Properties

Label 306.4.g.g.217.1
Level $306$
Weight $4$
Character 306.217
Analytic conductor $18.055$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,4,Mod(55,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 306.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.0545844618\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.1
Root \(14.8987i\) of defining polynomial
Character \(\chi\) \(=\) 306.217
Dual form 306.4.g.g.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(-12.9492 - 12.9492i) q^{5} +(17.3340 - 17.3340i) q^{7} -8.00000i q^{8} +(25.8984 - 25.8984i) q^{10} +(-25.2530 + 25.2530i) q^{11} -13.4149 q^{13} +(34.6680 + 34.6680i) q^{14} +16.0000 q^{16} +(16.8983 + 68.0254i) q^{17} +15.6725i q^{19} +(51.7968 + 51.7968i) q^{20} +(-50.5060 - 50.5060i) q^{22} +(-100.376 + 100.376i) q^{23} +210.364i q^{25} -26.8298i q^{26} +(-69.3360 + 69.3360i) q^{28} +(-94.5834 - 94.5834i) q^{29} +(133.855 + 133.855i) q^{31} +32.0000i q^{32} +(-136.051 + 33.7965i) q^{34} -448.923 q^{35} +(-193.968 - 193.968i) q^{37} -31.3450 q^{38} +(-103.594 + 103.594i) q^{40} +(-171.528 + 171.528i) q^{41} +385.616i q^{43} +(101.012 - 101.012i) q^{44} +(-200.752 - 200.752i) q^{46} +533.009 q^{47} -257.936i q^{49} -420.728 q^{50} +53.6595 q^{52} -403.802i q^{53} +654.012 q^{55} +(-138.672 - 138.672i) q^{56} +(189.167 - 189.167i) q^{58} -266.868i q^{59} +(-484.097 + 484.097i) q^{61} +(-267.710 + 267.710i) q^{62} -64.0000 q^{64} +(173.712 + 173.712i) q^{65} -441.266 q^{67} +(-67.5931 - 272.101i) q^{68} -897.847i q^{70} +(303.839 + 303.839i) q^{71} +(-86.3683 - 86.3683i) q^{73} +(387.936 - 387.936i) q^{74} -62.6901i q^{76} +875.471i q^{77} +(-464.263 + 464.263i) q^{79} +(-207.187 - 207.187i) q^{80} +(-343.057 - 343.057i) q^{82} +1243.94i q^{83} +(662.055 - 1099.69i) q^{85} -771.231 q^{86} +(202.024 + 202.024i) q^{88} -1498.50 q^{89} +(-232.534 + 232.534i) q^{91} +(401.503 - 401.503i) q^{92} +1066.02i q^{94} +(202.947 - 202.947i) q^{95} +(90.0409 + 90.0409i) q^{97} +515.871 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} - 16 q^{5} - 12 q^{7} + 32 q^{10} + 32 q^{11} - 68 q^{13} - 24 q^{14} + 192 q^{16} - 64 q^{17} + 64 q^{20} + 64 q^{22} + 112 q^{23} + 48 q^{28} + 296 q^{29} + 520 q^{31} + 144 q^{34} - 392 q^{35}+ \cdots + 4168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −12.9492 12.9492i −1.15821 1.15821i −0.984860 0.173353i \(-0.944540\pi\)
−0.173353 0.984860i \(-0.555460\pi\)
\(6\) 0 0
\(7\) 17.3340 17.3340i 0.935948 0.935948i −0.0621202 0.998069i \(-0.519786\pi\)
0.998069 + 0.0621202i \(0.0197862\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 25.8984 25.8984i 0.818980 0.818980i
