Properties

Label 5202.2.a.bt.1.3
Level $5202$
Weight $2$
Character 5202.1
Self dual yes
Analytic conductor $41.538$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.765367\) of defining polynomial
Character \(\chi\) \(=\) 5202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -0.433546 q^{5} +3.41421 q^{7} -1.00000 q^{8} +0.433546 q^{10} +1.69552 q^{11} -0.331821 q^{13} -3.41421 q^{14} +1.00000 q^{16} +2.14386 q^{19} -0.433546 q^{20} -1.69552 q^{22} -1.88348 q^{23} -4.81204 q^{25} +0.331821 q^{26} +3.41421 q^{28} -8.53874 q^{29} +2.58579 q^{31} -1.00000 q^{32} -1.48022 q^{35} -10.6143 q^{37} -2.14386 q^{38} +0.433546 q^{40} -12.1177 q^{41} -10.0933 q^{43} +1.69552 q^{44} +1.88348 q^{46} -2.38009 q^{47} +4.65685 q^{49} +4.81204 q^{50} -0.331821 q^{52} +3.13066 q^{53} -0.735084 q^{55} -3.41421 q^{56} +8.53874 q^{58} +7.67459 q^{59} +8.03988 q^{61} -2.58579 q^{62} +1.00000 q^{64} +0.143860 q^{65} -15.7711 q^{67} +1.48022 q^{70} -0.226626 q^{71} -12.1387 q^{73} +10.6143 q^{74} +2.14386 q^{76} +5.78886 q^{77} +12.5394 q^{79} -0.433546 q^{80} +12.1177 q^{82} +1.04373 q^{83} +10.0933 q^{86} -1.69552 q^{88} -13.8281 q^{89} -1.13291 q^{91} -1.88348 q^{92} +2.38009 q^{94} -0.929461 q^{95} -3.75539 q^{97} -4.65685 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 8 q^{7} - 4 q^{8} - 8 q^{11} - 8 q^{14} + 4 q^{16} - 8 q^{19} + 8 q^{22} - 8 q^{23} - 4 q^{25} + 8 q^{28} - 8 q^{29} + 16 q^{31} - 4 q^{32} + 8 q^{35} + 8 q^{37} + 8 q^{38} - 8 q^{41}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.433546 −0.193887 −0.0969437 0.995290i \(-0.530907\pi\)
−0.0969437 + 0.995290i \(0.530907\pi\)
\(6\) 0 0
\(7\) 3.41421 1.29045 0.645226 0.763992i \(-0.276763\pi\)
0.645226 + 0.763992i \(0.276763\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.433546 0.137099
\(11\) 1.69552 0.511218 0.255609 0.966780i \(-0.417724\pi\)
0.255609 + 0.966780i \(0.417724\pi\)
\(12\) 0 0
\(13\) −0.331821 −0.0920307 −0.0460153 0.998941i \(-0.514652\pi\)
−0.0460153 + 0.998941i \(0.514652\pi\)
\(14\) −3.41421 −0.912487
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 0 0
\(19\) 2.14386 0.491835 0.245918 0.969291i \(-0.420911\pi\)
0.245918 + 0.969291i \(0.420911\pi\)
\(20\) −0.433546 −0.0969437
\(21\) 0 0
\(22\) −1.69552 −0.361486
\(23\) −1.88348 −0.392733 −0.196366 0.980531i \(-0.562914\pi\)
−0.196366 + 0.980531i \(0.562914\pi\)
\(24\) 0 0
\(25\) −4.81204 −0.962408
\(26\) 0.331821 0.0650755
\(27\) 0 0
\(28\) 3.41421 0.645226
\(29\) −8.53874 −1.58560 −0.792802 0.609479i \(-0.791379\pi\)
−0.792802 + 0.609479i \(0.791379\pi\)
\(30\) 0 0
\(31\) 2.58579 0.464421 0.232210 0.972666i \(-0.425404\pi\)
0.232210 + 0.972666i \(0.425404\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −1.48022 −0.250202
\(36\) 0 0
\(37\) −10.6143 −1.74499 −0.872494 0.488625i \(-0.837499\pi\)
−0.872494 + 0.488625i \(0.837499\pi\)
\(38\) −2.14386 −0.347780
\(39\) 0 0
\(40\) 0.433546 0.0685496
\(41\) −12.1177 −1.89247 −0.946236 0.323476i \(-0.895149\pi\)
−0.946236 + 0.323476i \(0.895149\pi\)
\(42\) 0 0
\(43\) −10.0933 −1.53922 −0.769610 0.638514i \(-0.779549\pi\)
−0.769610 + 0.638514i \(0.779549\pi\)
\(44\) 1.69552 0.255609
\(45\) 0 0
\(46\) 1.88348 0.277704
\(47\) −2.38009 −0.347171 −0.173586 0.984819i \(-0.555535\pi\)
−0.173586 + 0.984819i \(0.555535\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 4.81204 0.680525
\(51\) 0 0
\(52\) −0.331821 −0.0460153
\(53\) 3.13066 0.430029 0.215014 0.976611i \(-0.431020\pi\)
0.215014 + 0.976611i \(0.431020\pi\)
\(54\) 0 0
\(55\) −0.735084 −0.0991187
\(56\) −3.41421 −0.456243
\(57\) 0 0
\(58\) 8.53874 1.12119
\(59\) 7.67459 0.999147 0.499573 0.866272i \(-0.333490\pi\)
0.499573 + 0.866272i \(0.333490\pi\)
\(60\) 0 0
\(61\) 8.03988 1.02940 0.514701 0.857370i \(-0.327903\pi\)
0.514701 + 0.857370i \(0.327903\pi\)
\(62\) −2.58579 −0.328395
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.143860 0.0178436
\(66\) 0 0
\(67\) −15.7711 −1.92675 −0.963375 0.268159i \(-0.913585\pi\)
−0.963375 + 0.268159i \(0.913585\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.48022 0.176920
\(71\) −0.226626 −0.0268955 −0.0134478 0.999910i \(-0.504281\pi\)
−0.0134478 + 0.999910i \(0.504281\pi\)
\(72\) 0 0
\(73\) −12.1387 −1.42072 −0.710362 0.703837i \(-0.751469\pi\)
−0.710362 + 0.703837i \(0.751469\pi\)
\(74\) 10.6143 1.23389
\(75\) 0 0
\(76\) 2.14386 0.245918
\(77\) 5.78886 0.659702
\(78\) 0 0
\(79\) 12.5394 1.41080 0.705398 0.708811i \(-0.250768\pi\)
0.705398 + 0.708811i \(0.250768\pi\)
\(80\) −0.433546 −0.0484719
