676 5.42676i −0.203950 0.203950i
\(709\) 0.279223 0.279223i 0.0104865 0.0104865i −0.701844 0.712331i \(-0.747640\pi\)
0.712331 + 0.701844i \(0.247640\pi\)
\(710\) −0.0982525 −0.00368735
\(711\) 8.86672 8.86672i 0.332528 0.332528i
\(712\) 13.8281i 0.518228i
\(713\) 4.87028 0.182393
\(714\) 0 0
\(715\) 0.243917 0.00912197
\(716\) 9.11933i 0.340805i
\(717\) −17.5224 + 17.5224i −0.654384 + 0.654384i
\(718\) −25.3001 −0.944193
\(719\) 7.84617 7.84617i 0.292613 0.292613i −0.545499 0.838112i \(-0.683660\pi\)
0.838112 + 0.545499i \(0.183660\pi\)
\(720\) 0.306563 + 0.306563i 0.0114249 + 0.0114249i
\(721\) −20.7611 20.7611i −0.773186 0.773186i
\(722\) 14.4039i 0.536056i
\(723\) 4.30517i 0.160111i
\(724\) 0.549204 + 0.549204i 0.0204110 + 0.0204110i
\(725\) −29.0541 29.0541i −1.07904 1.07904i
\(726\) 5.74540 5.74540i 0.213232 0.213232i
\(727\) −27.2866 −1.01200 −0.506001 0.862533i \(-0.668877\pi\)
−0.506001 + 0.862533i \(0.668877\pi\)
\(728\) −0.801088 + 0.801088i −0.0296903 + 0.0296903i
\(729\) 1.00000i 0.0370370i
\(730\) −5.26266 −0.194780
\(731\) 0 0
\(732\) 8.03988 0.297163
\(733\) 29.2870i 1.08174i −0.841106 0.540870i \(-0.818095\pi\)
0.841106 0.540870i \(-0.181905\pi\)
\(734\) 7.29732 7.29732i 0.269349 0.269349i
\(735\) −2.01896 −0.0744704
\(736\) −1.33182 + 1.33182i −0.0490916 + 0.0490916i
\(737\) 18.9082 + 18.9082i 0.696492 + 0.696492i
\(738\) −8.56854 8.56854i −0.315412 0.315412i
\(739\) 37.0534i 1.36303i −0.731803 0.681516i \(-0.761321\pi\)
0.731803 0.681516i \(-0.238679\pi\)
\(740\) 4.60180i 0.169166i
\(741\) 0.503021 + 0.503021i 0.0184789 + 0.0184789i
\(742\) −7.55807 7.55807i −0.277466 0.277466i
\(743\) 10.2440 10.2440i 0.375816 0.375816i −0.493774 0.869590i \(-0.664383\pi\)
0.869590 + 0.493774i \(0.164383\pi\)
\(744\) −2.58579 −0.0947995
\(745\) 5.36497 5.36497i 0.196557 0.196557i
\(746\) 18.2719i 0.668981i
\(747\) −1.04373 −0.0381880
\(748\) 0 0
\(749\) 7.39104 0.270063
\(750\) 4.25397i 0.155333i
\(751\) 31.0867 31.0867i 1.13437 1.13437i 0.144928 0.989442i \(-0.453705\pi\)
0.989442 0.144928i \(-0.0462950\pi\)
\(752\) −2.38009 −0.0867928
\(753\) 13.4802 13.4802i 0.491246 0.491246i
\(754\) −2.00347 2.00347i −0.0729621 0.0729621i
\(755\) −2.95530 2.95530i −0.107554 0.107554i
\(756\) 3.41421i 0.124174i
\(757\) 37.8588i 1.37600i 0.725710 + 0.688001i \(0.241511\pi\)
−0.725710 + 0.688001i \(0.758489\pi\)
\(758\) −14.8011 14.8011i −0.537600 0.537600i
\(759\) −2.25813 2.25813i −0.0819648 0.0819648i
