Properties

Label 102.4.f.c.13.3
Level $102$
Weight $4$
Character 102.13
Analytic conductor $6.018$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,4,Mod(13,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 102.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.01819482059\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.3
Root \(-14.8987i\) of defining polynomial
Character \(\chi\) \(=\) 102.13
Dual form 102.4.f.c.55.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} +(-2.12132 - 2.12132i) q^{3} -4.00000 q^{4} +(12.9492 + 12.9492i) q^{5} +(-4.24264 + 4.24264i) q^{6} +(17.3340 - 17.3340i) q^{7} +8.00000i q^{8} +9.00000i q^{9} +(25.8984 - 25.8984i) q^{10} +(25.2530 - 25.2530i) q^{11} +(8.48528 + 8.48528i) q^{12} -13.4149 q^{13} +(-34.6680 - 34.6680i) q^{14} -54.9388i q^{15} +16.0000 q^{16} +(-16.8983 - 68.0254i) q^{17} +18.0000 q^{18} +15.6725i q^{19} +(-51.7968 - 51.7968i) q^{20} -73.5420 q^{21} +(-50.5060 - 50.5060i) q^{22} +(100.376 - 100.376i) q^{23} +(16.9706 - 16.9706i) q^{24} +210.364i q^{25} +26.8298i q^{26} +(19.0919 - 19.0919i) q^{27} +(-69.3360 + 69.3360i) q^{28} +(94.5834 + 94.5834i) q^{29} -109.878 q^{30} +(133.855 + 133.855i) q^{31} -32.0000i q^{32} -107.139 q^{33} +(-136.051 + 33.7965i) q^{34} +448.923 q^{35} -36.0000i q^{36} +(-193.968 - 193.968i) q^{37} +31.3450 q^{38} +(28.4573 + 28.4573i) q^{39} +(-103.594 + 103.594i) q^{40} +(171.528 - 171.528i) q^{41} +147.084i q^{42} +385.616i q^{43} +(-101.012 + 101.012i) q^{44} +(-116.543 + 116.543i) q^{45} +(-200.752 - 200.752i) q^{46} -533.009 q^{47} +(-33.9411 - 33.9411i) q^{48} -257.936i q^{49} +420.728 q^{50} +(-108.457 + 180.150i) q^{51} +53.6595 q^{52} +403.802i q^{53} +(-38.1838 - 38.1838i) q^{54} +654.012 q^{55} +(138.672 + 138.672i) q^{56} +(33.2464 - 33.2464i) q^{57} +(189.167 - 189.167i) q^{58} +266.868i q^{59} +219.755i q^{60} +(-484.097 + 484.097i) q^{61} +(267.710 - 267.710i) q^{62} +(156.006 + 156.006i) q^{63} -64.0000 q^{64} +(-173.712 - 173.712i) q^{65} +214.279i q^{66} -441.266 q^{67} +(67.5931 + 272.101i) q^{68} -425.859 q^{69} -897.847i q^{70} +(-303.839 - 303.839i) q^{71} -72.0000 q^{72} +(-86.3683 - 86.3683i) q^{73} +(-387.936 + 387.936i) q^{74} +(446.249 - 446.249i) q^{75} -62.6901i q^{76} -875.471i q^{77} +(56.9145 - 56.9145i) q^{78} +(-464.263 + 464.263i) q^{79} +(207.187 + 207.187i) q^{80} -81.0000 q^{81} +(-343.057 - 343.057i) q^{82} -1243.94i q^{83} +294.168 q^{84} +(662.055 - 1099.69i) q^{85} +771.231 q^{86} -401.283i q^{87} +(202.024 + 202.024i) q^{88} +1498.50 q^{89} +(233.086 + 233.086i) q^{90} +(-232.534 + 232.534i) q^{91} +(-401.503 + 401.503i) q^{92} -567.900i q^{93} +1066.02i q^{94} +(-202.947 + 202.947i) q^{95} +(-67.8823 + 67.8823i) q^{96} +(90.0409 + 90.0409i) q^{97} -515.871 q^{98} +(227.277 + 227.277i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} + 16 q^{5} - 12 q^{7} + 32 q^{10} - 32 q^{11} - 68 q^{13} + 24 q^{14} + 192 q^{16} + 64 q^{17} + 216 q^{18} - 64 q^{20} - 168 q^{21} + 64 q^{22} - 112 q^{23} + 48 q^{28} - 296 q^{29} - 168 q^{30}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) −2.12132 2.12132i −0.408248 0.408248i
\(4\) −4.00000 −0.500000
\(5\) 12.9492 + 12.9492i 1.15821 + 1.15821i 0.984860 + 0.173353i \(0.0554600\pi\)
0.173353 + 0.984860i \(0.444540\pi\)
\(6\) −4.24264 + 4.24264i −0.288675 + 0.288675i
\(7\) 17.3340 17.3340i 0.935948 0.935948i −0.0621202 0.998069i \(-0.519786\pi\)
0.998069 + 0.0621202i \(0.0197862\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 9.00000i 0.333333i
\(10\) 25.8984 25.8984i 0.818980 0.818980i
\(11\) 25.2530 25.2530i 0.692187 0.692187i −0.270525 0.962713i \(-0.587197\pi\)
0.962713 + 0.270525i \(0.0871974\pi\)
\(12\) 8.48528 + 8.48528i 0.204124 + 0.204124i
\(13\) −13.4149 −0.286201 −0.143101 0.989708i \(-0.545707\pi\)
−0.143101 + 0.989708i \(0.545707\pi\)
\(14\) −34.6680 34.6680i −0.661816 0.661816i
\(15\) 54.9388i 0.945676i
\(16\) 16.0000 0.250000
\(17\) −16.8983 68.0254i −0.241084 0.970504i
\(18\) 18.0000 0.235702
\(19\) 15.6725i 0.189238i 0.995514 + 0.0946190i \(0.0301633\pi\)
−0.995514 + 0.0946190i \(0.969837\pi\)
\(20\) −51.7968 51.7968i −0.579106 0.579106i
\(21\) −73.5420 −0.764199
\(22\) −50.5060 50.5060i −0.489450 0.489450i
\(23\) 100.376 100.376i 0.909992 0.909992i −0.0862791 0.996271i \(-0.527498\pi\)
0.996271 + 0.0862791i \(0.0274977\pi\)
\(24\) 16.9706 16.9706i 0.144338 0.144338i
\(25\) 210.364i 1.68291i
\(26\) 26.8298i 0.202375i
\(27\) 19.0919 19.0919i 0.136083 0.136083i
\(28\) −69.3360 + 69.3360i −0.467974 + 0.467974i
\(29\) 94.5834 + 94.5834i 0.605645 + 0.605645i 0.941805 0.336160i \(-0.109128\pi\)
−0.336160 + 0.941805i \(0.609128\pi\)
\(30\) −109.878 −0.668694
\(31\) 133.855 + 133.855i 0.775520 + 0.775520i 0.979065 0.203546i \(-0.0652466\pi\)
−0.203546 + 0.979065i \(0.565247\pi\)
\(32\) 32.0000i 0.176777i
\(33\) −107.139 −0.565169
\(34\) −136.051 + 33.7965i −0.686250 + 0.170472i
\(35\) 448.923 2.16805
\(36\) 36.0000i 0.166667i
\(37\) −193.968 193.968i −0.861842 0.861842i 0.129710 0.991552i \(-0.458595\pi\)
−0.991552 + 0.129710i \(0.958595\pi\)
\(38\) 31.3450 0.133811
\(39\) 28.4573 + 28.4573i 0.116841 + 0.116841i
\(40\) −103.594 + 103.594i −0.409490 + 0.409490i
\(41\) 171.528 171.528i 0.653372 0.653372i −0.300432 0.953803i \(-0.597131\pi\)
0.953803 + 0.300432i \(0.0971307\pi\)
\(42\) 147.084i 0.540370i
\(43\) 385.616i 1.36758i 0.729680 + 0.683789i \(0.239669\pi\)
−0.729680 + 0.683789i \(0.760331\pi\)
\(44\) −101.012 + 101.012i −0.346094 + 0.346094i
\(45\) −116.543 + 116.543i −0.386071 + 0.386071i
\(46\) −200.752 200.752i −0.643461 0.643461i
\(47\) −533.009 −1.65420 −0.827099 0.562056i \(-0.810011\pi\)
−0.827099 + 0.562056i \(0.810011\pi\)
\(48\) −33.9411 33.9411i −0.102062 0.102062i
\(49\) 257.936i 0.751999i
\(50\) 420.728 1.19000
\(51\) −108.457 + 180.150i −0.297784 + 0.494629i
\(52\) 53.6595 0.143101
\(53\) 403.802i 1.04654i 0.852168 + 0.523268i \(0.175287\pi\)
−0.852168 + 0.523268i \(0.824713\pi\)
\(54\) −38.1838 38.1838i −0.0962250 0.0962250i
\(55\) 654.012 1.60340
\(56\) 138.672 + 138.672i 0.330908 + 0.330908i
\(57\) 33.2464 33.2464i 0.0772561 0.0772561i
\(58\) 189.167 189.167i 0.428255 0.428255i
\(59\) 266.868i 0.588868i 0.955672 + 0.294434i \(0.0951311\pi\)
−0.955672 + 0.294434i \(0.904869\pi\)
\(60\) 219.755i 0.472838i
\(61\) −484.097 + 484.097i −1.01610 + 1.01610i −0.0162344 + 0.999868i \(0.505168\pi\)
−0.999868 + 0.0162344i \(0.994832\pi\)
\(62\) 267.710 267.710i 0.548375 0.548375i
\(63\) 156.006 + 156.006i 0.311983 + 0.311983i
\(64\) −64.0000 −0.125000
\(65\) −173.712 173.712i −0.331482 0.331482i
\(66\) 214.279i 0.399635i
\(67\) −441.266 −0.804615 −0.402308 0.915505i \(-0.631792\pi\)