\(81\) 0 0
\(82\) 12.1177 1.33818
\(83\) 1.04373 0.114564 0.0572820 0.998358i \(-0.481757\pi\)
0.0572820 + 0.998358i \(0.481757\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.0933 1.08839
\(87\) 0 0
\(88\) −1.69552 −0.180743
\(89\) −13.8281 −1.46577 −0.732885 0.680352i \(-0.761827\pi\)
−0.732885 + 0.680352i \(0.761827\pi\)
\(90\) 0 0
\(91\) −1.13291 −0.118761
\(92\) −1.88348 −0.196366
\(93\) 0 0
\(94\) 2.38009 0.245487
\(95\) −0.929461 −0.0953607
\(96\) 0 0
\(97\) −3.75539 −0.381302 −0.190651 0.981658i \(-0.561060\pi\)
−0.190651 + 0.981658i \(0.561060\pi\)
\(98\) −4.65685 −0.470413
\(99\) 0 0
\(100\) −4.81204 −0.481204
\(101\) −0.636303 −0.0633145 −0.0316573 0.999499i \(-0.510079\pi\)
−0.0316573 + 0.999499i \(0.510079\pi\)
\(102\) 0 0
\(103\) 8.59955 0.847339 0.423669 0.905817i \(-0.360742\pi\)
0.423669 + 0.905817i \(0.360742\pi\)
\(104\) 0.331821 0.0325378
\(105\) 0 0
\(106\) −3.13066 −0.304076
\(107\) −2.16478 −0.209278 −0.104639 0.994510i \(-0.533369\pi\)
−0.104639 + 0.994510i \(0.533369\pi\)
\(108\) 0 0
\(109\) −7.91376 −0.758001 −0.379000 0.925396i \(-0.623732\pi\)
−0.379000 + 0.925396i \(0.623732\pi\)
\(110\) 0.735084 0.0700875
\(111\) 0 0
\(112\) 3.41421 0.322613
\(113\) 9.18828 0.864361 0.432180 0.901787i \(-0.357744\pi\)
0.432180 + 0.901787i \(0.357744\pi\)
\(114\) 0 0
\(115\) 0.816574 0.0761459
\(116\) −8.53874 −0.792802
\(117\) 0 0
\(118\) −7.67459 −0.706504
\(119\) 0 0
\(120\) 0 0
\(121\) −8.12522 −0.738656
\(122\) −8.03988 −0.727897
\(123\) 0 0
\(124\) 2.58579 0.232210
\(125\) 4.25397 0.380486
\(126\) 0 0
\(127\) −12.0843 −1.07231 −0.536153 0.844121i \(-0.680123\pi\)
−0.536153 + 0.844121i \(0.680123\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −0.143860 −0.0126173
\(131\) −0.896683 −0.0783436 −0.0391718 0.999232i \(-0.512472\pi\)
−0.0391718 + 0.999232i \(0.512472\pi\)
\(132\) 0 0
\(133\) 7.31959 0.634689
\(134\) 15.7711 1.36242
\(135\) 0 0
\(136\) 0 0
\(137\) −12.6109 −1.07742 −0.538710 0.842491i \(-0.681088\pi\)
−0.538710 + 0.842491i \(0.681088\pi\)
\(138\) 0 0
\(139\) 17.0447 1.44571 0.722857 0.690998i \(-0.242829\pi\)
0.722857 + 0.690998i \(0.242829\pi\)
\(140\) −1.48022 −0.125101
\(141\) 0 0
\(142\) 0.226626 0.0190180
\(143\) −0.562609 −0.0470477
\(144\) 0 0
\(145\) 3.70193 0.307429
\(146\) 12.1387 1.00460
\(147\) 0 0
\(148\) −10.6143 −0.872494
\(149\) −17.5004 −1.43369 −0.716844 0.697234i \(-0.754414\pi\)
−0.716844 + 0.697234i \(0.754414\pi\)
\(150\) 0 0
\(151\) 9.64009 0.784500 0.392250 0.919859i \(-0.371697\pi\)
0.392250 + 0.919859i \(0.371697\pi\)
\(152\) −2.14386 −0.173890
\(153\) 0 0
\(154\) −5.78886 −0.466480
\(155\) −1.12106 −0.0900454
\(156\) 0 0
\(157\) −4.78976 −0.382265 −0.191132 0.981564i \(-0.561216\pi\)
−0.191132 + 0.981564i \(0.561216\pi\)
\(158\) −12.5394 −0.997584
\(159\) 0 0
\(160\) 0.433546 0.0342748
\(161\) −6.43060 −0.506802
\(162\) 0 0
\(163\) 17.8049 1.39459 0.697293 0.716786i \(-0.254388\pi\)
0.697293 + 0.716786i \(0.254388\pi\)
\(164\) −12.1177 −0.946236
\(165\) 0 0
\(166\) −1.04373 −0.0810090
\(167\) 17.5950 1.36154 0.680771 0.732496i \(-0.261645\pi\)
0.680771 + 0.732496i \(0.261645\pi\)
\(168\) 0 0
\(169\) −12.8899 −0.991530
\(170\) 0 0
\(171\) 0 0
\(172\) −10.0933 −0.769610
\(173\) 19.3462 1.47087 0.735434 0.677597i \(-0.236978\pi\)
0.735434 + 0.677597i \(0.236978\pi\)
\(174\) 0 0
\(175\) −16.4293 −1.24194
\(176\) 1.69552 0.127804
\(177\) 0 0
\(178\) 13.8281 1.03646
\(179\) 9.11933 0.681611 0.340805 0.940134i \(-0.389300\pi\)
0.340805 + 0.940134i \(0.389300\pi\)
\(180\) 0 0
\(181\) −0.776691 −0.0577310 −0.0288655 0.999583i \(-0.509189\pi\)
−0.0288655 + 0.999583i \(0.509189\pi\)
\(182\) 1.13291 0.0839768
\(183\) 0 0
\(184\) 1.88348 0.138852
\(185\) 4.60180 0.338331
\(186\) 0 0
\(187\) 0 0
\(188\) −2.38009 −0.173586
\(189\) 0 0
\(190\) 0.929461 0.0674302
\(191\) 13.4248 0.971384 0.485692 0.874130i \(-0.338568\pi\)
0.485692 + 0.874130i \(0.338568\pi\)
\(192\) 0 0
\(193\) 5.08905 0.366318 0.183159 0.983083i \(-0.441368\pi\)
0.183159 + 0.983083i \(0.441368\pi\)
\(194\) 3.75539 0.269621
\(195\) 0 0
\(196\) 4.65685 0.332632
\(197\) 4.15449 0.295995 0.147998 0.988988i \(-0.452717\pi\)
0.147998 + 0.988988i \(0.452717\pi\)
\(198\) 0 0
\(199\) −10.7087 −0.759121 −0.379561 0.925167i \(-0.623925\pi\)
−0.379561 + 0.925167i \(0.623925\pi\)
\(200\) 4.81204 0.340262
\(201\) 0 0
\(202\) 0.636303 0.0447701
\(203\) −29.1531 −2.04615
\(204\) 0 0
\(205\) 5.25359 0.366927
\(206\) −8.59955 −0.599159
\(207\) 0 0
\(208\) −0.331821 −0.0230077