\(760\) −0.657228 + 0.657228i −0.0238402 + 0.0238402i
\(761\) 9.82880 0.356294 0.178147 0.984004i \(-0.442990\pi\)
0.178147 + 0.984004i \(0.442990\pi\)
\(762\) −8.54487 + 8.54487i −0.309548 + 0.309548i
\(763\) 27.0193i 0.978163i
\(764\) −13.4248 −0.485692
\(765\) 0 0
\(766\) 22.9974 0.830929
\(767\) 2.54659i 0.0919522i
\(768\) 0.707107 0.707107i 0.0255155 0.0255155i
\(769\) −41.1522 −1.48398 −0.741992 0.670408i \(-0.766119\pi\)
−0.741992 + 0.670408i \(0.766119\pi\)
\(770\) 1.77465 1.77465i 0.0639540 0.0639540i
\(771\) −18.9218 18.9218i −0.681451 0.681451i
\(772\) −3.59850 3.59850i −0.129513 0.129513i
\(773\) 21.7456i 0.782136i −0.920362 0.391068i \(-0.872106\pi\)
0.920362 0.391068i \(-0.127894\pi\)
\(774\) 10.0933i 0.362798i
\(775\) 8.79846 + 8.79846i 0.316050 + 0.316050i
\(776\) −2.65546 2.65546i −0.0953256 0.0953256i
\(777\) 25.6253 25.6253i 0.919302 0.919302i
\(778\) 9.07748 0.325444
\(779\) 18.3697 18.3697i 0.658164 0.658164i
\(780\) 0.143860i 0.00515100i
\(781\) −0.384248 −0.0137495
\(782\) 0 0
\(783\) 8.53874 0.305150
\(784\) 4.65685i 0.166316i
\(785\) −1.46836 + 1.46836i −0.0524082 + 0.0524082i
\(786\) −0.896683 −0.0319836
\(787\) −33.6597 + 33.6597i −1.19984 + 1.19984i −0.225626 + 0.974214i \(0.572443\pi\)
−0.974214 + 0.225626i \(0.927557\pi\)
\(788\) −2.93767 2.93767i −0.104650 0.104650i
\(789\) −19.4541 19.4541i −0.692584 0.692584i
\(790\) 5.43641i 0.193419i
\(791\) 31.3707i 1.11542i
\(792\) 1.19891 + 1.19891i 0.0426015 + 0.0426015i
\(793\) −1.88642 1.88642i −0.0669888 0.0669888i
\(794\) 5.52149 5.52149i 0.195950 0.195950i
\(795\) 1.35728 0.0481378
\(796\) −7.57221 + 7.57221i −0.268390 + 0.268390i
\(797\) 37.8984i 1.34243i −0.741263 0.671215i \(-0.765773\pi\)
0.741263 0.671215i \(-0.234227\pi\)
\(798\) 7.31959 0.259111
\(799\) 0 0
\(800\) −4.81204 −0.170131
\(801\) 13.8281i 0.488590i
\(802\) 12.2759 12.2759i 0.433477 0.433477i
\(803\) −20.5813 −0.726299
\(804\) 11.1519 11.1519i 0.393296 0.393296i
\(805\) 1.97138 + 1.97138i 0.0694822 + 0.0694822i
\(806\) 0.606711 + 0.606711i 0.0213705 + 0.0213705i
\(807\) 10.0148i 0.352538i
\(808\) 0.636303i 0.0223851i
\(809\) −27.2753 27.2753i −0.958948 0.958948i 0.0402418 0.999190i \(-0.487187\pi\)
−0.999190 + 0.0402418i \(0.987187\pi\)
\(810\) 0.306563 + 0.306563i 0.0107715 + 0.0107715i
\(811\) −13.7457 + 13.7457i −0.482677 + 0.482677i −0.905985 0.423309i \(-0.860869\pi\)
0.423309 + 0.905985i \(0.360869\pi\)
\(812\) −29.1531 −1.02307
\(813\) 6.51209 6.51209i 0.228389 0.228389i