\(11\) −25.2530 + 25.2530i −0.692187 + 0.692187i −0.962713 0.270525i \(-0.912803\pi\)
0.270525 + 0.962713i \(0.412803\pi\)
\(12\) 0 0
\(13\) −13.4149 −0.286201 −0.143101 0.989708i \(-0.545707\pi\)
−0.143101 + 0.989708i \(0.545707\pi\)
\(14\) 34.6680 + 34.6680i 0.661816 + 0.661816i
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 16.8983 + 68.0254i 0.241084 + 0.970504i
\(18\) 0 0
\(19\) 15.6725i 0.189238i 0.995514 + 0.0946190i \(0.0301633\pi\)
−0.995514 + 0.0946190i \(0.969837\pi\)
\(20\) 51.7968 + 51.7968i 0.579106 + 0.579106i
\(21\) 0 0
\(22\) −50.5060 50.5060i −0.489450 0.489450i
\(23\) −100.376 + 100.376i −0.909992 + 0.909992i −0.996271 0.0862791i \(-0.972502\pi\)
0.0862791 + 0.996271i \(0.472502\pi\)
\(24\) 0 0
\(25\) 210.364i 1.68291i
\(26\) 26.8298i 0.202375i
\(27\) 0 0
\(28\) −69.3360 + 69.3360i −0.467974 + 0.467974i
\(29\) −94.5834 94.5834i −0.605645 0.605645i 0.336160 0.941805i \(-0.390872\pi\)
−0.941805 + 0.336160i \(0.890872\pi\)
\(30\) 0 0
\(31\) 133.855 + 133.855i 0.775520 + 0.775520i 0.979065 0.203546i \(-0.0652466\pi\)
−0.203546 + 0.979065i \(0.565247\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −136.051 + 33.7965i −0.686250 + 0.170472i
\(35\) −448.923 −2.16805
\(36\) 0 0
\(37\) −193.968 193.968i −0.861842 0.861842i 0.129710 0.991552i \(-0.458595\pi\)
−0.991552 + 0.129710i \(0.958595\pi\)
\(38\) −31.3450 −0.133811
\(39\) 0 0
\(40\) −103.594 + 103.594i −0.409490 + 0.409490i
\(41\) −171.528 + 171.528i −0.653372 + 0.653372i −0.953803 0.300432i \(-0.902869\pi\)
0.300432 + 0.953803i \(0.402869\pi\)
\(42\) 0 0
\(43\) 385.616i 1.36758i 0.729680 + 0.683789i \(0.239669\pi\)
−0.729680 + 0.683789i \(0.760331\pi\)
\(44\) 101.012 101.012i 0.346094 0.346094i
\(45\) 0 0
\(46\) −200.752 200.752i −0.643461 0.643461i
\(47\) 533.009 1.65420 0.827099 0.562056i \(-0.189989\pi\)
0.827099 + 0.562056i \(0.189989\pi\)
\(48\) 0 0
\(49\) 257.936i 0.751999i
\(50\) −420.728 −1.19000
\(51\) 0 0
\(52\) 53.6595 0.143101
\(53\) 403.802i 1.04654i −0.852168 0.523268i \(-0.824713\pi\)
0.852168 0.523268i \(-0.175287\pi\)
\(54\) 0 0
\(55\) 654.012 1.60340
\(56\) −138.672 138.672i −0.330908 0.330908i
\(57\) 0 0
\(58\) 189.167 189.167i 0.428255 0.428255i
\(59\) 266.868i 0.588868i −0.955672 0.294434i \(-0.904869\pi\)
0.955672 0.294434i \(-0.0951311\pi\)
\(60\) 0 0
\(61\) −484.097 + 484.097i −1.01610 + 1.01610i −0.0162344 + 0.999868i \(0.505168\pi\)
−0.999868 + 0.0162344i \(0.994832\pi\)
\(62\) −267.710 + 267.710i −0.548375 + 0.548375i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 173.712 + 173.712i 0.331482 + 0.331482i
\(66\) 0 0