\(209\) 3.63495 0.251435
\(210\) 0 0
\(211\) −4.72151 −0.325042 −0.162521 0.986705i \(-0.551963\pi\)
−0.162521 + 0.986705i \(0.551963\pi\)
\(212\) 3.13066 0.215014
\(213\) 0 0
\(214\) 2.16478 0.147982
\(215\) 4.37592 0.298435
\(216\) 0 0
\(217\) 8.82843 0.599313
\(218\) 7.91376 0.535988
\(219\) 0 0
\(220\) −0.735084 −0.0495594
\(221\) 0 0
\(222\) 0 0
\(223\) −15.6359 −1.04706 −0.523530 0.852007i \(-0.675385\pi\)
−0.523530 + 0.852007i \(0.675385\pi\)
\(224\) −3.41421 −0.228122
\(225\) 0 0
\(226\) −9.18828 −0.611195
\(227\) 11.0615 0.734175 0.367088 0.930186i \(-0.380355\pi\)
0.367088 + 0.930186i \(0.380355\pi\)
\(228\) 0 0
\(229\) −15.3852 −1.01668 −0.508340 0.861157i \(-0.669741\pi\)
−0.508340 + 0.861157i \(0.669741\pi\)
\(230\) −0.816574 −0.0538433
\(231\) 0 0
\(232\) 8.53874 0.560596
\(233\) −10.3776 −0.679859 −0.339929 0.940451i \(-0.610403\pi\)
−0.339929 + 0.940451i \(0.610403\pi\)
\(234\) 0 0
\(235\) 1.03188 0.0673121
\(236\) 7.67459 0.499573
\(237\) 0 0
\(238\) 0 0
\(239\) 24.7803 1.60291 0.801454 0.598057i \(-0.204060\pi\)
0.801454 + 0.598057i \(0.204060\pi\)
\(240\) 0 0
\(241\) −4.30517 −0.277321 −0.138660 0.990340i \(-0.544280\pi\)
−0.138660 + 0.990340i \(0.544280\pi\)
\(242\) 8.12522 0.522309
\(243\) 0 0
\(244\) 8.03988 0.514701
\(245\) −2.01896 −0.128987
\(246\) 0 0
\(247\) −0.711378 −0.0452639
\(248\) −2.58579 −0.164198
\(249\) 0 0
\(250\) −4.25397 −0.269044
\(251\) 19.0639 1.20330 0.601652 0.798759i \(-0.294510\pi\)
0.601652 + 0.798759i \(0.294510\pi\)
\(252\) 0 0
\(253\) −3.19347 −0.200772
\(254\) 12.0843 0.758235
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 26.7594 1.66921 0.834603 0.550851i \(-0.185697\pi\)
0.834603 + 0.550851i \(0.185697\pi\)
\(258\) 0 0
\(259\) −36.2396 −2.25182
\(260\) 0.143860 0.00892180
\(261\) 0 0
\(262\) 0.896683 0.0553973
\(263\) −27.5122 −1.69648 −0.848239 0.529614i \(-0.822337\pi\)
−0.848239 + 0.529614i \(0.822337\pi\)
\(264\) 0 0
\(265\) −1.35728 −0.0833772
\(266\) −7.31959 −0.448793
\(267\) 0 0
\(268\) −15.7711 −0.963375
\(269\) 10.0148 0.610613 0.305306 0.952254i \(-0.401241\pi\)
0.305306 + 0.952254i \(0.401241\pi\)
\(270\) 0 0
\(271\) 9.20949 0.559437 0.279718 0.960082i \(-0.409759\pi\)
0.279718 + 0.960082i \(0.409759\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 12.6109 0.761851
\(275\) −8.15890 −0.492000
\(276\) 0 0
\(277\) −8.36529 −0.502622 −0.251311 0.967906i \(-0.580862\pi\)
−0.251311 + 0.967906i \(0.580862\pi\)
\(278\) −17.0447 −1.02227
\(279\) 0 0
\(280\) 1.48022 0.0884599
\(281\) −10.9996 −0.656183 −0.328091 0.944646i \(-0.606405\pi\)
−0.328091 + 0.944646i \(0.606405\pi\)
\(282\) 0 0
\(283\) −21.1380 −1.25653 −0.628263 0.778001i \(-0.716234\pi\)
−0.628263 + 0.778001i \(0.716234\pi\)
\(284\) −0.226626 −0.0134478
\(285\) 0 0
\(286\) 0.562609 0.0332678
\(287\) −41.3725 −2.44214
\(288\) 0 0
\(289\) 0 0
\(290\) −3.70193 −0.217385
\(291\) 0 0
\(292\) −12.1387 −0.710362
\(293\) −25.1277 −1.46797 −0.733987 0.679164i \(-0.762343\pi\)
−0.733987 + 0.679164i \(0.762343\pi\)
\(294\) 0 0
\(295\) −3.32729 −0.193722
\(296\) 10.6143 0.616946
\(297\) 0 0
\(298\) 17.5004 1.01377
\(299\) 0.624979 0.0361435
\(300\) 0 0
\(301\) −34.4608 −1.98629
\(302\) −9.64009 −0.554725
\(303\) 0 0
\(304\) 2.14386 0.122959
\(305\) −3.48566 −0.199588
\(306\) 0 0
\(307\) 15.3433 0.875688 0.437844 0.899051i \(-0.355742\pi\)
0.437844 + 0.899051i \(0.355742\pi\)
\(308\) 5.78886 0.329851
\(309\) 0 0
\(310\) 1.12106 0.0636717
\(311\) −21.6825 −1.22950 −0.614750 0.788722i \(-0.710743\pi\)
−0.614750 + 0.788722i \(0.710743\pi\)
\(312\) 0 0
\(313\) −8.38847 −0.474144 −0.237072 0.971492i \(-0.576188\pi\)
−0.237072 + 0.971492i \(0.576188\pi\)
\(314\) 4.78976 0.270302
\(315\) 0 0
\(316\) 12.5394 0.705398
\(317\) 23.9803 1.34687 0.673434 0.739248i \(-0.264819\pi\)
0.673434 + 0.739248i \(0.264819\pi\)
\(318\) 0 0
\(319\) −14.4776 −0.810589
\(320\) −0.433546 −0.0242359
\(321\) 0 0
\(322\) 6.43060 0.358363
\(323\) 0 0
\(324\) 0 0
\(325\) 1.59674 0.0885710
\(326\) −17.8049 −0.986121
\(327\) 0 0
\(328\) 12.1177 0.669090
\(329\) −8.12612 −0.448008
\(330\) 0 0
\(331\) −4.07733 −0.224110 −0.112055 0.993702i \(-0.535743\pi\)
−0.112055 + 0.993702i \(0.535743\pi\)
\(332\) 1.04373 0.0572820
\(333\) 0 0
\(334\) −17.5950 −0.962756
\(335\) 6.83750 0.373572
\(336\) 0 0
\(337\) 10.0167 0.545645 0.272822 0.962064i \(-0.412043\pi\)
0.272822 + 0.962064i \(0.412043\pi\)
\(338\) 12.8899 0.701118
\(339\) 0 0
\(340\) 0 0
\(341\) 4.38425 0.237420
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 10.0933 0.544197