\(814\) 17.9968i 0.630788i
\(815\) 7.71922 0.270393
\(816\) 0 0
\(817\) −21.6387 −0.757043
\(818\) 4.42153i 0.154595i
\(819\) −0.801088 + 0.801088i −0.0279923 + 0.0279923i
\(820\) −5.25359 −0.183463
\(821\) −0.163922 + 0.163922i −0.00572093 + 0.00572093i −0.709961 0.704241i \(-0.751288\pi\)
0.704241 + 0.709961i \(0.251288\pi\)
\(822\) 8.91723 + 8.91723i 0.311024 + 0.311024i
\(823\) 15.9050 + 15.9050i 0.554414 + 0.554414i 0.927712 0.373298i \(-0.121773\pi\)
−0.373298 + 0.927712i \(0.621773\pi\)
\(824\) 8.59955i 0.299579i
\(825\) 8.15890i 0.284056i
\(826\) 18.5281 + 18.5281i 0.644675 + 0.644675i
\(827\) 36.9902 + 36.9902i 1.28628 + 1.28628i 0.937032 + 0.349244i \(0.113561\pi\)
0.349244 + 0.937032i \(0.386439\pi\)
\(828\) −1.33182 + 1.33182i −0.0462840 + 0.0462840i
\(829\) −23.3260 −0.810144 −0.405072 0.914285i \(-0.632754\pi\)
−0.405072 + 0.914285i \(0.632754\pi\)
\(830\) −0.319968 + 0.319968i −0.0111063 + 0.0111063i
\(831\) 8.36529i 0.290189i
\(832\) −0.331821 −0.0115038
\(833\) 0 0
\(834\) 17.0447 0.590210
\(835\) 7.62824i 0.263986i
\(836\) −2.57030 + 2.57030i −0.0888957 + 0.0888957i
\(837\) −2.58579 −0.0893779
\(838\) 16.3811 16.3811i 0.565874 0.565874i
\(839\) −9.49019 9.49019i −0.327638 0.327638i 0.524050 0.851688i \(-0.324421\pi\)
−0.851688 + 0.524050i \(0.824421\pi\)
\(840\) −1.04667 1.04667i −0.0361136 0.0361136i
\(841\) 43.9101i 1.51414i
\(842\) 20.0524i 0.691052i
\(843\) −7.77791 7.77791i −0.267885 0.267885i
\(844\) −3.33861 3.33861i −0.114920 0.114920i
\(845\) 3.95156 3.95156i 0.135938 0.135938i
\(846\) −2.38009 −0.0818290
\(847\) −19.6160 + 19.6160i −0.674014 + 0.674014i
\(848\) 3.13066i 0.107507i
\(849\) −21.1380 −0.725456
\(850\) 0 0
\(851\) −19.9919 −0.685314
\(852\) 0.226626i 0.00776406i
\(853\) −35.3094 + 35.3094i −1.20897 + 1.20897i −0.237609 + 0.971361i \(0.576364\pi\)
−0.971361 + 0.237609i \(0.923636\pi\)
\(854\) −27.4499 −0.939315
\(855\) −0.657228 + 0.657228i −0.0224767 + 0.0224767i
\(856\) 1.53073 + 1.53073i 0.0523194 + 0.0523194i
\(857\) −12.1453 12.1453i −0.414875 0.414875i 0.468558 0.883433i \(-0.344774\pi\)
−0.883433 + 0.468558i \(0.844774\pi\)
\(858\) 0.562609i 0.0192072i
\(859\) 8.76362i 0.299011i −0.988761 0.149505i \(-0.952232\pi\)
0.988761 0.149505i \(-0.0477681\pi\)
\(860\) 3.09425 + 3.09425i 0.105513 + 0.105513i
\(861\) 29.2548 + 29.2548i 0.997001 + 0.997001i
\(862\) −28.3880 + 28.3880i −0.966900 + 0.966900i
\(863\) −35.9177 −1.22265 −0.611326 0.791379i \(-0.709364\pi\)