−0.402308 + 0.915505i \(0.631792\pi\)
\(68\) 67.5931 + 272.101i 0.120542 + 0.485252i
\(69\) −425.859 −0.743005
\(70\) 897.847i 1.53305i
\(71\) −303.839 303.839i −0.507873 0.507873i 0.406000 0.913873i \(-0.366923\pi\)
−0.913873 + 0.406000i \(0.866923\pi\)
\(72\) −72.0000 −0.117851
\(73\) −86.3683 86.3683i −0.138475 0.138475i 0.634472 0.772946i \(-0.281218\pi\)
−0.772946 + 0.634472i \(0.781218\pi\)
\(74\) −387.936 + 387.936i −0.609414 + 0.609414i
\(75\) 446.249 446.249i 0.687046 0.687046i
\(76\) 62.6901i 0.0946190i
\(77\) 875.471i 1.29570i
\(78\) 56.9145 56.9145i 0.0826192 0.0826192i
\(79\) −464.263 + 464.263i −0.661186 + 0.661186i −0.955660 0.294474i \(-0.904856\pi\)
0.294474 + 0.955660i \(0.404856\pi\)
\(80\) 207.187 + 207.187i 0.289553 + 0.289553i
\(81\) −81.0000 −0.111111
\(82\) −343.057 343.057i −0.462004 0.462004i
\(83\) 1243.94i 1.64506i −0.568721 0.822530i \(-0.692562\pi\)
0.568721 0.822530i \(-0.307438\pi\)
\(84\) 294.168 0.382099
\(85\) 662.055 1099.69i 0.844823 1.40328i
\(86\) 771.231 0.967023
\(87\) 401.283i 0.494507i
\(88\) 202.024 + 202.024i 0.244725 + 0.244725i
\(89\) 1498.50 1.78472 0.892362 0.451320i \(-0.149047\pi\)
0.892362 + 0.451320i \(0.149047\pi\)
\(90\) 233.086 + 233.086i 0.272993 + 0.272993i
\(91\) −232.534 + 232.534i −0.267870 + 0.267870i
\(92\) −401.503 + 401.503i −0.454996 + 0.454996i
\(93\) 567.900i 0.633209i
\(94\) 1066.02i 1.16970i
\(95\) −202.947 + 202.947i −0.219178 + 0.219178i
\(96\) −67.8823 + 67.8823i −0.0721688 + 0.0721688i
\(97\) 90.0409 + 90.0409i 0.0942502 + 0.0942502i 0.752660 0.658410i \(-0.228771\pi\)
−0.658410 + 0.752660i \(0.728771\pi\)
\(98\) −515.871 −0.531744
\(99\) 227.277 + 227.277i 0.230729 + 0.230729i
\(100\) 841.456i 0.841456i
\(101\) −1152.65 −1.13557 −0.567785 0.823177i \(-0.692200\pi\)
−0.567785 + 0.823177i \(0.692200\pi\)
\(102\) 360.300 + 216.914i 0.349755 + 0.210565i
\(103\) 128.042 0.122489 0.0612445 0.998123i \(-0.480493\pi\)
0.0612445 + 0.998123i \(0.480493\pi\)
\(104\) 107.319i 0.101187i
\(105\) −952.310 952.310i −0.885104 0.885104i
\(106\) 807.603 0.740013
\(107\) 1170.71 + 1170.71i 1.05773 + 1.05773i 0.998228 + 0.0594973i \(0.0189498\pi\)
0.0594973 + 0.998228i \(0.481050\pi\)
\(108\) −76.3675 + 76.3675i −0.0680414 + 0.0680414i
\(109\) −1181.52 + 1181.52i −1.03825 + 1.03825i −0.0390141 + 0.999239i \(0.512422\pi\)
−0.999239 + 0.0390141i \(0.987578\pi\)
\(110\) 1308.02i 1.13378i
\(111\) 822.937i 0.703691i
\(112\) 277.344 277.344i 0.233987 0.233987i
\(113\) −127.056 + 127.056i −0.105773 + 0.105773i −0.758013 0.652240i \(-0.773830\pi\)
0.652240 + 0.758013i \(0.273830\pi\)
\(114\) −66.4928 66.4928i −0.0546283 0.0546283i
\(115\) 2599.58 2.10793
\(116\) −378.334 378.334i −0.302822 0.302822i
\(117\) 120.734i 0.0954005i
\(118\) 533.735 0.416392
\(119\) −1472.07 886.237i −1.13398 0.682700i
\(120\) 439.511 0.334347
\(121\) 55.5736i 0.0417533i
\(122\) 968.194 + 968.194i 0.718493 + 0.718493i
\(123\) −727.734 −0.533476
\(124\) −535.421 535.421i −0.387760 0.387760i
\(125\) −1105.40 + 1105.40i −0.790957 + 0.790957i
\(126\) 312.012 312.012i 0.220605 0.220605i
\(127\) 1988.60i 1.38945i −0.719277 0.694723i \(-0.755527\pi\)
0.719277 0.694723i \(-0.244473\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 818.014 818.014i 0.558311 0.558311i
\(130\) −347.424 + 347.424i −0.234393 + 0.234393i
\(131\) 694.086 + 694.086i 0.462920 + 0.462920i 0.899611 0.436691i \(-0.143850\pi\)
−0.436691 + 0.899611i \(0.643850\pi\)
\(132\) 428.557 0.282584
\(133\) 271.667 + 271.667i 0.177117 + 0.177117i
\(134\) 882.532i 0.568949i
\(135\) 494.450 0.315225
\(136\) 544.203 135.186i 0.343125 0.0852361i
\(137\) −2788.01 −1.73866 −0.869328 0.494236i \(-0.835448\pi\)
−0.869328 + 0.494236i \(0.835448\pi\)
\(138\) 851.717i 0.525384i
\(139\) −118.311 118.311i −0.0721944 0.0721944i 0.670088 0.742282i \(-0.266257\pi\)
−0.742282 + 0.670088i \(0.766257\pi\)
\(140\) −1795.69 −1.08403
\(141\) 1130.68 + 1130.68i 0.675324 + 0.675324i
\(142\) −607.677 + 607.677i −0.359121 + 0.359121i
\(143\) −338.766 + 338.766i −0.198105 + 0.198105i
\(144\) 144.000i 0.0833333i
\(145\) 2449.56i 1.40293i
\(146\) −172.737 + 172.737i −0.0979163 + 0.0979163i
\(147\) −547.164 + 547.164i −0.307002 + 0.307002i
\(148\) 775.872 + 775.872i 0.430921 + 0.430921i
\(149\) −2926.77 −1.60920 −0.804598 0.593820i \(-0.797619\pi\)
−0.804598 + 0.593820i \(0.797619\pi\)
\(150\) −892.499 892.499i −0.485815 0.485815i
\(151\) 2142.40i 1.15461i 0.816528 + 0.577306i \(0.195896\pi\)
−0.816528 + 0.577306i \(0.804104\pi\)
\(152\) −125.380 −0.0669057
\(153\) 612.228 152.084i 0.323501 0.0803614i
\(154\) −1750.94 −0.916201
\(155\) 3466.64i 1.79643i
\(156\) −113.829 113.829i −0.0584206 0.0584206i
\(157\) 1329.27 0.675714 0.337857 0.941197i \(-0.390298\pi\)
0.337857 + 0.941197i \(0.390298\pi\)
\(158\) 928.526 + 928.526i 0.467529 + 0.467529i
\(159\) 856.593 856.593i 0.427247 0.427247i
\(160\) 414.375 414.375i 0.204745 0.204745i
\(161\) 3479.83i 1.70341i
\(162\) 162.000i 0.0785674i
\(163\) 1846.81 1846.81i 0.887442 0.887442i −0.106834 0.994277i \(-0.534071\pi\)
0.994277 + 0.106834i \(0.0340715\pi\)
\(164\) −686.114 + 686.114i −0.326686 + 0.326686i
\(165\) −1387.37 1387.37i −0.654585 0.654585i
\(166\) −2487.88 −1.16323
\(167\) 884.150 + 884.150i 0.409686 + 0.409686i 0.881629 0.471943i \(-0.156447\pi\)
−0.471943 + 0.881629i \(0.656447\pi\)
\(168\) 588.336i 0.270185i
\(169\) −2017.04 −0.918089
\(170\) −2199.39 1324.11i −0.992266 0.597380i
\(171\) −141.053 −0.0630793
\(172\) 1542.46i 0.683789i
\(173\) 2434.54 + 2434.54i 1.06991 + 1.06991i 0.997365 + 0.0725474i \(0.0231128\pi\)
0.0725474 + 0.997365i \(0.476887\pi\)
\(174\) −802.567 −0.349669
\(175\) 3646.45 + 3646.45i 1.57512 + 1.57512i
\(176\) 404.048 404.048i 0.173047 0.173047i
\(177\) 566.112 566.112i 0.240404 0.240404i
\(178\) 2997.00i 1.26199i
\(179\) 1640.52i 0.685019i −0.939514 0.342509i \(-0.888723\pi\)
0.939514 0.342509i \(-0.111277\pi\)
\(180\) 466.172 466.172i 0.193035 0.193035i
\(181\) 185.058 185.058i 0.0759958 0.0759958i −0.668087 0.744083i \(-0.732887\pi\)
0.744083 + 0.668087i \(0.232887\pi\)
\(182\) 465.067 + 465.067i 0.189413 + 0.189413i
\(183\) 2053.85 0.829644
\(184\) 803.007 + 803.007i 0.321731 + 0.321731i
\(185\) 5023.46i 1.99639i
\(186\) −1135.80 −0.447746
\(187\) −2144.57 1291.11i −0.838646 0.504895i
\(188\) 2132.04 0.827099
\(189\) 661.878i 0.254733i
\(190\) 405.893 + 405.893i 0.154982 + 0.154982i
\(191\) 2598.60 0.984439 0.492219 0.870471i \(-0.336186\pi\)
0.492219 + 0.870471i \(0.336186\pi\)
\(192\) 135.765 + 135.765i 0.0510310 + 0.0510310i
\(193\) −2925.77 + 2925.77i −1.09120 + 1.09120i −0.0957997 + 0.995401i \(0.530541\pi\)
−0.995401 + 0.0957997i \(0.969459\pi\)
\(194\) 180.082 180.082i 0.0666449 0.0666449i