\(345\) 0 0
\(346\) −19.3462 −1.04006
\(347\) 8.64418 0.464044 0.232022 0.972711i \(-0.425466\pi\)
0.232022 + 0.972711i \(0.425466\pi\)
\(348\) 0 0
\(349\) 20.8126 1.11407 0.557036 0.830488i \(-0.311938\pi\)
0.557036 + 0.830488i \(0.311938\pi\)
\(350\) 16.4293 0.878184
\(351\) 0 0
\(352\) −1.69552 −0.0903714
\(353\) 20.1049 1.07007 0.535037 0.844829i \(-0.320298\pi\)
0.535037 + 0.844829i \(0.320298\pi\)
\(354\) 0 0
\(355\) 0.0982525 0.00521470
\(356\) −13.8281 −0.732885
\(357\) 0 0
\(358\) −9.11933 −0.481972
\(359\) −25.3001 −1.33529 −0.667645 0.744480i \(-0.732698\pi\)
−0.667645 + 0.744480i \(0.732698\pi\)
\(360\) 0 0
\(361\) −14.4039 −0.758098
\(362\) 0.776691 0.0408220
\(363\) 0 0
\(364\) −1.13291 −0.0593806
\(365\) 5.26266 0.275460
\(366\) 0 0
\(367\) 10.3200 0.538698 0.269349 0.963043i \(-0.413191\pi\)
0.269349 + 0.963043i \(0.413191\pi\)
\(368\) −1.88348 −0.0981832
\(369\) 0 0
\(370\) −4.60180 −0.239236
\(371\) 10.6887 0.554931
\(372\) 0 0
\(373\) 18.2719 0.946083 0.473041 0.881040i \(-0.343156\pi\)
0.473041 + 0.881040i \(0.343156\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.38009 0.122744
\(377\) 2.83334 0.145924
\(378\) 0 0
\(379\) 20.9319 1.07520 0.537600 0.843200i \(-0.319331\pi\)
0.537600 + 0.843200i \(0.319331\pi\)
\(380\) −0.929461 −0.0476803
\(381\) 0 0
\(382\) −13.4248 −0.686872
\(383\) −22.9974 −1.17511 −0.587555 0.809184i \(-0.699910\pi\)
−0.587555 + 0.809184i \(0.699910\pi\)
\(384\) 0 0
\(385\) −2.50973 −0.127908
\(386\) −5.08905 −0.259026
\(387\) 0 0
\(388\) −3.75539 −0.190651
\(389\) 9.07748 0.460247 0.230123 0.973161i \(-0.426087\pi\)
0.230123 + 0.973161i \(0.426087\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.65685 −0.235207
\(393\) 0 0
\(394\) −4.15449 −0.209300
\(395\) −5.43641 −0.273536
\(396\) 0 0
\(397\) −7.80857 −0.391901 −0.195950 0.980614i \(-0.562779\pi\)
−0.195950 + 0.980614i \(0.562779\pi\)
\(398\) 10.7087 0.536780
\(399\) 0 0
\(400\) −4.81204 −0.240602
\(401\) −17.3608 −0.866955 −0.433477 0.901164i \(-0.642714\pi\)
−0.433477 + 0.901164i \(0.642714\pi\)
\(402\) 0 0
\(403\) −0.858019 −0.0427410
\(404\) −0.636303 −0.0316573
\(405\) 0 0
\(406\) 29.1531 1.44684
\(407\) −17.9968 −0.892069
\(408\) 0 0
\(409\) 4.42153 0.218631 0.109315 0.994007i \(-0.465134\pi\)
0.109315 + 0.994007i \(0.465134\pi\)
\(410\) −5.25359 −0.259456
\(411\) 0 0
\(412\) 8.59955 0.423669
\(413\) 26.2027 1.28935
\(414\) 0 0
\(415\) −0.452504 −0.0222125
\(416\) 0.331821 0.0162689
\(417\) 0 0
\(418\) −3.63495 −0.177791
\(419\) 23.1663 1.13175 0.565874 0.824491i \(-0.308539\pi\)
0.565874 + 0.824491i \(0.308539\pi\)
\(420\) 0 0
\(421\) −20.0524 −0.977295 −0.488648 0.872481i \(-0.662510\pi\)
−0.488648 + 0.872481i \(0.662510\pi\)
\(422\) 4.72151 0.229839
\(423\) 0 0
\(424\) −3.13066 −0.152038
\(425\) 0 0
\(426\) 0 0
\(427\) 27.4499 1.32839
\(428\) −2.16478 −0.104639
\(429\) 0 0
\(430\) −4.37592 −0.211026
\(431\) −40.1467 −1.93380 −0.966900 0.255154i \(-0.917874\pi\)
−0.966900 + 0.255154i \(0.917874\pi\)
\(432\) 0 0
\(433\) −21.8499 −1.05004 −0.525020 0.851090i \(-0.675942\pi\)
−0.525020 + 0.851090i \(0.675942\pi\)
\(434\) −8.82843 −0.423778
\(435\) 0 0
\(436\) −7.91376 −0.379000
\(437\) −4.03792 −0.193160
\(438\) 0 0
\(439\) −0.838775 −0.0400325 −0.0200163 0.999800i \(-0.506372\pi\)
−0.0200163 + 0.999800i \(0.506372\pi\)
\(440\) 0.735084 0.0350438
\(441\) 0 0
\(442\) 0 0
\(443\) 3.21267 0.152639 0.0763194 0.997083i \(-0.475683\pi\)
0.0763194 + 0.997083i \(0.475683\pi\)
\(444\) 0 0
\(445\) 5.99509 0.284195
\(446\) 15.6359 0.740383
\(447\) 0 0
\(448\) 3.41421 0.161306
\(449\) 28.7483 1.35671 0.678357 0.734732i \(-0.262692\pi\)
0.678357 + 0.734732i \(0.262692\pi\)
\(450\) 0 0
\(451\) −20.5458 −0.967466
\(452\) 9.18828 0.432180
\(453\) 0 0
\(454\) −11.0615 −0.519140
\(455\) 0.491168 0.0230263
\(456\) 0 0
\(457\) −7.45097 −0.348542 −0.174271 0.984698i \(-0.555757\pi\)
−0.174271 + 0.984698i \(0.555757\pi\)
\(458\) 15.3852 0.718901
\(459\) 0 0
\(460\) 0.816574 0.0380730
\(461\) −25.6378 −1.19407 −0.597037 0.802214i \(-0.703655\pi\)
−0.597037 + 0.802214i \(0.703655\pi\)
\(462\) 0 0
\(463\) −10.7747 −0.500744 −0.250372 0.968150i \(-0.580553\pi\)
−0.250372 + 0.968150i \(0.580553\pi\)
\(464\) −8.53874 −0.396401
\(465\) 0 0
\(466\) 10.3776 0.480733
\(467\) −35.6492 −1.64965 −0.824823 0.565391i \(-0.808725\pi\)
−0.824823 + 0.565391i \(0.808725\pi\)
\(468\) 0 0
\(469\) −53.8460 −2.48638
\(470\) −1.03188 −0.0475969
\(471\) 0 0
\(472\) −7.67459 −0.353252
\(473\) −17.1134 −0.786877