−0.611326 + 0.791379i \(0.709364\pi\)
\(864\) 0.707107 0.707107i 0.0240563 0.0240563i
\(865\) 8.38748i 0.285183i
\(866\) −21.8499 −0.742490
\(867\) 0 0
\(868\) 8.82843 0.299656
\(869\) 21.2608i 0.721224i
\(870\) 2.61766 2.61766i 0.0887470 0.0887470i
\(871\) −5.23320 −0.177320
\(872\) 5.59588 5.59588i 0.189500 0.189500i
\(873\) −2.65546 2.65546i −0.0898738 0.0898738i
\(874\) −2.85524 2.85524i −0.0965799 0.0965799i
\(875\) 14.5239i 0.490999i
\(876\) 12.1387i 0.410127i
\(877\) −2.98766 2.98766i −0.100886 0.100886i 0.654862 0.755748i \(-0.272727\pi\)
−0.755748 + 0.654862i \(0.772727\pi\)
\(878\) −0.593103 0.593103i −0.0200163 0.0200163i
\(879\) −17.7679 + 17.7679i −0.599298 + 0.599298i
\(880\) 0.735084 0.0247797
\(881\) 21.2102 21.2102i 0.714590 0.714590i −0.252902 0.967492i \(-0.581385\pi\)
0.967492 + 0.252902i \(0.0813849\pi\)
\(882\) 4.65685i 0.156804i
\(883\) 13.9714 0.470175 0.235087 0.971974i \(-0.424462\pi\)
0.235087 + 0.971974i \(0.424462\pi\)
\(884\) 0 0
\(885\) −3.32729 −0.111845
\(886\) 3.21267i 0.107932i
\(887\) −15.5758 + 15.5758i −0.522986 + 0.522986i −0.918472 0.395486i \(-0.870576\pi\)
0.395486 + 0.918472i \(0.370576\pi\)
\(888\) 10.6143 0.356194
\(889\) 29.1740 29.1740i 0.978465 0.978465i
\(890\) 4.23917 + 4.23917i 0.142097 + 0.142097i
\(891\) 1.19891 + 1.19891i 0.0401651 + 0.0401651i
\(892\) 15.6359i 0.523530i
\(893\) 5.10257i 0.170751i
\(894\) −12.3746 12.3746i −0.413870 0.413870i
\(895\) −2.79565 2.79565i −0.0934483 0.0934483i
\(896\) −2.41421 + 2.41421i −0.0806532 + 0.0806532i
\(897\) 0.624979 0.0208674
\(898\) −20.3281 + 20.3281i −0.678357 + 0.678357i
\(899\) 22.0794i 0.736388i
\(900\) −4.81204 −0.160401
\(901\) 0 0
\(902\) −20.5458 −0.684102
\(903\) 34.4608i 1.14678i
\(904\) −6.49709 + 6.49709i −0.216090 + 0.216090i
\(905\) 0.336731 0.0111933
\(906\) −6.81657 + 6.81657i −0.226466 + 0.226466i
\(907\) −19.0287 19.0287i −0.631837 0.631837i 0.316691 0.948529i \(-0.397428\pi\)
−0.948529 + 0.316691i \(0.897428\pi\)
\(908\) 7.82164 + 7.82164i 0.259570 + 0.259570i
\(909\) 0.636303i 0.0211048i
\(910\) 0.491168i 0.0162820i
\(911\) −25.0916 25.0916i −0.831322 0.831322i 0.156375 0.987698i \(-0.450019\pi\)
−0.987698 + 0.156375i \(0.950019\pi\)
\(912\) 1.51594 + 1.51594i 0.0501977 + 0.0501977i
\(913\) −1.25134 + 1.25134i −0.0414133 + 0.0414133i
\(914\) 7.45097 0.246456
\(915\) 2.46473 2.46473i 0.0814815 0.0814815i
\(916\) 15.3852i 0.508340i
\(917\) 3.06147 0.101099
\(918\) 0 0