\(195\) 736.998i 0.270654i
\(196\) 1031.74i 0.376000i
\(197\) −897.733 + 897.733i −0.324674 + 0.324674i −0.850557 0.525883i \(-0.823735\pi\)
0.525883 + 0.850557i \(0.323735\pi\)
\(198\) 454.554 454.554i 0.163150 0.163150i
\(199\) −3823.88 3823.88i −1.36215 1.36215i −0.871174 0.490975i \(-0.836641\pi\)
−0.490975 0.871174i \(-0.663359\pi\)
\(200\) −1682.91 −0.594999
\(201\) 936.066 + 936.066i 0.328483 + 0.328483i
\(202\) 2305.29i 0.802970i
\(203\) 3279.02 1.13370
\(204\) 433.828 720.601i 0.148892 0.247314i
\(205\) 4442.31 1.51349
\(206\) 256.084i 0.0866128i
\(207\) 903.383 + 903.383i 0.303331 + 0.303331i
\(208\) −214.638 −0.0715503
\(209\) 395.778 + 395.778i 0.130988 + 0.130988i
\(210\) −1904.62 + 1904.62i −0.625863 + 0.625863i
\(211\) 2349.49 2349.49i 0.766567 0.766567i −0.210933 0.977501i \(-0.567650\pi\)
0.977501 + 0.210933i \(0.0676502\pi\)
\(212\) 1615.21i 0.523268i
\(213\) 1289.08i 0.414677i
\(214\) 2341.42 2341.42i 0.747925 0.747925i
\(215\) −4993.42 + 4993.42i −1.58395 + 1.58395i
\(216\) 152.735 + 152.735i 0.0481125 + 0.0481125i
\(217\) 4640.49 1.45169
\(218\) 2363.05 + 2363.05i 0.734156 + 0.734156i
\(219\) 366.429i 0.113064i
\(220\) −2616.05 −0.801700
\(221\) 226.688 + 912.552i 0.0689986 + 0.277760i
\(222\) 1645.87 0.497585
\(223\) 2244.32i 0.673951i −0.941513 0.336975i \(-0.890596\pi\)
0.941513 0.336975i \(-0.109404\pi\)
\(224\) −554.688 554.688i −0.165454 0.165454i
\(225\) −1893.28 −0.560971
\(226\) 254.111 + 254.111i 0.0747930 + 0.0747930i
\(227\) 2441.46 2441.46i 0.713856 0.713856i −0.253484 0.967340i \(-0.581577\pi\)
0.967340 + 0.253484i \(0.0815765\pi\)
\(228\) −132.986 + 132.986i −0.0386280 + 0.0386280i
\(229\) 2682.67i 0.774130i −0.922052 0.387065i \(-0.873489\pi\)
0.922052 0.387065i \(-0.126511\pi\)
\(230\) 5199.15i 1.49053i
\(231\) −1857.15 + 1857.15i −0.528969 + 0.528969i
\(232\) −756.667 + 756.667i −0.214128 + 0.214128i
\(233\) −1116.03 1116.03i −0.313791 0.313791i 0.532585 0.846376i \(-0.321220\pi\)
−0.846376 + 0.532585i \(0.821220\pi\)
\(234\) −241.468 −0.0674583
\(235\) −6902.04 6902.04i −1.91591 1.91591i
\(236\) 1067.47i 0.294434i
\(237\) 1969.70 0.539856
\(238\) −1772.47 + 2944.13i −0.482742 + 0.801848i
\(239\) 5016.20 1.35762 0.678810 0.734314i \(-0.262496\pi\)
0.678810 + 0.734314i \(0.262496\pi\)
\(240\) 879.021i 0.236419i
\(241\) −1150.94 1150.94i −0.307629 0.307629i 0.536360 0.843989i \(-0.319799\pi\)
−0.843989 + 0.536360i \(0.819799\pi\)
\(242\) 111.147 0.0295240
\(243\) 171.827 + 171.827i 0.0453609 + 0.0453609i
\(244\) 1936.39 1936.39i 0.508051 0.508051i
\(245\) 3340.06 3340.06i 0.870975 0.870975i
\(246\) 1455.47i 0.377224i
\(247\) 210.245i 0.0541602i
\(248\) −1070.84 + 1070.84i −0.274188 + 0.274188i
\(249\) −2638.79 + 2638.79i −0.671593 + 0.671593i
\(250\) 2210.79 + 2210.79i 0.559291 + 0.559291i
\(251\) 296.264 0.0745021 0.0372510 0.999306i \(-0.488140\pi\)
0.0372510 + 0.999306i \(0.488140\pi\)
\(252\) −624.024 624.024i −0.155991 0.155991i
\(253\) 5069.58i 1.25977i
\(254\) −3977.20 −0.982487
\(255\) −3737.23 + 928.371i −0.917783 + 0.227988i
\(256\) 256.000 0.0625000
\(257\) 2885.16i 0.700278i −0.936698 0.350139i \(-0.886134\pi\)
0.936698 0.350139i \(-0.113866\pi\)
\(258\) −1636.03 1636.03i −0.394786 0.394786i
\(259\) −6724.49 −1.61328
\(260\) 694.848 + 694.848i 0.165741 + 0.165741i
\(261\) −851.250 + 851.250i −0.201882 + 0.201882i
\(262\) 1388.17 1388.17i 0.327334 0.327334i
\(263\) 2958.63i 0.693677i 0.937925 + 0.346839i \(0.112745\pi\)
−0.937925 + 0.346839i \(0.887255\pi\)
\(264\) 857.115i 0.199817i
\(265\) −5228.91 + 5228.91i −1.21211 + 1.21211i
\(266\) 543.335 543.335i 0.125241 0.125241i
\(267\) −3178.79 3178.79i −0.728611 0.728611i
\(268\) 1765.06 0.402308
\(269\) 1852.83 + 1852.83i 0.419958 + 0.419958i 0.885189 0.465231i \(-0.154029\pi\)
−0.465231 + 0.885189i \(0.654029\pi\)
\(270\) 988.899i 0.222898i
\(271\) −2252.27 −0.504856 −0.252428 0.967616i \(-0.581229\pi\)
−0.252428 + 0.967616i \(0.581229\pi\)
\(272\) −270.372 1088.41i −0.0602710 0.242626i
\(273\) 986.557 0.218715
\(274\) 5576.02i 1.22942i
\(275\) 5312.32 + 5312.32i 1.16489 + 1.16489i
\(276\) 1703.43 0.371503
\(277\) 3241.37 + 3241.37i 0.703087 + 0.703087i 0.965072 0.261985i \(-0.0843771\pi\)
−0.261985 + 0.965072i \(0.584377\pi\)
\(278\) −236.622 + 236.622i −0.0510492 + 0.0510492i
\(279\) −1204.70 + 1204.70i −0.258507 + 0.258507i
\(280\) 3591.39i 0.766523i
\(281\) 5686.53i 1.20722i 0.797278 + 0.603612i \(0.206272\pi\)
−0.797278 + 0.603612i \(0.793728\pi\)
\(282\) 2261.37 2261.37i 0.477526 0.477526i
\(283\) −389.733 + 389.733i −0.0818629 + 0.0818629i −0.746853 0.664990i \(-0.768436\pi\)
0.664990 + 0.746853i \(0.268436\pi\)
\(284\) 1215.35 + 1215.35i 0.253937 + 0.253937i
\(285\) 861.030 0.178958
\(286\) 677.531 + 677.531i 0.140081 + 0.140081i
\(287\) 5946.55i 1.22304i
\(288\) 288.000 0.0589256
\(289\) −4341.90 + 2299.02i −0.883757 + 0.467946i
\(290\) 4899.12 0.992021
\(291\) 382.011i 0.0769550i
\(292\) 345.473 + 345.473i 0.0692373 + 0.0692373i
\(293\) 5505.48 1.09772 0.548862 0.835913i \(-0.315061\pi\)
0.548862 + 0.835913i \(0.315061\pi\)
\(294\) 1094.33 + 1094.33i 0.217083 + 0.217083i
\(295\) −3455.72 + 3455.72i −0.682034 + 0.682034i
\(296\) 1551.74 1551.74i 0.304707 0.304707i
\(297\) 964.254i 0.188390i
\(298\) 5853.54i 1.13787i
\(299\) −1346.53 + 1346.53i −0.260441 + 0.260441i
\(300\) −1785.00 + 1785.00i −0.343523 + 0.343523i
\(301\) 6684.27 + 6684.27i 1.27998 + 1.27998i
\(302\) 4284.81 0.816433
\(303\) 2445.13 + 2445.13i 0.463595 + 0.463595i
\(304\) 250.760i 0.0473095i
\(305\) −12537.3 −2.35373
\(306\) −304.169 1224.46i −0.0568241 0.228750i
\(307\) −3279.39 −0.609657 −0.304829 0.952407i \(-0.598599\pi\)
−0.304829 + 0.952407i \(0.598599\pi\)
\(308\) 3501.88i 0.647852i
\(309\) −271.618 271.618i −0.0500059 0.0500059i
\(310\) 6933.28 1.27027
\(311\) −6043.27 6043.27i −1.10187 1.10187i −0.994185 0.107687i \(-0.965656\pi\)
−0.107687 0.994185i \(-0.534344\pi\)
\(312\) −227.658 + 227.658i −0.0413096 + 0.0413096i
\(313\) −1413.61 + 1413.61i −0.255277 + 0.255277i −0.823130 0.567853i \(-0.807774\pi\)
0.567853 + 0.823130i \(0.307774\pi\)
\(314\) 2658.54i 0.477802i
\(315\) 4040.31i 0.722685i
\(316\) 1857.05 1857.05i 0.330593 0.330593i
\(317\) 3348.70 3348.70i 0.593317 0.593317i −0.345209 0.938526i \(-0.612192\pi\)
0.938526 + 0.345209i \(0.112192\pi\)
\(318\) −1713.19 1713.19i −0.302109 0.302109i
\(319\) 4777.03 0.838439
\(320\) −828.749 828.749i −0.144777 0.144777i
\(321\) 4966.90i 0.863629i
\(322\) −6959.66 −1.20449
\(323\) 1066.13 264.838i 0.183656 0.0456223i
\(324\) 324.000 0.0555556
\(325\) 2822.01i 0.481652i
\(326\) −3693.61 3693.61i −0.627517 0.627517i
\(327\) 5012.79 0.847730
\(328\) 1372.23 + 1372.23i 0.231002 + 0.231002i