\(474\) 0 0
\(475\) −10.3163 −0.473346
\(476\) 0 0
\(477\) 0 0
\(478\) −24.7803 −1.13343
\(479\) 14.0702 0.642882 0.321441 0.946930i \(-0.395833\pi\)
0.321441 + 0.946930i \(0.395833\pi\)
\(480\) 0 0
\(481\) 3.52207 0.160592
\(482\) 4.30517 0.196095
\(483\) 0 0
\(484\) −8.12522 −0.369328
\(485\) 1.62813 0.0739297
\(486\) 0 0
\(487\) 24.1325 1.09355 0.546775 0.837280i \(-0.315855\pi\)
0.546775 + 0.837280i \(0.315855\pi\)
\(488\) −8.03988 −0.363948
\(489\) 0 0
\(490\) 2.01896 0.0912072
\(491\) −26.5200 −1.19683 −0.598416 0.801186i \(-0.704203\pi\)
−0.598416 + 0.801186i \(0.704203\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.711378 0.0320064
\(495\) 0 0
\(496\) 2.58579 0.116105
\(497\) −0.773748 −0.0347073
\(498\) 0 0
\(499\) −4.53996 −0.203237 −0.101618 0.994823i \(-0.532402\pi\)
−0.101618 + 0.994823i \(0.532402\pi\)
\(500\) 4.25397 0.190243
\(501\) 0 0
\(502\) −19.0639 −0.850864
\(503\) 3.99734 0.178233 0.0891164 0.996021i \(-0.471596\pi\)
0.0891164 + 0.996021i \(0.471596\pi\)
\(504\) 0 0
\(505\) 0.275866 0.0122759
\(506\) 3.19347 0.141967
\(507\) 0 0
\(508\) −12.0843 −0.536153
\(509\) 22.9751 1.01835 0.509176 0.860662i \(-0.329950\pi\)
0.509176 + 0.860662i \(0.329950\pi\)
\(510\) 0 0
\(511\) −41.4440 −1.83337
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −26.7594 −1.18031
\(515\) −3.72830 −0.164288
\(516\) 0 0
\(517\) −4.03548 −0.177480
\(518\) 36.2396 1.59228
\(519\) 0 0
\(520\) −0.143860 −0.00630866
\(521\) −16.8828 −0.739650 −0.369825 0.929101i \(-0.620582\pi\)
−0.369825 + 0.929101i \(0.620582\pi\)
\(522\) 0 0
\(523\) −15.5903 −0.681717 −0.340859 0.940115i \(-0.610718\pi\)
−0.340859 + 0.940115i \(0.610718\pi\)
\(524\) −0.896683 −0.0391718
\(525\) 0 0
\(526\) 27.5122 1.19959
\(527\) 0 0
\(528\) 0 0
\(529\) −19.4525 −0.845761
\(530\) 1.35728 0.0589566
\(531\) 0 0
\(532\) 7.31959 0.317345
\(533\) 4.02092 0.174166
\(534\) 0 0
\(535\) 0.938533 0.0405763
\(536\) 15.7711 0.681209
\(537\) 0 0
\(538\) −10.0148 −0.431769
\(539\) 7.89578 0.340095
\(540\) 0 0
\(541\) −15.1306 −0.650515 −0.325258 0.945625i \(-0.605451\pi\)
−0.325258 + 0.945625i \(0.605451\pi\)
\(542\) −9.20949 −0.395581
\(543\) 0 0
\(544\) 0 0
\(545\) 3.43098 0.146967
\(546\) 0 0
\(547\) −2.64688 −0.113172 −0.0565862 0.998398i \(-0.518022\pi\)
−0.0565862 + 0.998398i \(0.518022\pi\)
\(548\) −12.6109 −0.538710
\(549\) 0 0
\(550\) 8.15890 0.347897
\(551\) −18.3059 −0.779856
\(552\) 0 0
\(553\) 42.8123 1.82056
\(554\) 8.36529 0.355407
\(555\) 0 0
\(556\) 17.0447 0.722857
\(557\) 12.4900 0.529217 0.264609 0.964356i \(-0.414757\pi\)
0.264609 + 0.964356i \(0.414757\pi\)
\(558\) 0 0
\(559\) 3.34919 0.141656
\(560\) −1.48022 −0.0625506
\(561\) 0 0
\(562\) 10.9996 0.463991
\(563\) −1.98226 −0.0835423 −0.0417712 0.999127i \(-0.513300\pi\)
−0.0417712 + 0.999127i \(0.513300\pi\)
\(564\) 0 0
\(565\) −3.98354 −0.167589
\(566\) 21.1380 0.888498
\(567\) 0 0
\(568\) 0.226626 0.00950900
\(569\) −16.7666 −0.702892 −0.351446 0.936208i \(-0.614310\pi\)
−0.351446 + 0.936208i \(0.614310\pi\)
\(570\) 0 0
\(571\) 30.1229 1.26061 0.630303 0.776349i \(-0.282931\pi\)
0.630303 + 0.776349i \(0.282931\pi\)
\(572\) −0.562609 −0.0235239
\(573\) 0 0
\(574\) 41.3725 1.72686
\(575\) 9.06338 0.377969
\(576\) 0 0
\(577\) −19.8204 −0.825132 −0.412566 0.910928i \(-0.635367\pi\)
−0.412566 + 0.910928i \(0.635367\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 3.70193 0.153714
\(581\) 3.56351 0.147839
\(582\) 0 0
\(583\) 5.30808 0.219838
\(584\) 12.1387 0.502301
\(585\) 0 0
\(586\) 25.1277 1.03801
\(587\) −12.8612 −0.530839 −0.265419 0.964133i \(-0.585510\pi\)
−0.265419 + 0.964133i \(0.585510\pi\)
\(588\) 0 0
\(589\) 5.54356 0.228419
\(590\) 3.32729 0.136982
\(591\) 0 0
\(592\) −10.6143 −0.436247
\(593\) 35.8300 1.47136 0.735681 0.677328i \(-0.236862\pi\)
0.735681 + 0.677328i \(0.236862\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −17.5004 −0.716844
\(597\) 0 0
\(598\) −0.624979 −0.0255573
\(599\) 21.1148 0.862728 0.431364 0.902178i \(-0.358032\pi\)
0.431364 + 0.902178i \(0.358032\pi\)
\(600\) 0 0
\(601\) 15.2346 0.621434 0.310717 0.950503i \(-0.399431\pi\)
0.310717 + 0.950503i \(0.399431\pi\)
\(602\) 34.4608 1.40452
\(603\) 0 0
\(604\) 9.64009 0.392250
\(605\) 3.52265 0.143216
\(606\) 0 0
\(607\) 38.3848 1.55799 0.778995 0.627030i \(-0.215730\pi\)
0.778995 + 0.627030i \(0.215730\pi\)
\(608\) −2.14386 −0.0869450
\(609\) 0 0
\(610\) 3.48566 0.141130
\(611\) 0.789763 0.0319504
\(612\) 0 0
\(613\) −1.39554 −0.0563654 −0.0281827 0.999603i \(-0.508972\pi\)