\(919\) −38.6107 −1.27365 −0.636824 0.771009i \(-0.719752\pi\)
−0.636824 + 0.771009i \(0.719752\pi\)
\(920\) 0.816574i 0.0269217i
\(921\) 10.8494 10.8494i 0.357498 0.357498i
\(922\) −25.6378 −0.844337
\(923\) 0.0531739 0.0531739i 0.00175024 0.00175024i
\(924\) −4.09334 4.09334i −0.134661 0.134661i
\(925\) −36.1166 36.1166i −1.18751 1.18751i
\(926\) 10.7747i 0.354079i
\(927\) 8.59955i 0.282446i
\(928\) −6.03780 6.03780i −0.198201 0.198201i
\(929\) −16.1891 16.1891i −0.531148 0.531148i 0.389766 0.920914i \(-0.372556\pi\)
−0.920914 + 0.389766i \(0.872556\pi\)
\(930\) −0.792706 + 0.792706i −0.0259939 + 0.0259939i
\(931\) −9.98364 −0.327201
\(932\) 7.33806 7.33806i 0.240366 0.240366i
\(933\) 21.6825i 0.709852i
\(934\) 35.6492 1.16648
\(935\) 0 0
\(936\) −0.331821 −0.0108459
\(937\) 39.6793i 1.29627i 0.761527 + 0.648133i \(0.224450\pi\)
−0.761527 + 0.648133i \(0.775550\pi\)
\(938\) −38.0749 + 38.0749i −1.24319 + 1.24319i
\(939\) 8.38847 0.273747
\(940\) −0.729646 + 0.729646i −0.0237984 + 0.0237984i
\(941\) −37.2398 37.2398i −1.21398 1.21398i −0.969705 0.244279i \(-0.921449\pi\)
−0.244279 0.969705i \(-0.578551\pi\)
\(942\) 3.38687 + 3.38687i 0.110350 + 0.110350i
\(943\) 22.8235i 0.743236i
\(944\) 7.67459i 0.249787i
\(945\) −1.04667 1.04667i −0.0340482 0.0340482i
\(946\) 12.1010 + 12.1010i 0.393439 + 0.393439i
\(947\) −1.07974 + 1.07974i −0.0350867 + 0.0350867i −0.724432 0.689346i \(-0.757898\pi\)
0.689346 + 0.724432i \(0.257898\pi\)
\(948\) −12.5394 −0.407262
\(949\) 2.84813 2.84813i 0.0924543 0.0924543i
\(950\) 10.3163i 0.334706i
\(951\) −23.9803 −0.777614
\(952\) 0 0
\(953\) 9.95360 0.322429 0.161214 0.986919i \(-0.448459\pi\)
0.161214 + 0.986919i \(0.448459\pi\)
\(954\) 3.13066i 0.101359i
\(955\) −4.11554 + 4.11554i −0.133176 + 0.133176i
\(956\) 24.7803 0.801454
\(957\) 10.2372 10.2372i 0.330922 0.330922i
\(958\) −9.94911 9.94911i −0.321441 0.321441i
\(959\) −30.4453 30.4453i −0.983131 0.983131i
\(960\) 0.433546i 0.0139926i
\(961\) 24.3137i 0.784313i
\(962\) −2.49048 2.49048i −0.0802962 0.0802962i
\(963\) 1.53073 + 1.53073i 0.0493272 + 0.0493272i
\(964\) 3.04422 3.04422i 0.0980476 0.0980476i
\(965\) −2.20633 −0.0710244
\(966\) 4.54712 4.54712i 0.146301 0.146301i
\(967\) 5.88843i 0.189359i 0.995508 + 0.0946796i \(0.0301827\pi\)
−0.995508 + 0.0946796i \(0.969817\pi\)
\(968\) −8.12522 −0.261154
\(969\) 0 0
\(970\) −1.62813 −0.0522762
\(971\) 18.9670i 0.608681i 0.952563 + 0.304341i \(0.0984361\pi\)