\(329\) −9239.18 + 9239.18i −1.54824 + 1.54824i
\(330\) −2774.74 + 2774.74i −0.462862 + 0.462862i
\(331\) 3878.09i 0.643985i 0.946742 + 0.321993i \(0.104353\pi\)
−0.946742 + 0.321993i \(0.895647\pi\)
\(332\) 4975.76i 0.822530i
\(333\) 1745.71 1745.71i 0.287281 0.287281i
\(334\) 1768.30 1768.30i 0.289692 0.289692i
\(335\) −5714.04 5714.04i −0.931915 0.931915i
\(336\) −1176.67 −0.191050
\(337\) −1904.95 1904.95i −0.307921 0.307921i 0.536182 0.844103i \(-0.319866\pi\)
−0.844103 + 0.536182i \(0.819866\pi\)
\(338\) 4034.08i 0.649187i
\(339\) 539.051 0.0863636
\(340\) −2648.22 + 4398.77i −0.422412 + 0.701638i
\(341\) 6760.49 1.07361
\(342\) 282.105i 0.0446038i
\(343\) 1474.51 + 1474.51i 0.232116 + 0.232116i
\(344\) −3084.93 −0.483512
\(345\) −5514.53 5514.53i −0.860558 0.860558i
\(346\) 4869.08 4869.08i 0.756542 0.756542i
\(347\) 5068.32 5068.32i 0.784098 0.784098i −0.196422 0.980519i \(-0.562932\pi\)
0.980519 + 0.196422i \(0.0629322\pi\)
\(348\) 1605.13i 0.247253i
\(349\) 1517.31i 0.232722i −0.993207 0.116361i \(-0.962877\pi\)
0.993207 0.116361i \(-0.0371230\pi\)
\(350\) 7292.90 7292.90i 1.11378 1.11378i
\(351\) −256.115 + 256.115i −0.0389471 + 0.0389471i
\(352\) −808.095 808.095i −0.122363 0.122363i
\(353\) 4647.31 0.700711 0.350356 0.936617i \(-0.386061\pi\)
0.350356 + 0.936617i \(0.386061\pi\)
\(354\) −1132.22 1132.22i −0.169991 0.169991i
\(355\) 7868.94i 1.17645i
\(356\) −5993.99 −0.892362
\(357\) 1242.73 + 5002.72i 0.184236 + 0.741658i
\(358\) −3281.04 −0.484381
\(359\) 2365.09i 0.347702i 0.984772 + 0.173851i \(0.0556210\pi\)
−0.984772 + 0.173851i \(0.944379\pi\)
\(360\) −932.343 932.343i −0.136497 0.136497i
\(361\) 6613.37 0.964189
\(362\) −370.116 370.116i −0.0537372 0.0537372i
\(363\) 117.889 117.889i 0.0170457 0.0170457i
\(364\) 930.134 930.134i 0.133935 0.133935i
\(365\) 2236.80i 0.320766i
\(366\) 4107.70i 0.586647i
\(367\) −0.150296 + 0.150296i −2.13771e−5 + 2.13771e-5i −0.707117 0.707096i \(-0.750005\pi\)
0.707096 + 0.707117i \(0.250005\pi\)
\(368\) 1606.01 1606.01i 0.227498 0.227498i
\(369\) 1543.76 + 1543.76i 0.217791 + 0.217791i
\(370\) −10046.9 −1.41166
\(371\) 6999.50 + 6999.50i 0.979504 + 0.979504i
\(372\) 2271.60i 0.316605i
\(373\) 8478.48 1.17694 0.588471 0.808519i \(-0.299730\pi\)
0.588471 + 0.808519i \(0.299730\pi\)
\(374\) −2582.22 + 4289.15i −0.357015 + 0.593012i
\(375\) 4689.80 0.645814
\(376\) 4264.07i 0.584848i
\(377\) −1268.82 1268.82i −0.173336 0.173336i
\(378\) −1323.76 −0.180123
\(379\) −4121.44 4121.44i −0.558586 0.558586i 0.370319 0.928905i \(-0.379248\pi\)
−0.928905 + 0.370319i \(0.879248\pi\)
\(380\) 811.787 811.787i 0.109589 0.109589i
\(381\) −4218.46 + 4218.46i −0.567239 + 0.567239i
\(382\) 5197.19i 0.696103i
\(383\) 1561.85i 0.208373i −0.994558 0.104187i \(-0.966776\pi\)
0.994558 0.104187i \(-0.0332240\pi\)
\(384\) 271.529 271.529i 0.0360844 0.0360844i
\(385\) 11336.7 11336.7i 1.50070 1.50070i
\(386\) 5851.54 + 5851.54i 0.771595 + 0.771595i
\(387\) −3470.54 −0.455859
\(388\) −360.164 360.164i −0.0471251 0.0471251i
\(389\) 7043.78i 0.918081i −0.888415 0.459041i \(-0.848193\pi\)
0.888415 0.459041i \(-0.151807\pi\)
\(390\) 1474.00 0.191381
\(391\) −8524.28 5131.93i −1.10254 0.663766i
\(392\) 2063.49 0.265872
\(393\) 2944.76i 0.377973i
\(394\) 1795.47 + 1795.47i 0.229579 + 0.229579i
\(395\) −12023.7 −1.53159
\(396\) −909.107 909.107i −0.115365 0.115365i
\(397\) −8311.58 + 8311.58i −1.05075 + 1.05075i −0.0521045 + 0.998642i \(0.516593\pi\)
−0.998642 + 0.0521045i \(0.983407\pi\)
\(398\) −7647.76 + 7647.76i −0.963185 + 0.963185i
\(399\) 1152.59i 0.144615i
\(400\) 3365.82i 0.420728i
\(401\) 191.110 191.110i 0.0237995 0.0237995i −0.695107 0.718906i \(-0.744643\pi\)
0.718906 + 0.695107i \(0.244643\pi\)
\(402\) 1872.13 1872.13i 0.232272 0.232272i
\(403\) −1795.65 1795.65i −0.221955 0.221955i
\(404\) 4610.59 0.567785
\(405\) −1048.89 1048.89i −0.128690 0.128690i
\(406\) 6558.04i 0.801650i
\(407\) −9796.54 −1.19311
\(408\) −1441.20 867.656i −0.174878 0.105283i
\(409\) −10961.4 −1.32520 −0.662598 0.748975i \(-0.730546\pi\)
−0.662598 + 0.748975i \(0.730546\pi\)
\(410\) 8884.63i 1.07020i
\(411\) 5914.26 + 5914.26i 0.709803 + 0.709803i
\(412\) −512.168 −0.0612445
\(413\) 4625.88 + 4625.88i 0.551150 + 0.551150i
\(414\) 1806.77 1806.77i 0.214487 0.214487i
\(415\) 16108.0 16108.0i 1.90533 1.90533i
\(416\) 429.276i 0.0505937i
\(417\) 501.952i 0.0589465i
\(418\) 791.555 791.555i 0.0926226 0.0926226i
\(419\) −8128.39 + 8128.39i −0.947727 + 0.947727i −0.998700 0.0509730i \(-0.983768\pi\)
0.0509730 + 0.998700i \(0.483768\pi\)
\(420\) 3809.24 + 3809.24i 0.442552 + 0.442552i
\(421\) 11175.3 1.29371 0.646854 0.762614i \(-0.276084\pi\)
0.646854 + 0.762614i \(0.276084\pi\)
\(422\) −4698.99 4698.99i −0.542045 0.542045i
\(423\) 4797.08i 0.551400i
\(424\) −3230.41 −0.370006
\(425\) 14310.1 3554.79i 1.63327 0.405723i
\(426\) 2578.16 0.293221
\(427\) 16782.7i 1.90204i
\(428\) −4682.83 4682.83i −0.528863 0.528863i
\(429\) 1437.26 0.161752
\(430\) 9986.84 + 9986.84i 1.12002 + 1.12002i
\(431\) −8830.33 + 8830.33i −0.986873 + 0.986873i −0.999915 0.0130424i \(-0.995848\pi\)
0.0130424 + 0.999915i \(0.495848\pi\)
\(432\) 305.470 305.470i 0.0340207 0.0340207i
\(433\) 2035.22i 0.225881i −0.993602 0.112940i \(-0.963973\pi\)
0.993602 0.112940i \(-0.0360269\pi\)
\(434\) 9280.99i 1.02650i
\(435\) 5196.30 5196.30i 0.572744 0.572744i
\(436\) 4726.10 4726.10i 0.519126 0.519126i
\(437\) 1573.14 + 1573.14i 0.172205 + 0.172205i
\(438\) 732.859 0.0799483
\(439\) −6948.56 6948.56i −0.755437 0.755437i 0.220051 0.975488i \(-0.429378\pi\)
−0.975488 + 0.220051i \(0.929378\pi\)
\(440\) 5232.10i 0.566888i
\(441\) 2321.42 0.250666
\(442\) 1825.10 453.376i 0.196406 0.0487894i
\(443\) −1404.92 −0.150677 −0.0753385 0.997158i \(-0.524004\pi\)
−0.0753385 + 0.997158i \(0.524004\pi\)
\(444\) 3291.75i 0.351845i
\(445\) 19404.4 + 19404.4i 2.06709 + 2.06709i
\(446\) −4488.65 −0.476555
\(447\) 6208.61 + 6208.61i 0.656952 + 0.656952i
\(448\) −1109.38 + 1109.38i −0.116994 + 0.116994i
\(449\) 4441.50 4441.50i 0.466831 0.466831i −0.434055 0.900886i \(-0.642918\pi\)
0.900886 + 0.434055i \(0.142918\pi\)
\(450\) 3786.55i 0.396666i
\(451\) 8663.21i 0.904511i
\(452\) 508.222 508.222i 0.0528867 0.0528867i
\(453\) 4544.72 4544.72i 0.471368 0.471368i
\(454\) −4882.91 4882.91i −0.504772 0.504772i
\(455\) −6022.25 −0.620500
\(456\) 265.971 + 265.971i 0.0273141 + 0.0273141i
\(457\) 16304.1i 1.66887i 0.551106 + 0.834435i \(0.314206\pi\)
−0.551106 + 0.834435i \(0.685794\pi\)
\(458\) −5365.34 −0.547393
\(459\) −1621.35 976.112i −0.164876 0.0992615i
\(460\) −10398.3 −1.05396
\(461\) 80.0065i 0.00808302i 0.999992 + 0.00404151i \(0.00128646\pi\)