−0.0281827 + 0.999603i \(0.508972\pi\)
\(614\) −15.3433 −0.619205
\(615\) 0 0
\(616\) −5.78886 −0.233240
\(617\) −8.41487 −0.338770 −0.169385 0.985550i \(-0.554178\pi\)
−0.169385 + 0.985550i \(0.554178\pi\)
\(618\) 0 0
\(619\) −5.34330 −0.214765 −0.107383 0.994218i \(-0.534247\pi\)
−0.107383 + 0.994218i \(0.534247\pi\)
\(620\) −1.12106 −0.0450227
\(621\) 0 0
\(622\) 21.6825 0.869388
\(623\) −47.2119 −1.89151
\(624\) 0 0
\(625\) 22.2159 0.888636
\(626\) 8.38847 0.335271
\(627\) 0 0
\(628\) −4.78976 −0.191132
\(629\) 0 0
\(630\) 0 0
\(631\) −1.46282 −0.0582340 −0.0291170 0.999576i \(-0.509270\pi\)
−0.0291170 + 0.999576i \(0.509270\pi\)
\(632\) −12.5394 −0.498792
\(633\) 0 0
\(634\) −23.9803 −0.952379
\(635\) 5.23908 0.207907
\(636\) 0 0
\(637\) −1.54524 −0.0612248
\(638\) 14.4776 0.573173
\(639\) 0 0
\(640\) 0.433546 0.0171374
\(641\) −0.479372 −0.0189340 −0.00946702 0.999955i \(-0.503013\pi\)
−0.00946702 + 0.999955i \(0.503013\pi\)
\(642\) 0 0
\(643\) 32.1049 1.26609 0.633046 0.774114i \(-0.281804\pi\)
0.633046 + 0.774114i \(0.281804\pi\)
\(644\) −6.43060 −0.253401
\(645\) 0 0
\(646\) 0 0
\(647\) −23.4802 −0.923103 −0.461551 0.887114i \(-0.652707\pi\)
−0.461551 + 0.887114i \(0.652707\pi\)
\(648\) 0 0
\(649\) 13.0124 0.510782
\(650\) −1.59674 −0.0626292
\(651\) 0 0
\(652\) 17.8049 0.697293
\(653\) −45.3689 −1.77542 −0.887710 0.460402i \(-0.847705\pi\)
−0.887710 + 0.460402i \(0.847705\pi\)
\(654\) 0 0
\(655\) 0.388753 0.0151898
\(656\) −12.1177 −0.473118
\(657\) 0 0
\(658\) 8.12612 0.316789
\(659\) −12.8417 −0.500240 −0.250120 0.968215i \(-0.580470\pi\)
−0.250120 + 0.968215i \(0.580470\pi\)
\(660\) 0 0
\(661\) −27.1878 −1.05748 −0.528741 0.848783i \(-0.677336\pi\)
−0.528741 + 0.848783i \(0.677336\pi\)
\(662\) 4.07733 0.158470
\(663\) 0 0
\(664\) −1.04373 −0.0405045
\(665\) −3.17338 −0.123058
\(666\) 0 0
\(667\) 16.0825 0.622719
\(668\) 17.5950 0.680771
\(669\) 0 0
\(670\) −6.83750 −0.264156
\(671\) 13.6318 0.526249
\(672\) 0 0
\(673\) −16.6772 −0.642857 −0.321429 0.946934i \(-0.604163\pi\)
−0.321429 + 0.946934i \(0.604163\pi\)
\(674\) −10.0167 −0.385829
\(675\) 0 0
\(676\) −12.8899 −0.495765
\(677\) 2.60284 0.100035 0.0500175 0.998748i \(-0.484072\pi\)
0.0500175 + 0.998748i \(0.484072\pi\)
\(678\) 0 0
\(679\) −12.8217 −0.492052
\(680\) 0 0
\(681\) 0 0
\(682\) −4.38425 −0.167882
\(683\) −12.2427 −0.468453 −0.234227 0.972182i \(-0.575256\pi\)
−0.234227 + 0.972182i \(0.575256\pi\)
\(684\) 0 0
\(685\) 5.46739 0.208898
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) −10.0933 −0.384805
\(689\) −1.03882 −0.0395758
\(690\) 0 0
\(691\) 15.6736 0.596252 0.298126 0.954526i \(-0.403638\pi\)
0.298126 + 0.954526i \(0.403638\pi\)
\(692\) 19.3462 0.735434
\(693\) 0 0
\(694\) −8.64418 −0.328129
\(695\) −7.38966 −0.280306
\(696\) 0 0
\(697\) 0 0
\(698\) −20.8126 −0.787768
\(699\) 0 0
\(700\) −16.4293 −0.620970
\(701\) −30.8222 −1.16414 −0.582070 0.813139i \(-0.697757\pi\)
−0.582070 + 0.813139i \(0.697757\pi\)
\(702\) 0 0
\(703\) −22.7557 −0.858246
\(704\) 1.69552 0.0639022
\(705\) 0 0
\(706\) −20.1049 −0.756656
\(707\) −2.17248 −0.0817043
\(708\) 0 0
\(709\) −0.394882 −0.0148301 −0.00741505 0.999973i \(-0.502360\pi\)
−0.00741505 + 0.999973i \(0.502360\pi\)
\(710\) −0.0982525 −0.00368735
\(711\) 0 0
\(712\) 13.8281 0.518228
\(713\) −4.87028 −0.182393
\(714\) 0 0
\(715\) 0.243917 0.00912197
\(716\) 9.11933 0.340805
\(717\) 0 0
\(718\) 25.3001 0.944193
\(719\) 11.0962 0.413817 0.206908 0.978360i \(-0.433660\pi\)
0.206908 + 0.978360i \(0.433660\pi\)
\(720\) 0 0
\(721\) 29.3607 1.09345
\(722\) 14.4039 0.536056
\(723\) 0 0
\(724\) −0.776691 −0.0288655
\(725\) 41.0888 1.52600
\(726\) 0 0
\(727\) 27.2866 1.01200 0.506001 0.862533i \(-0.331123\pi\)
0.506001 + 0.862533i \(0.331123\pi\)
\(728\) 1.13291 0.0419884
\(729\) 0 0
\(730\) −5.26266 −0.194780
\(731\) 0 0
\(732\) 0 0
\(733\) −29.2870 −1.08174 −0.540870 0.841106i \(-0.681905\pi\)
−0.540870 + 0.841106i \(0.681905\pi\)
\(734\) −10.3200 −0.380917
\(735\) 0 0
\(736\) 1.88348 0.0694260
\(737\) −26.7402 −0.984989
\(738\) 0 0
\(739\) 37.0534 1.36303 0.681516 0.731803i \(-0.261321\pi\)
0.681516 + 0.731803i \(0.261321\pi\)
\(740\) 4.60180 0.169166
\(741\) 0 0
\(742\) −10.6887 −0.392396
\(743\) 14.4872 0.531483 0.265742 0.964044i \(-0.414383\pi\)
0.265742 + 0.964044i \(0.414383\pi\)
\(744\) 0 0
\(745\) 7.58722 0.277974
\(746\) −18.2719 −0.668981
\(747\) 0 0
\(748\) 0 0
\(749\) −7.39104 −0.270063
\(750\) 0 0
\(751\) 43.9632 1.60424 0.802121 0.597162i \(-0.203705\pi\)