−0.952563 + 0.304341i \(0.901564\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) −58.1943 −1.86562
\(974\) −17.0643 + 17.0643i −0.546775 + 0.546775i
\(975\) 1.12906 + 1.12906i 0.0361590 + 0.0361590i
\(976\) −5.68506 5.68506i −0.181974 0.181974i
\(977\) 32.3172i 1.03392i −0.856010 0.516959i \(-0.827064\pi\)
0.856010 0.516959i \(-0.172936\pi\)
\(978\) 17.8049i 0.569337i
\(979\) 16.5786 + 16.5786i 0.529855 + 0.529855i
\(980\) 1.42762 + 1.42762i 0.0456036 + 0.0456036i
\(981\) 5.59588 5.59588i 0.178663 0.178663i
\(982\) −26.5200 −0.846288
\(983\) 22.9359 22.9359i 0.731542 0.731542i −0.239383 0.970925i \(-0.576945\pi\)
0.970925 + 0.239383i \(0.0769453\pi\)
\(984\) 12.1177i 0.386299i
\(985\) −1.80116 −0.0573898
\(986\) 0 0
\(987\) 8.12612 0.258657
\(988\) 0.711378i 0.0226320i
\(989\) −13.4425 + 13.4425i −0.427448 + 0.427448i
\(990\) 0.735084 0.0233625
\(991\) −33.1640 + 33.1640i −1.05349 + 1.05349i −0.0550042 + 0.998486i \(0.517517\pi\)
−0.998486 + 0.0550042i \(0.982483\pi\)
\(992\) 1.82843 + 1.82843i 0.0580526 + 0.0580526i
\(993\) 2.88311 + 2.88311i 0.0914926 + 0.0914926i
\(994\) 0.773748i 0.0245418i
\(995\) 4.64272i 0.147184i
\(996\) 0.738027 + 0.738027i 0.0233853 + 0.0233853i
\(997\) 33.5572 + 33.5572i 1.06277 + 1.06277i 0.997893 + 0.0648741i \(0.0206646\pi\)
0.0648741 + 0.997893i \(0.479335\pi\)
\(998\) 3.21024 3.21024i 0.101618 0.101618i
\(999\) 10.6143 0.335823
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.f.m.1483.3 8
17.2 even 8 1734.2.b.k.577.3 8
17.4 even 4 1734.2.f.j.829.2 8
17.5 odd 16 102.2.h.a.49.2 yes 8
17.6 odd 16 102.2.h.a.25.2 8
17.8 even 8 1734.2.a.v.1.3 4
17.9 even 8 1734.2.a.w.1.2 4
17.13 even 4 inner 1734.2.f.m.829.3 8
17.15 even 8 1734.2.b.k.577.6 8
17.16 even 2 1734.2.f.j.1483.2 8
51.5 even 16 306.2.l.d.253.2 8
51.8 odd 8 5202.2.a.br.1.2 4
51.23 even 16 306.2.l.d.127.2 8
51.26 odd 8 5202.2.a.bt.1.3 4
68.23 even 16 816.2.bq.b.433.1 8
68.39 even 16 816.2.bq.b.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.a.25.2 8 17.6 odd 16
102.2.h.a.49.2 yes 8 17.5 odd 16
306.2.l.d.127.2 8 51.23 even 16
306.2.l.d.253.2 8 51.5 even 16
816.2.bq.b.49.1 8 68.39 even 16
816.2.bq.b.433.1 8 68.23 even 16
1734.2.a.v.1.3 4 17.8 even 8
1734.2.a.w.1.2 4 17.9 even 8
1734.2.b.k.577.3 8 17.2 even 8
1734.2.b.k.577.6 8 17.15 even 8
1734.2.f.j.829.2 8 17.4 even 4
1734.2.f.j.1483.2 8 17.16 even 2
1734.2.f.m.829.3 8 17.13 even 4 inner
1734.2.f.m.1483.3 8 1.1 even 1 trivial
5202.2.a.br.1.2 4 51.8 odd 8
5202.2.a.bt.1.3 4 51.26 odd 8