−0.999992 + 0.00404151i \(0.998714\pi\)
\(462\) 3714.31 + 3714.31i 0.374037 + 0.374037i
\(463\) 2619.71 0.262955 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(464\) 1513.33 + 1513.33i 0.151411 + 0.151411i
\(465\) 7353.85 7353.85i 0.733391 0.733391i
\(466\) −2232.05 + 2232.05i −0.221884 + 0.221884i
\(467\) 1360.07i 0.134768i 0.997727 + 0.0673839i \(0.0214652\pi\)
−0.997727 + 0.0673839i \(0.978535\pi\)
\(468\) 482.936i 0.0477002i
\(469\) −7648.91 + 7648.91i −0.753078 + 0.753078i
\(470\) −13804.1 + 13804.1i −1.35476 + 1.35476i
\(471\) −2819.80 2819.80i −0.275859 0.275859i
\(472\) −2134.94 −0.208196
\(473\) 9737.95 + 9737.95i 0.946620 + 0.946620i
\(474\) 3939.40i 0.381736i
\(475\) −3296.93 −0.318471
\(476\) 5888.27 + 3544.95i 0.566992 + 0.341350i
\(477\) −3634.21 −0.348845
\(478\) 10032.4i 0.959983i
\(479\) −6950.26 6950.26i −0.662976 0.662976i 0.293105 0.956080i \(-0.405312\pi\)
−0.956080 + 0.293105i \(0.905312\pi\)
\(480\) −1758.04 −0.167174
\(481\) 2602.06 + 2602.06i 0.246660 + 0.246660i
\(482\) −2301.88 + 2301.88i −0.217527 + 0.217527i
\(483\) −7381.84 + 7381.84i −0.695415 + 0.695415i
\(484\) 222.294i 0.0208766i
\(485\) 2331.92i 0.218323i
\(486\) 343.654 343.654i 0.0320750 0.0320750i
\(487\) 5165.25 5165.25i 0.480616 0.480616i −0.424712 0.905328i \(-0.639625\pi\)
0.905328 + 0.424712i \(0.139625\pi\)
\(488\) −3872.78 3872.78i −0.359247 0.359247i
\(489\) −7835.34 −0.724594
\(490\) −6680.13 6680.13i −0.615872 0.615872i
\(491\) 18687.3i 1.71761i 0.512305 + 0.858803i \(0.328792\pi\)
−0.512305 + 0.858803i \(0.671208\pi\)
\(492\) 2910.93 0.266738
\(493\) 4835.77 8032.36i 0.441769 0.733792i
\(494\) −420.490 −0.0382970
\(495\) 5886.11i 0.534467i
\(496\) 2141.68 + 2141.68i 0.193880 + 0.193880i
\(497\) −10533.5 −0.950686
\(498\) 5277.59 + 5277.59i 0.474888 + 0.474888i
\(499\) 5768.60 5768.60i 0.517511 0.517511i −0.399307 0.916817i \(-0.630749\pi\)
0.916817 + 0.399307i \(0.130749\pi\)
\(500\) 4421.59 4421.59i 0.395479 0.395479i
\(501\) 3751.13i 0.334507i
\(502\) 592.528i 0.0526809i
\(503\) 3807.34 3807.34i 0.337497 0.337497i −0.517928 0.855424i \(-0.673296\pi\)
0.855424 + 0.517928i \(0.173296\pi\)
\(504\) −1248.05 + 1248.05i −0.110303 + 0.110303i
\(505\) −14925.9 14925.9i −1.31523 1.31523i
\(506\) −10139.2 −0.890792
\(507\) 4278.79 + 4278.79i 0.374808 + 0.374808i
\(508\) 7954.40i 0.694723i
\(509\) 12438.1 1.08313 0.541563 0.840660i \(-0.317833\pi\)
0.541563 + 0.840660i \(0.317833\pi\)
\(510\) 1856.74 + 7474.47i 0.161212 + 0.648971i
\(511\) −2994.22 −0.259210
\(512\) 512.000i 0.0441942i
\(513\) 299.218 + 299.218i 0.0257520 + 0.0257520i
\(514\) −5770.33 −0.495172
\(515\) 1658.04 + 1658.04i 0.141868 + 0.141868i
\(516\) −3272.06 + 3272.06i −0.279156 + 0.279156i
\(517\) −13460.1 + 13460.1i −1.14502 + 1.14502i
\(518\) 13449.0i 1.14076i
\(519\) 10328.9i 0.873580i
\(520\) 1389.70 1389.70i 0.117197 0.117197i
\(521\) −1409.93 + 1409.93i −0.118561 + 0.118561i −0.763898 0.645337i \(-0.776717\pi\)
0.645337 + 0.763898i \(0.276717\pi\)
\(522\) 1702.50 + 1702.50i 0.142752 + 0.142752i
\(523\) −171.269 −0.0143194 −0.00715970 0.999974i \(-0.502279\pi\)
−0.00715970 + 0.999974i \(0.502279\pi\)
\(524\) −2776.34 2776.34i −0.231460 0.231460i
\(525\) 15470.6i 1.28608i
\(526\) 5917.27 0.490504
\(527\) 6843.63 11367.5i 0.565680 0.939610i
\(528\) −1714.23 −0.141292
\(529\) 7983.63i 0.656171i
\(530\) 10457.8 + 10457.8i 0.857092 + 0.857092i
\(531\) −2401.81 −0.196289
\(532\) −1086.67 1086.67i −0.0885585 0.0885585i
\(533\) −2301.03 + 2301.03i −0.186996 + 0.186996i
\(534\) −6357.59 + 6357.59i −0.515206 + 0.515206i
\(535\) 30319.5i 2.45014i
\(536\) 3530.13i 0.284474i
\(537\) −3480.07 + 3480.07i −0.279658 + 0.279658i
\(538\) 3705.65 3705.65i 0.296955 0.296955i
\(539\) −6513.65 6513.65i −0.520524 0.520524i
\(540\) −1977.80 −0.157613
\(541\) 11243.1 + 11243.1i 0.893492 + 0.893492i 0.994850 0.101358i \(-0.0323187\pi\)
−0.101358 + 0.994850i \(0.532319\pi\)
\(542\) 4504.55i 0.356987i
\(543\) −785.134 −0.0620503
\(544\) −2176.81 + 540.744i −0.171563 + 0.0426181i
\(545\) −30599.6 −2.40503
\(546\) 1973.11i 0.154655i
\(547\) −598.801 598.801i −0.0468060 0.0468060i 0.683316 0.730122i \(-0.260537\pi\)
−0.730122 + 0.683316i \(0.760537\pi\)
\(548\) 11152.0 0.869328
\(549\) −4356.87 4356.87i −0.338701 0.338701i
\(550\) 10624.6 10624.6i 0.823702 0.823702i
\(551\) −1482.36 + 1482.36i −0.114611 + 0.114611i
\(552\) 3406.87i 0.262692i
\(553\) 16095.1i 1.23767i
\(554\) 6482.74 6482.74i 0.497158 0.497158i
\(555\) −10656.4 + 10656.4i −0.815024 + 0.815024i
\(556\) 473.245 + 473.245i 0.0360972 + 0.0360972i
\(557\) 7243.67 0.551031 0.275515 0.961297i \(-0.411152\pi\)
0.275515 + 0.961297i \(0.411152\pi\)
\(558\) 2409.39 + 2409.39i 0.182792 + 0.182792i
\(559\) 5172.99i 0.391403i
\(560\) 7182.77 0.542014
\(561\) 1810.47 + 7288.19i 0.136253 + 0.548499i
\(562\) 11373.1 0.853636
\(563\) 4072.87i 0.304887i −0.988312 0.152443i \(-0.951286\pi\)
0.988312 0.152443i \(-0.0487142\pi\)
\(564\) −4522.73 4522.73i −0.337662 0.337662i
\(565\) −3290.54 −0.245016
\(566\) 779.466 + 779.466i 0.0578858 + 0.0578858i
\(567\) −1404.05 + 1404.05i −0.103994 + 0.103994i
\(568\) 2430.71 2430.71i 0.179560 0.179560i
\(569\) 17415.3i 1.28311i −0.767079 0.641553i \(-0.778291\pi\)
0.767079 0.641553i \(-0.221709\pi\)
\(570\) 1722.06i 0.126542i
\(571\) −3510.31 + 3510.31i −0.257271 + 0.257271i −0.823943 0.566672i \(-0.808231\pi\)
0.566672 + 0.823943i \(0.308231\pi\)
\(572\) 1355.06 1355.06i 0.0990525 0.0990525i
\(573\) −5512.45 5512.45i −0.401895 0.401895i
\(574\) −11893.1 −0.864823
\(575\) 21115.5 + 21115.5i 1.53144 + 1.53144i
\(576\) 576.000i 0.0416667i
\(577\) 2943.90 0.212402 0.106201 0.994345i \(-0.466131\pi\)
0.106201 + 0.994345i \(0.466131\pi\)
\(578\) 4598.04 + 8683.79i 0.330888 + 0.624910i
\(579\) 12413.0 0.890961
\(580\) 9798.24i 0.701465i
\(581\) −21562.4 21562.4i −1.53969 1.53969i
\(582\) −764.022 −0.0544154
\(583\) 10197.2 + 10197.2i 0.724399 + 0.724399i
\(584\) 690.946 690.946i 0.0489581 0.0489581i
\(585\) 1563.41 1563.41i 0.110494 0.110494i
\(586\) 11011.0i 0.776209i
\(587\) 3580.59i 0.251767i −0.992045 0.125883i \(-0.959824\pi\)
0.992045 0.125883i \(-0.0401765\pi\)
\(588\) 2188.66 2188.66i 0.153501 0.153501i
\(589\) −2097.85 + 2097.85i −0.146758 + 0.146758i
\(590\) 6911.45 + 6911.45i 0.482271 + 0.482271i
\(591\) 3808.76 0.265095
\(592\) −3103.49 3103.49i −0.215460 0.215460i
\(593\) 23081.4i 1.59838i −0.601077 0.799191i \(-0.705262\pi\)
0.601077 0.799191i \(-0.294738\pi\)
\(594\) −1928.51 −0.133212
\(595\) −7586.03 30538.2i −0.522684 2.10411i
\(596\) 11707.1 0.804598
\(597\) 16223.3i 1.11219i
\(598\) 2693.06 + 2693.06i 0.184160 + 0.184160i
\(599\) −3524.31 −0.240400 −0.120200 0.992750i \(-0.538354\pi\)