0.802121 + 0.597162i \(0.203705\pi\)
\(752\) −2.38009 −0.0867928
\(753\) 0 0
\(754\) −2.83334 −0.103184
\(755\) −4.17942 −0.152105
\(756\) 0 0
\(757\) −37.8588 −1.37600 −0.688001 0.725710i \(-0.741511\pi\)
−0.688001 + 0.725710i \(0.741511\pi\)
\(758\) −20.9319 −0.760281
\(759\) 0 0
\(760\) 0.929461 0.0337151
\(761\) 9.82880 0.356294 0.178147 0.984004i \(-0.442990\pi\)
0.178147 + 0.984004i \(0.442990\pi\)
\(762\) 0 0
\(763\) −27.0193 −0.978163
\(764\) 13.4248 0.485692
\(765\) 0 0
\(766\) 22.9974 0.830929
\(767\) −2.54659 −0.0919522
\(768\) 0 0
\(769\) 41.1522 1.48398 0.741992 0.670408i \(-0.233881\pi\)
0.741992 + 0.670408i \(0.233881\pi\)
\(770\) 2.50973 0.0904446
\(771\) 0 0
\(772\) 5.08905 0.183159
\(773\) −21.7456 −0.782136 −0.391068 0.920362i \(-0.627894\pi\)
−0.391068 + 0.920362i \(0.627894\pi\)
\(774\) 0 0
\(775\) −12.4429 −0.446962
\(776\) 3.75539 0.134811
\(777\) 0 0
\(778\) −9.07748 −0.325444
\(779\) −25.9787 −0.930785
\(780\) 0 0
\(781\) −0.384248 −0.0137495
\(782\) 0 0
\(783\) 0 0
\(784\) 4.65685 0.166316
\(785\) 2.07658 0.0741163
\(786\) 0 0
\(787\) 47.6021 1.69683 0.848415 0.529331i \(-0.177557\pi\)
0.848415 + 0.529331i \(0.177557\pi\)
\(788\) 4.15449 0.147998
\(789\) 0 0
\(790\) 5.43641 0.193419
\(791\) 31.3707 1.11542
\(792\) 0 0
\(793\) −2.66780 −0.0947365
\(794\) 7.80857 0.277116
\(795\) 0 0
\(796\) −10.7087 −0.379561
\(797\) 37.8984 1.34243 0.671215 0.741263i \(-0.265773\pi\)
0.671215 + 0.741263i \(0.265773\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.81204 0.170131
\(801\) 0 0
\(802\) 17.3608 0.613030
\(803\) −20.5813 −0.726299
\(804\) 0 0
\(805\) 2.78796 0.0982626
\(806\) 0.858019 0.0302224
\(807\) 0 0
\(808\) 0.636303 0.0223851
\(809\) −38.5731 −1.35616 −0.678079 0.734989i \(-0.737187\pi\)
−0.678079 + 0.734989i \(0.737187\pi\)
\(810\) 0 0
\(811\) 19.4393 0.682608 0.341304 0.939953i \(-0.389131\pi\)
0.341304 + 0.939953i \(0.389131\pi\)
\(812\) −29.1531 −1.02307
\(813\) 0 0
\(814\) 17.9968 0.630788
\(815\) −7.71922 −0.270393
\(816\) 0 0
\(817\) −21.6387 −0.757043
\(818\) −4.42153 −0.154595
\(819\) 0 0
\(820\) 5.25359 0.183463
\(821\) −0.231821 −0.00809062 −0.00404531 0.999992i \(-0.501288\pi\)
−0.00404531 + 0.999992i \(0.501288\pi\)
\(822\) 0 0
\(823\) −22.4931 −0.784059 −0.392030 0.919953i \(-0.628227\pi\)
−0.392030 + 0.919953i \(0.628227\pi\)
\(824\) −8.59955 −0.299579
\(825\) 0 0
\(826\) −26.2027 −0.911709
\(827\) −52.3121 −1.81907 −0.909534 0.415629i \(-0.863561\pi\)
−0.909534 + 0.415629i \(0.863561\pi\)
\(828\) 0 0
\(829\) 23.3260 0.810144 0.405072 0.914285i \(-0.367246\pi\)
0.405072 + 0.914285i \(0.367246\pi\)
\(830\) 0.452504 0.0157066
\(831\) 0 0
\(832\) −0.331821 −0.0115038
\(833\) 0 0
\(834\) 0 0
\(835\) −7.62824 −0.263986
\(836\) 3.63495 0.125717
\(837\) 0 0
\(838\) −23.1663 −0.800267
\(839\) 13.4212 0.463350 0.231675 0.972793i \(-0.425579\pi\)
0.231675 + 0.972793i \(0.425579\pi\)
\(840\) 0 0
\(841\) 43.9101 1.51414
\(842\) 20.0524 0.691052
\(843\) 0 0
\(844\) −4.72151 −0.162521
\(845\) 5.58836 0.192245
\(846\) 0 0
\(847\) −27.7412 −0.953200
\(848\) 3.13066 0.107507
\(849\) 0 0
\(850\) 0 0
\(851\) 19.9919 0.685314
\(852\) 0 0
\(853\) −49.9350 −1.70974 −0.854871 0.518841i \(-0.826364\pi\)
−0.854871 + 0.518841i \(0.826364\pi\)
\(854\) −27.4499 −0.939315
\(855\) 0 0
\(856\) 2.16478 0.0739908
\(857\) −17.1760 −0.586722 −0.293361 0.956002i \(-0.594774\pi\)
−0.293361 + 0.956002i \(0.594774\pi\)
\(858\) 0 0
\(859\) 8.76362 0.299011 0.149505 0.988761i \(-0.452232\pi\)
0.149505 + 0.988761i \(0.452232\pi\)
\(860\) 4.37592 0.149218
\(861\) 0 0
\(862\) 40.1467 1.36740
\(863\) −35.9177 −1.22265 −0.611326 0.791379i \(-0.709364\pi\)
−0.611326 + 0.791379i \(0.709364\pi\)
\(864\) 0 0
\(865\) −8.38748 −0.285183
\(866\) 21.8499 0.742490
\(867\) 0 0
\(868\) 8.82843 0.299656
\(869\) 21.2608 0.721224
\(870\) 0 0
\(871\) 5.23320 0.177320
\(872\) 7.91376 0.267994
\(873\) 0 0
\(874\) 4.03792 0.136585
\(875\) 14.5239 0.490999
\(876\) 0 0
\(877\) 4.22519 0.142674 0.0713372 0.997452i \(-0.477273\pi\)
0.0713372 + 0.997452i \(0.477273\pi\)
\(878\) 0.838775 0.0283073
\(879\) 0 0
\(880\) −0.735084 −0.0247797
\(881\) −29.9958 −1.01058 −0.505292 0.862949i \(-0.668615\pi\)
−0.505292 + 0.862949i \(0.668615\pi\)
\(882\) 0 0
\(883\) 13.9714 0.470175 0.235087 0.971974i \(-0.424462\pi\)
0.235087 + 0.971974i \(0.424462\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −3.21267 −0.107932
\(887\) 22.0276 0.739613 0.369807 0.929109i \(-0.379424\pi\)