−0.120200 + 0.992750i \(0.538354\pi\)
\(600\) 3570.00 + 3570.00i 0.242907 + 0.242907i
\(601\) 9933.96 9933.96i 0.674234 0.674234i −0.284455 0.958689i \(-0.591813\pi\)
0.958689 + 0.284455i \(0.0918126\pi\)
\(602\) 13368.5 13368.5i 0.905084 0.905084i
\(603\) 3971.39i 0.268205i
\(604\) 8569.61i 0.577306i
\(605\) −719.634 + 719.634i −0.0483591 + 0.0483591i
\(606\) 4890.27 4890.27i 0.327811 0.327811i
\(607\) 6396.01 + 6396.01i 0.427687 + 0.427687i 0.887840 0.460153i \(-0.152205\pi\)
−0.460153 + 0.887840i \(0.652205\pi\)
\(608\) 501.520 0.0334529
\(609\) −6955.85 6955.85i −0.462833 0.462833i
\(610\) 25074.7i 1.66434i
\(611\) 7150.25 0.473434
\(612\) −2448.91 + 608.337i −0.161751 + 0.0401807i
\(613\) −17364.1 −1.14409 −0.572047 0.820221i \(-0.693851\pi\)
−0.572047 + 0.820221i \(0.693851\pi\)
\(614\) 6558.78i 0.431093i
\(615\) −9423.57 9423.57i −0.617878 0.617878i
\(616\) 7003.77 0.458100
\(617\) −16029.9 16029.9i −1.04593 1.04593i −0.998893 0.0470409i \(-0.985021\pi\)
−0.0470409 0.998893i \(-0.514979\pi\)
\(618\) −543.237 + 543.237i −0.0353595 + 0.0353595i
\(619\) −664.009 + 664.009i −0.0431160 + 0.0431160i −0.728336 0.685220i \(-0.759706\pi\)
0.685220 + 0.728336i \(0.259706\pi\)
\(620\) 13866.6i 0.898216i
\(621\) 3832.73i 0.247668i
\(622\) −12086.5 + 12086.5i −0.779141 + 0.779141i
\(623\) 25975.0 25975.0i 1.67041 1.67041i
\(624\) 455.316 + 455.316i 0.0292103 + 0.0292103i
\(625\) −2332.51 −0.149281
\(626\) 2827.22 + 2827.22i 0.180508 + 0.180508i
\(627\) 1679.14i 0.106951i
\(628\) −5317.07 −0.337857
\(629\) −9917.02 + 16472.5i −0.628645 + 1.04420i
\(630\) 8080.62 0.511015
\(631\) 10145.6i 0.640079i 0.947404 + 0.320040i \(0.103696\pi\)
−0.947404 + 0.320040i \(0.896304\pi\)
\(632\) −3714.10 3714.10i −0.233764 0.233764i
\(633\) −9968.05 −0.625900
\(634\) −6697.40 6697.40i −0.419539 0.419539i
\(635\) 25750.8 25750.8i 1.60927 1.60927i
\(636\) −3426.37 + 3426.37i −0.213623 + 0.213623i
\(637\) 3460.18i 0.215223i
\(638\) 9554.05i 0.592866i
\(639\) 2734.55 2734.55i 0.169291 0.169291i
\(640\) −1657.50 + 1657.50i −0.102372 + 0.102372i
\(641\) 2416.01 + 2416.01i 0.148871 + 0.148871i 0.777614 0.628742i \(-0.216430\pi\)
−0.628742 + 0.777614i \(0.716430\pi\)
\(642\) −9933.79 −0.610678
\(643\) −11621.0 11621.0i −0.712736 0.712736i 0.254371 0.967107i \(-0.418132\pi\)
−0.967107 + 0.254371i \(0.918132\pi\)
\(644\) 13919.3i 0.851706i
\(645\) 21185.3 1.29329
\(646\) −529.676 2132.26i −0.0322598 0.129865i
\(647\) 9019.31 0.548046 0.274023 0.961723i \(-0.411646\pi\)
0.274023 + 0.961723i \(0.411646\pi\)
\(648\) 648.000i 0.0392837i
\(649\) 6739.20 + 6739.20i 0.407607 + 0.407607i
\(650\) −5644.01 −0.340579
\(651\) −9843.98 9843.98i −0.592651 0.592651i
\(652\) −7387.23 + 7387.23i −0.443721 + 0.443721i
\(653\) −9946.84 + 9946.84i −0.596095 + 0.596095i −0.939271 0.343176i \(-0.888497\pi\)
0.343176 + 0.939271i \(0.388497\pi\)
\(654\) 10025.6i 0.599436i
\(655\) 17975.7i 1.07232i
\(656\) 2744.45 2744.45i 0.163343 0.163343i
\(657\) 777.314 777.314i 0.0461582 0.0461582i
\(658\) 18478.4 + 18478.4i 1.09477 + 1.09477i
\(659\) 18759.1 1.10888 0.554438 0.832225i \(-0.312933\pi\)
0.554438 + 0.832225i \(0.312933\pi\)
\(660\) 5549.48 + 5549.48i 0.327293 + 0.327293i
\(661\) 22941.6i 1.34996i 0.737836 + 0.674980i \(0.235848\pi\)
−0.737836 + 0.674980i \(0.764152\pi\)
\(662\) 7756.18 0.455366
\(663\) 1454.94 2416.69i 0.0852263 0.141563i
\(664\) 9951.51 0.581617
\(665\) 7035.76i 0.410278i
\(666\) −3491.42 3491.42i −0.203138 0.203138i
\(667\) 18987.8 1.10226
\(668\) −3536.60 3536.60i −0.204843 0.204843i
\(669\) −4760.93 + 4760.93i −0.275139 + 0.275139i
\(670\) −11428.1 + 11428.1i −0.658964 + 0.658964i
\(671\) 24449.8i 1.40667i
\(672\) 2353.34i 0.135093i
\(673\) 7783.39 7783.39i 0.445807 0.445807i −0.448151 0.893958i \(-0.647917\pi\)
0.893958 + 0.448151i \(0.147917\pi\)
\(674\) −3809.90 + 3809.90i −0.217733 + 0.217733i
\(675\) 4016.24 + 4016.24i 0.229015 + 0.229015i
\(676\) 8068.16 0.459044
\(677\) 6957.54 + 6957.54i 0.394978 + 0.394978i 0.876457 0.481480i \(-0.159900\pi\)
−0.481480 + 0.876457i \(0.659900\pi\)
\(678\) 1078.10i 0.0610683i
\(679\) 3121.54 0.176427
\(680\) 8797.55 + 5296.44i 0.496133 + 0.298690i
\(681\) −10358.2 −0.582861
\(682\) 13521.0i 0.759157i
\(683\) −13910.7 13910.7i −0.779323 0.779323i 0.200392 0.979716i \(-0.435778\pi\)
−0.979716 + 0.200392i \(0.935778\pi\)
\(684\) 564.210 0.0315397
\(685\) −36102.5 36102.5i −2.01373 2.01373i
\(686\) 2949.01 2949.01i 0.164131 0.164131i
\(687\) −5690.80 + 5690.80i −0.316037 + 0.316037i
\(688\) 6169.85i 0.341894i
\(689\) 5416.95i 0.299520i
\(690\) −11029.1 + 11029.1i −0.608506 + 0.608506i
\(691\) 6593.82 6593.82i 0.363011 0.363011i −0.501909 0.864920i \(-0.667369\pi\)
0.864920 + 0.501909i \(0.167369\pi\)
\(692\) −9738.17 9738.17i −0.534956 0.534956i
\(693\) 7879.24 0.431901
\(694\) −10136.6 10136.6i −0.554441 0.554441i
\(695\) 3064.07i 0.167233i
\(696\) 3210.27 0.174835
\(697\) −14566.8 8769.75i −0.791618 0.476582i
\(698\) −3034.63 −0.164559
\(699\) 4734.89i 0.256209i
\(700\) −14585.8 14585.8i −0.787559 0.787559i
\(701\) 4811.86 0.259260 0.129630 0.991562i \(-0.458621\pi\)
0.129630 + 0.991562i \(0.458621\pi\)
\(702\) 512.231 + 512.231i 0.0275397 + 0.0275397i
\(703\) 3039.97 3039.97i 0.163093 0.163093i
\(704\) −1616.19 + 1616.19i −0.0865234 + 0.0865234i
\(705\) 29282.9i 1.56434i
\(706\) 9294.61i 0.495478i
\(707\) −19980.0 + 19980.0i −1.06284 + 1.06284i
\(708\) −2264.45 + 2264.45i −0.120202 + 0.120202i
\(709\) 19747.1 + 19747.1i 1.04600 + 1.04600i 0.998890 + 0.0471139i \(0.0150024\pi\)
0.0471139 + 0.998890i \(0.484998\pi\)
\(710\) −15737.9 −0.831876
\(711\) −4178.37 4178.37i −0.220395 0.220395i
\(712\) 11988.0i 0.630995i
\(713\) 26871.7 1.41143
\(714\) 10005.4 2485.46i 0.524431 0.130275i
\(715\) −8773.50 −0.458895
\(716\) 6562.09i 0.342509i
\(717\) −10641.0 10641.0i −0.554246 0.554246i
\(718\) 4730.19 0.245862
\(719\) −6565.65 6565.65i −0.340553 0.340553i 0.516022 0.856575i \(-0.327412\pi\)
−0.856575 + 0.516022i \(0.827412\pi\)
\(720\) −1864.69 + 1864.69i −0.0965177 + 0.0965177i
\(721\) 2219.48 2219.48i 0.114643 0.114643i
\(722\) 13226.7i 0.681785i
\(723\) 4883.03i 0.251178i
\(724\) −740.232 + 740.232i −0.0379979 + 0.0379979i
\(725\) −19896.9 + 19896.9i −1.01925 + 1.01925i
\(726\) −235.779 235.779i −0.0120531 0.0120531i
\(727\) −3740.62 −0.190828 −0.0954140 0.995438i \(-0.530418\pi\)
−0.0954140 + 0.995438i \(0.530418\pi\)
\(728\) −1860.27 1860.27i −0.0947063 0.0947063i
\(729\) 729.000i 0.0370370i
\(730\) −4473.60 −0.226816
\(731\) 26231.6 6516.23i 1.32724 0.329701i
\(732\) −8215.40 −0.414822
\(733\) 23222.5i 1.17018i −0.810967 0.585092i \(-0.801059\pi\)
0.810967 0.585092i \(-0.198941\pi\)
\(734\) 0.300592 + 0.300592i 1.51159e−5 + 1.51159e-5i
\(735\) −14170.7 −0.711148
\(736\) −3212.03 3212.03i −0.160865 0.160865i
\(737\) −11143.3 + 11143.3i −0.556944 + 0.556944i
\(738\) 3087.51 3087.51i 0.154001 0.154001i
\(739\) 9987.91i 0.497173i −0.968610 0.248587i \(-0.920034\pi\)
0.968610 0.248587i \(-0.0799661\pi\)
\(740\) 20093.9i 0.998196i
\(741\) −445.997 + 445.997i −0.0221108 + 0.0221108i
\(742\) 13999.0 13999.0i 0.692614 0.692614i
\(743\) 25752.7 + 25752.7i 1.27157 + 1.27157i 0.945266 + 0.326302i \(0.105803\pi\)
0.326302 + 0.945266i \(0.394197\pi\)
\(744\) 4543.20 0.223873
\(745\) −37899.3 37899.3i −1.86379 1.86379i
\(746\) 16957.0i 0.832223i
\(747\) 11195.5 0.548354
\(748\) 8578.30 + 5164.45i 0.419323 + 0.252448i
\(749\) 40586.1 1.97995
\(750\) 9379.60i 0.456659i
\(751\) −10329.3 10329.3i −0.501894 0.501894i 0.410132 0.912026i \(-0.365483\pi\)
−0.912026 + 0.410132i \(0.865483\pi\)
\(752\) −8528.14 −0.413550
\(753\) −628.471 628.471i −0.0304153 0.0304153i
\(754\) −2537.65 + 2537.65i −0.122567 + 0.122567i
\(755\) −27742.4 + 27742.4i −1.33728 + 1.33728i
\(756\) 2647.51i 0.127366i
\(757\) 25138.4i 1.20696i 0.797378 + 0.603481i \(0.206220\pi\)
−0.797378 + 0.603481i \(0.793780\pi\)
\(758\) −8242.87 + 8242.87i −0.394980 + 0.394980i
\(759\) −10754.2 + 10754.2i −0.514299 + 0.514299i
\(760\) −1623.57 1623.57i −0.0774910 0.0774910i
\(761\) −13550.5 −0.645473 −0.322737 0.946489i \(-0.604603\pi\)
−0.322737 + 0.946489i \(0.604603\pi\)
\(762\) 8436.92 + 8436.92i 0.401099 + 0.401099i
\(763\) 40961.1i 1.94350i
\(764\) −10394.4 −0.492219
\(765\) 9897.24 + 5958.50i 0.467759 + 0.281608i
\(766\) −3123.71 −0.147342
\(767\) 3580.00i 0.168535i
\(768\) −543.058 543.058i −0.0255155 0.0255155i
\(769\) 30080.8 1.41059 0.705294 0.708915i \(-0.250815\pi\)
0.705294 + 0.708915i \(0.250815\pi\)
\(770\) −22673.3 22673.3i −1.06116 1.06116i
\(771\) −6120.36 + 6120.36i −0.285887 + 0.285887i
\(772\) 11703.1 11703.1i 0.545600 0.545600i
\(773\) 11588.8i 0.539226i −0.962969 0.269613i \(-0.913104\pi\)
0.962969 0.269613i \(-0.0868958\pi\)
\(774\) 6941.08i 0.322341i
\(775\) −28158.3 + 28158.3i −1.30513 + 1.30513i
\(776\) −720.327 + 720.327i −0.0333225 + 0.0333225i
\(777\) 14264.8 + 14264.8i 0.658618 + 0.658618i
\(778\) −14087.6 −0.649182
\(779\) 2688.28 + 2688.28i 0.123643 + 0.123643i
\(780\) 2947.99i 0.135327i
\(781\) −15345.7 −0.703087
\(782\) −10263.9 + 17048.6i −0.469354 + 0.779610i
\(783\) 3611.55 0.164836
\(784\) 4126.97i 0.188000i
\(785\) 17213.0 + 17213.0i 0.782620 + 0.782620i
\(786\) −5889.51 −0.267267
\(787\) 3121.23 + 3121.23i 0.141372 + 0.141372i 0.774251 0.632879i \(-0.218127\pi\)
−0.632879 + 0.774251i \(0.718127\pi\)
\(788\) 3590.93 3590.93i 0.162337 0.162337i
\(789\) 6276.21 6276.21i 0.283193 0.283193i
\(790\) 24047.4i 1.08300i
\(791\) 4404.77i 0.197997i
\(792\) −1818.21 + 1818.21i −0.0815751 + 0.0815751i
\(793\) 6494.10 6494.10i 0.290810 0.290810i
\(794\) 16623.2 + 16623.2i 0.742990 + 0.742990i
\(795\) 22184.4 0.989685
\(796\) 15295.5 + 15295.5i 0.681074 + 0.681074i
\(797\) 36966.3i 1.64293i −0.570260 0.821464i \(-0.693157\pi\)
0.570260 0.821464i \(-0.306843\pi\)
\(798\) −2305.17 −0.102259
\(799\) 9006.92 + 36258.1i 0.398801 + 1.60541i
\(800\) 6731.65 0.297500
\(801\) 13486.5i 0.594908i
\(802\) −382.221 382.221i −0.0168288 0.0168288i
\(803\) −4362.11 −0.191701
\(804\) −3744.27 3744.27i −0.164241 0.164241i
\(805\) 45061.1 45061.1i 1.97291 1.97291i
\(806\) −3591.30 + 3591.30i −0.156946 + 0.156946i
\(807\) 7860.87i 0.342895i
\(808\) 9221.17i 0.401485i
\(809\) −23264.9 + 23264.9i −1.01106 + 1.01106i −0.0111248 + 0.999938i \(0.503541\pi\)
−0.999938 + 0.0111248i \(0.996459\pi\)
\(810\) −2097.77 + 2097.77i −0.0909978 + 0.0909978i
\(811\) −12867.2 12867.2i −0.557126 0.557126i 0.371362 0.928488i \(-0.378891\pi\)
−0.928488 + 0.371362i \(0.878891\pi\)
\(812\) −13116.1 −0.566852
\(813\) 4777.79 + 4777.79i 0.206106 + 0.206106i
\(814\) 19593.1i 0.843658i
\(815\) 47829.4 2.05569
\(816\) −1735.31 + 2882.40i −0.0744461 + 0.123657i
\(817\) −6043.57 −0.258798
\(818\) 21922.7i 0.937055i
\(819\) −2092.80 2092.80i −0.0892899 0.0892899i
\(820\) −17769.3 −0.756743
\(821\) 10846.1 + 10846.1i 0.461060 + 0.461060i 0.899003 0.437943i \(-0.144293\pi\)
−0.437943 + 0.899003i \(0.644293\pi\)
\(822\) 11828.5 11828.5i 0.501907 0.501907i
\(823\) 22850.1 22850.1i 0.967807 0.967807i −0.0316911 0.999498i \(-0.510089\pi\)
0.999498 + 0.0316911i \(0.0100893\pi\)
\(824\) 1024.34i 0.0433064i
\(825\) 22538.3i 0.951129i
\(826\) 9251.77 9251.77i 0.389722 0.389722i
\(827\) 8154.95 8154.95i 0.342896 0.342896i −0.514559 0.857455i \(-0.672044\pi\)
0.857455 + 0.514559i \(0.172044\pi\)
\(828\) −3613.53 3613.53i −0.151665 0.151665i
\(829\) 28488.7 1.19355 0.596774 0.802409i \(-0.296449\pi\)
0.596774 + 0.802409i \(0.296449\pi\)
\(830\) −32216.1 32216.1i −1.34727 1.34727i
\(831\) 13752.0i 0.574068i
\(832\) 858.552 0.0357752
\(833\) −17546.2 + 4358.67i −0.729818 + 0.181295i
\(834\) 1003.90 0.0416815
\(835\) 22898.1i 0.949007i
\(836\) −1583.11 1583.11i −0.0654941 0.0654941i
\(837\) 5111.10 0.211070
\(838\) 16256.8 + 16256.8i 0.670144 + 0.670144i
\(839\) 13682.6 13682.6i 0.563021 0.563021i −0.367143 0.930164i \(-0.619664\pi\)
0.930164 + 0.367143i \(0.119664\pi\)
\(840\) 7618.48 7618.48i 0.312932 0.312932i
\(841\) 6496.97i 0.266389i
\(842\) 22350.6i 0.914789i
\(843\) 12063.0 12063.0i 0.492847 0.492847i
\(844\) −9397.97 + 9397.97i −0.383284 + 0.383284i
\(845\) −26119.1 26119.1i −1.06334 1.06334i
\(846\) −9594.16 −0.389898
\(847\) 963.313 + 963.313i 0.0390789 + 0.0390789i
\(848\) 6460.83i 0.261634i
\(849\) 1653.50 0.0668408
\(850\) −7109.57 28620.2i −0.286890 1.15490i
\(851\) −38939.4 −1.56854
\(852\) 5156.31i 0.207338i
\(853\) −16798.3 16798.3i −0.674281 0.674281i 0.284419 0.958700i \(-0.408199\pi\)
−0.958700 + 0.284419i \(0.908199\pi\)
\(854\) 33565.4 1.34494
\(855\) −1826.52 1826.52i −0.0730592 0.0730592i
\(856\) −9365.67 + 9365.67i −0.373963 + 0.373963i
\(857\) 3594.51 3594.51i 0.143274 0.143274i −0.631831 0.775106i \(-0.717697\pi\)
0.775106 + 0.631831i \(0.217697\pi\)
\(858\) 2874.52i 0.114376i
\(859\) 32488.7i 1.29046i −0.763990 0.645228i \(-0.776763\pi\)
0.763990 0.645228i \(-0.223237\pi\)
\(860\) 19973.7 19973.7i 0.791973 0.791973i
\(861\) −12614.5 + 12614.5i −0.499306 + 0.499306i
\(862\) 17660.7 + 17660.7i 0.697824 + 0.697824i
\(863\) −30304.2 −1.19532 −0.597662 0.801748i \(-0.703904\pi\)
−0.597662 + 0.801748i \(0.703904\pi\)
\(864\) −610.940 610.940i −0.0240563 0.0240563i
\(865\) 63050.8i 2.47837i
\(866\) −4070.44 −0.159722
\(867\) 14087.5 + 4333.60i 0.551831 + 0.169754i
\(868\) −18562.0 −0.725846
\(869\) 23448.1i 0.915329i
\(870\) −10392.6 10392.6i −0.404991 0.404991i