0.369807 + 0.929109i \(0.379424\pi\)
\(888\) 0 0
\(889\) −41.2583 −1.38376
\(890\) −5.99509 −0.200956
\(891\) 0 0
\(892\) −15.6359 −0.523530
\(893\) −5.10257 −0.170751
\(894\) 0 0
\(895\) −3.95365 −0.132156
\(896\) −3.41421 −0.114061
\(897\) 0 0
\(898\) −28.7483 −0.959342
\(899\) −22.0794 −0.736388
\(900\) 0 0
\(901\) 0 0
\(902\) 20.5458 0.684102
\(903\) 0 0
\(904\) −9.18828 −0.305598
\(905\) 0.336731 0.0111933
\(906\) 0 0
\(907\) −26.9106 −0.893553 −0.446776 0.894646i \(-0.647428\pi\)
−0.446776 + 0.894646i \(0.647428\pi\)
\(908\) 11.0615 0.367088
\(909\) 0 0
\(910\) −0.491168 −0.0162820
\(911\) −35.4849 −1.17567 −0.587834 0.808982i \(-0.700019\pi\)
−0.587834 + 0.808982i \(0.700019\pi\)
\(912\) 0 0
\(913\) 1.76966 0.0585672
\(914\) 7.45097 0.246456
\(915\) 0 0
\(916\) −15.3852 −0.508340
\(917\) −3.06147 −0.101099
\(918\) 0 0
\(919\) −38.6107 −1.27365 −0.636824 0.771009i \(-0.719752\pi\)
−0.636824 + 0.771009i \(0.719752\pi\)
\(920\) −0.816574 −0.0269217
\(921\) 0 0
\(922\) 25.6378 0.844337
\(923\) 0.0751992 0.00247521
\(924\) 0 0
\(925\) 51.0766 1.67939
\(926\) 10.7747 0.354079
\(927\) 0 0
\(928\) 8.53874 0.280298
\(929\) 22.8949 0.751157 0.375579 0.926791i \(-0.377444\pi\)
0.375579 + 0.926791i \(0.377444\pi\)
\(930\) 0 0
\(931\) 9.98364 0.327201
\(932\) −10.3776 −0.339929
\(933\) 0 0
\(934\) 35.6492 1.16648
\(935\) 0 0
\(936\) 0 0
\(937\) 39.6793 1.29627 0.648133 0.761527i \(-0.275550\pi\)
0.648133 + 0.761527i \(0.275550\pi\)
\(938\) 53.8460 1.75813
\(939\) 0 0
\(940\) 1.03188 0.0336561
\(941\) 52.6651 1.71683 0.858416 0.512953i \(-0.171449\pi\)
0.858416 + 0.512953i \(0.171449\pi\)
\(942\) 0 0
\(943\) 22.8235 0.743236
\(944\) 7.67459 0.249787
\(945\) 0 0
\(946\) 17.1134 0.556406
\(947\) −1.52698 −0.0496201 −0.0248100 0.999692i \(-0.507898\pi\)
−0.0248100 + 0.999692i \(0.507898\pi\)
\(948\) 0 0
\(949\) 4.02787 0.130750
\(950\) 10.3163 0.334706
\(951\) 0 0
\(952\) 0 0
\(953\) −9.95360 −0.322429 −0.161214 0.986919i \(-0.551541\pi\)
−0.161214 + 0.986919i \(0.551541\pi\)
\(954\) 0 0
\(955\) −5.82026 −0.188339
\(956\) 24.7803 0.801454
\(957\) 0 0
\(958\) −14.0702 −0.454586
\(959\) −43.0562 −1.39036
\(960\) 0 0
\(961\) −24.3137 −0.784313
\(962\) −3.52207 −0.113556
\(963\) 0 0
\(964\) −4.30517 −0.138660
\(965\) −2.20633 −0.0710244
\(966\) 0 0
\(967\) 5.88843 0.189359 0.0946796 0.995508i \(-0.469817\pi\)
0.0946796 + 0.995508i \(0.469817\pi\)
\(968\) 8.12522 0.261154
\(969\) 0 0
\(970\) −1.62813 −0.0522762
\(971\) −18.9670 −0.608681 −0.304341 0.952563i \(-0.598436\pi\)
−0.304341 + 0.952563i \(0.598436\pi\)
\(972\) 0 0
\(973\) 58.1943 1.86562
\(974\) −24.1325 −0.773256
\(975\) 0 0
\(976\) 8.03988 0.257350
\(977\) −32.3172 −1.03392 −0.516959 0.856010i \(-0.672936\pi\)
−0.516959 + 0.856010i \(0.672936\pi\)
\(978\) 0 0
\(979\) −23.4457 −0.749328
\(980\) −2.01896 −0.0644933
\(981\) 0 0
\(982\) 26.5200 0.846288
\(983\) −32.4363 −1.03456 −0.517278 0.855817i \(-0.673055\pi\)
−0.517278 + 0.855817i \(0.673055\pi\)
\(984\) 0 0
\(985\) −1.80116 −0.0573898
\(986\) 0 0
\(987\) 0 0
\(988\) −0.711378 −0.0226320
\(989\) 19.0106 0.604502
\(990\) 0 0
\(991\) 46.9010 1.48986 0.744930 0.667142i \(-0.232483\pi\)
0.744930 + 0.667142i \(0.232483\pi\)
\(992\) −2.58579 −0.0820988
\(993\) 0 0
\(994\) 0.773748 0.0245418
\(995\) 4.64272 0.147184
\(996\) 0 0
\(997\) 47.4571 1.50298 0.751490 0.659744i \(-0.229335\pi\)
0.751490 + 0.659744i \(0.229335\pi\)
\(998\) 4.53996 0.143710
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5202.2.a.bt.1.3 4
3.2 odd 2 1734.2.a.w.1.2 4
17.10 odd 16 306.2.l.d.253.2 8
17.12 odd 16 306.2.l.d.127.2 8
17.16 even 2 5202.2.a.br.1.2 4
51.2 odd 8 1734.2.f.m.1483.3 8
51.8 odd 8 1734.2.f.j.829.2 8
51.26 odd 8 1734.2.f.m.829.3 8
51.29 even 16 102.2.h.a.25.2 8
51.32 odd 8 1734.2.f.j.1483.2 8
51.38 odd 4 1734.2.b.k.577.3 8
51.44 even 16 102.2.h.a.49.2 yes 8
51.47 odd 4 1734.2.b.k.577.6 8
51.50 odd 2 1734.2.a.v.1.3 4
204.95 odd 16 816.2.bq.b.49.1 8
204.131 odd 16 816.2.bq.b.433.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.h.a.25.2 8 51.29 even 16
102.2.h.a.49.2 yes 8 51.44 even 16
306.2.l.d.127.2 8 17.12 odd 16
306.2.l.d.253.2 8 17.10 odd 16
816.2.bq.b.49.1 8 204.95 odd 16
816.2.bq.b.433.1 8 204.131 odd 16
1734.2.a.v.1.3 4 51.50 odd 2
1734.2.a.w.1.2 4 3.2 odd 2
1734.2.b.k.577.3 8 51.38 odd 4
1734.2.b.k.577.6 8 51.47 odd 4
1734.2.f.j.829.2 8 51.8 odd 8
1734.2.f.j.1483.2 8 51.32 odd 8
1734.2.f.m.829.3 8 51.26 odd 8
1734.2.f.m.1483.3 8 51.2 odd 8
5202.2.a.br.1.2 4 17.16 even 2
5202.2.a.bt.1.3 4 1.1 even 1 trivial