\(871\) 5919.53 0.230282
\(872\) −9452.20 9452.20i −0.367078 0.367078i
\(873\) −810.368 + 810.368i −0.0314167 + 0.0314167i
\(874\) 3146.28 3146.28i 0.121767 0.121767i
\(875\) 38321.9i 1.48059i
\(876\) 1465.72i 0.0565320i
\(877\) −15323.5 + 15323.5i −0.590009 + 0.590009i −0.937634 0.347624i \(-0.886988\pi\)
0.347624 + 0.937634i \(0.386988\pi\)
\(878\) −13897.1 + 13897.1i −0.534175 + 0.534175i
\(879\) −11678.9 11678.9i −0.448144 0.448144i
\(880\) 10464.2 0.400850
\(881\) −24765.1 24765.1i −0.947056 0.947056i 0.0516111 0.998667i \(-0.483564\pi\)
−0.998667 + 0.0516111i \(0.983564\pi\)
\(882\) 4642.84i 0.177248i
\(883\) 35916.7 1.36885 0.684425 0.729084i \(-0.260054\pi\)
0.684425 + 0.729084i \(0.260054\pi\)
\(884\) −906.753 3650.21i −0.0344993 0.138880i
\(885\) 14661.4 0.556878
\(886\) 2809.85i 0.106545i
\(887\) −17482.6 17482.6i −0.661790 0.661790i 0.294012 0.955802i \(-0.405010\pi\)
−0.955802 + 0.294012i \(0.905010\pi\)
\(888\) −6583.49 −0.248792
\(889\) −34470.4 34470.4i −1.30045 1.30045i
\(890\) 38808.7 38808.7i 1.46165 1.46165i
\(891\) −2045.49 + 2045.49i −0.0769097 + 0.0769097i
\(892\) 8977.29i 0.336975i
\(893\) 8353.59i 0.313037i
\(894\) 12417.2 12417.2i 0.464535 0.464535i
\(895\) 21243.5 21243.5i 0.793397 0.793397i
\(896\) 2218.75 + 2218.75i 0.0827269 + 0.0827269i
\(897\) 5712.84 0.212649
\(898\) −8882.99 8882.99i −0.330099 0.330099i
\(899\) 25321.0i 0.939378i
\(900\) 7573.10 0.280485
\(901\) 27468.7 6823.55i 1.01567 0.252303i
\(902\) −17326.4 −0.639586
\(903\) 28358.9i 1.04510i
\(904\) −1016.44 1016.44i −0.0373965 0.0373965i
\(905\) 4792.71 0.176039
\(906\) −9089.45 9089.45i −0.333308 0.333308i
\(907\) −5525.49 + 5525.49i −0.202283 + 0.202283i −0.800978 0.598694i \(-0.795686\pi\)
0.598694 + 0.800978i \(0.295686\pi\)
\(908\) −9765.83 + 9765.83i −0.356928 + 0.356928i
\(909\) 10373.8i 0.378524i
\(910\) 12044.5i 0.438760i
\(911\) −11064.3 + 11064.3i −0.402390 + 0.402390i −0.879074 0.476684i \(-0.841838\pi\)
0.476684 + 0.879074i \(0.341838\pi\)
\(912\) 531.943 531.943i 0.0193140 0.0193140i
\(913\) −31413.2 31413.2i −1.13869 1.13869i
\(914\) 32608.2 1.18007
\(915\) 26595.7 + 26595.7i 0.960904 + 0.960904i
\(916\) 10730.7i 0.387065i
\(917\) 24062.6 0.866539
\(918\) −1952.22 + 3242.70i −0.0701885 + 0.116585i
\(919\) −54133.9 −1.94310 −0.971552 0.236825i \(-0.923893\pi\)
−0.971552 + 0.236825i \(0.923893\pi\)
\(920\) 20796.6i 0.745265i
\(921\) 6956.64 + 6956.64i 0.248892 + 0.248892i
\(922\) 160.013 0.00571556
\(923\) 4075.96 + 4075.96i 0.145354 + 0.145354i
\(924\) 7428.62 7428.62i 0.264484 0.264484i
\(925\) 40803.9 40803.9i 1.45040 1.45040i
\(926\) 5239.41i 0.185937i
\(927\) 1152.38i 0.0408297i
\(928\) 3026.67 3026.67i 0.107064 0.107064i
\(929\) −2614.28 + 2614.28i −0.0923270 + 0.0923270i −0.751762 0.659435i \(-0.770796\pi\)
0.659435 + 0.751762i \(0.270796\pi\)
\(930\) −14707.7 14707.7i −0.518585 0.518585i
\(931\) 4042.50 0.142307
\(932\) 4464.10 + 4464.10i 0.156895 + 0.156895i
\(933\) 25639.4i 0.899675i
\(934\) 2720.14 0.0952952
\(935\) −11051.7 44489.4i −0.386554 1.55611i
\(936\) 965.871 0.0337292
\(937\) 9888.38i 0.344759i −0.985031 0.172380i \(-0.944854\pi\)
0.985031 0.172380i \(-0.0551456\pi\)
\(938\) 15297.8 + 15297.8i 0.532507 + 0.532507i
\(939\) 5997.43 0.208433
\(940\) 27608.2 + 27608.2i 0.957957 + 0.957957i
\(941\) −1174.44 + 1174.44i −0.0406860 + 0.0406860i −0.727157 0.686471i \(-0.759159\pi\)
0.686471 + 0.727157i \(0.259159\pi\)
\(942\) −5639.60 + 5639.60i −0.195062 + 0.195062i
\(943\) 34434.6i 1.18913i
\(944\) 4269.88i 0.147217i
\(945\) 8570.79 8570.79i 0.295035 0.295035i
\(946\) 19475.9 19475.9i 0.669361 0.669361i
\(947\) −16396.0 16396.0i −0.562618 0.562618i 0.367433 0.930050i \(-0.380237\pi\)
−0.930050 + 0.367433i \(0.880237\pi\)
\(948\) −7878.80 −0.269928
\(949\) 1158.62 + 1158.62i 0.0396316 + 0.0396316i
\(950\) 6593.87i 0.225193i
\(951\) −14207.3 −0.484442
\(952\) 7089.90 11776.5i 0.241371 0.400924i
\(953\) −1163.54 −0.0395495 −0.0197748 0.999804i \(-0.506295\pi\)
−0.0197748 + 0.999804i \(0.506295\pi\)
\(954\) 7268.43i 0.246671i
\(955\) 33649.8 + 33649.8i 1.14019 + 1.14019i
\(956\) −20064.8 −0.678810
\(957\) −10133.6 10133.6i −0.342291 0.342291i
\(958\) −13900.5 + 13900.5i −0.468795 + 0.468795i
\(959\) −48327.4 + 48327.4i −1.62729 + 1.62729i
\(960\) 3516.09i 0.118210i
\(961\) 6043.44i 0.202861i
\(962\) 5204.11 5204.11i 0.174415 0.174415i
\(963\) −10536.4 + 10536.4i −0.352575 + 0.352575i
\(964\) 4603.76 + 4603.76i 0.153815 + 0.153815i
\(965\) −75772.9 −2.52768
\(966\) 14763.7 + 14763.7i 0.491732 + 0.491732i
\(967\) 31087.8i 1.03383i −0.856036 0.516916i \(-0.827080\pi\)
0.856036 0.516916i \(-0.172920\pi\)
\(968\) −444.589 −0.0147620
\(969\) −2823.41 1699.79i −0.0936026 0.0563521i
\(970\) 4663.83 0.154378
\(971\) 5352.03i 0.176885i −0.996081 0.0884423i \(-0.971811\pi\)
0.996081 0.0884423i \(-0.0281889\pi\)
\(972\) −687.308 687.308i −0.0226805 0.0226805i
\(973\) −4101.62 −0.135141
\(974\) −10330.5 10330.5i −0.339847 0.339847i
\(975\) −5986.38 + 5986.38i −0.196633 + 0.196633i
\(976\) −7745.55 + 7745.55i −0.254026 + 0.254026i
\(977\) 27767.7i 0.909282i 0.890675 + 0.454641i \(0.150232\pi\)
−0.890675 + 0.454641i \(0.849768\pi\)
\(978\) 15670.7i 0.512365i
\(979\) 37841.5 37841.5i 1.23536 1.23536i
\(980\) −13360.3 + 13360.3i −0.435487 + 0.435487i
\(981\) −10633.7 10633.7i −0.346084 0.346084i
\(982\) 37374.6 1.21453
\(983\) −20541.2 20541.2i −0.666492 0.666492i 0.290410 0.956902i \(-0.406208\pi\)
−0.956902 + 0.290410i \(0.906208\pi\)
\(984\) 5821.87i 0.188612i
\(985\) −23249.9 −0.752083
\(986\) −16064.7 9671.55i −0.518869 0.312378i
\(987\) 39198.5 1.26414
\(988\) 840.979i 0.0270801i
\(989\) 38706.5 + 38706.5i 1.24448 + 1.24448i
\(990\) 11772.2 0.377925
\(991\) 16947.4 + 16947.4i 0.543242 + 0.543242i 0.924478 0.381236i \(-0.124501\pi\)
−0.381236 + 0.924478i \(0.624501\pi\)
\(992\) 4283.37 4283.37i 0.137094 0.137094i
\(993\) 8226.67 8226.67i 0.262906 0.262906i
\(994\) 21067.0i 0.672237i
\(995\) 99032.4i 3.15532i
\(996\) 10555.2 10555.2i 0.335797 0.335797i
\(997\) −29861.9 + 29861.9i −0.948582 + 0.948582i −0.998741 0.0501591i \(-0.984027\pi\)
0.0501591 + 0.998741i \(0.484027\pi\)
\(998\) −11537.2 11537.2i −0.365936 0.365936i
\(999\) −7406.43 −0.234564
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.4.f.c.13.3 12
3.2 odd 2 306.4.g.g.217.1 12
17.2 even 8 1734.4.a.bd.1.1 6
17.4 even 4 inner 102.4.f.c.55.3 yes 12
17.15 even 8 1734.4.a.be.1.6 6
51.38 odd 4 306.4.g.g.55.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.3 12 1.1 even 1 trivial
102.4.f.c.55.3 yes 12 17.4 even 4 inner
306.4.g.g.55.1 12 51.38 odd 4
306.4.g.g.217.1 12 3.2 odd 2
1734.4.a.bd.1.1 6 17.2 even 8
1734.4.a.be.1.6 6 17.15 even 8