\(67\) −441.266 −0.804615 −0.402308 0.915505i \(-0.631792\pi\)
−0.402308 + 0.915505i \(0.631792\pi\)
\(68\) −67.5931 272.101i −0.120542 0.485252i
\(69\) 0 0
\(70\) 897.847i 1.53305i
\(71\) 303.839 + 303.839i 0.507873 + 0.507873i 0.913873 0.406000i \(-0.133077\pi\)
−0.406000 + 0.913873i \(0.633077\pi\)
\(72\) 0 0
\(73\) −86.3683 86.3683i −0.138475 0.138475i 0.634472 0.772946i \(-0.281218\pi\)
−0.772946 + 0.634472i \(0.781218\pi\)
\(74\) 387.936 387.936i 0.609414 0.609414i
\(75\) 0 0
\(76\) 62.6901i 0.0946190i
\(77\) 875.471i 1.29570i
\(78\) 0 0
\(79\) −464.263 + 464.263i −0.661186 + 0.661186i −0.955660 0.294474i \(-0.904856\pi\)
0.294474 + 0.955660i \(0.404856\pi\)
\(80\) −207.187 207.187i −0.289553 0.289553i
\(81\) 0 0
\(82\) −343.057 343.057i −0.462004 0.462004i
\(83\) 1243.94i 1.64506i 0.568721 + 0.822530i \(0.307438\pi\)
−0.568721 + 0.822530i \(0.692562\pi\)
\(84\) 0 0
\(85\) 662.055 1099.69i 0.844823 1.40328i
\(86\) −771.231 −0.967023
\(87\) 0 0
\(88\) 202.024 + 202.024i 0.244725 + 0.244725i
\(89\) −1498.50 −1.78472 −0.892362 0.451320i \(-0.850953\pi\)
−0.892362 + 0.451320i \(0.850953\pi\)
\(90\) 0 0
\(91\) −232.534 + 232.534i −0.267870 + 0.267870i
\(92\) 401.503 401.503i 0.454996 0.454996i
\(93\) 0 0
\(94\) 1066.02i 1.16970i
\(95\) 202.947 202.947i 0.219178 0.219178i
\(96\) 0 0
\(97\) 90.0409 + 90.0409i 0.0942502 + 0.0942502i 0.752660 0.658410i \(-0.228771\pi\)
−0.658410 + 0.752660i \(0.728771\pi\)
\(98\) 515.871 0.531744
\(99\) 0 0
\(100\) 841.456i 0.841456i
\(101\) 1152.65 1.13557 0.567785 0.823177i \(-0.307800\pi\)
0.567785 + 0.823177i \(0.307800\pi\)
\(102\) 0 0
\(103\) 128.042 0.122489 0.0612445 0.998123i \(-0.480493\pi\)
0.0612445 + 0.998123i \(0.480493\pi\)
\(104\) 107.319i 0.101187i
\(105\) 0 0
\(106\) 807.603 0.740013
\(107\) −1170.71 1170.71i −1.05773 1.05773i −0.998228 0.0594973i \(-0.981050\pi\)
−0.0594973 0.998228i \(-0.518950\pi\)
\(108\) 0 0
\(109\) −1181.52 + 1181.52i −1.03825 + 1.03825i −0.0390141 + 0.999239i \(0.512422\pi\)
−0.999239 + 0.0390141i \(0.987578\pi\)
\(110\) 1308.02i 1.13378i
\(111\) 0 0
\(112\) 277.344 277.344i 0.233987 0.233987i
\(113\) 127.056 127.056i 0.105773 0.105773i −0.652240 0.758013i \(-0.726170\pi\)
0.758013 + 0.652240i \(0.226170\pi\)
\(114\) 0 0
\(115\) 2599.58 2.10793
\(116\) 378.334 + 378.334i 0.302822 + 0.302822i
\(117\) 0 0
\(118\) 533.735 0.416392
\(119\) 1472.07 + 886.237i 1.13398 + 0.682700i
\(120\) 0 0
\(121\) 55.5736i 0.0417533i
\(122\) −968.194 968.194i −0.718493 0.718493i
\(123\) 0 0
\(124\) −535.421 535.421i −0.387760 0.387760i
\(125\) 1105.40 1105.40i 0.790957 0.790957i
\(126\) 0 0
\(127\) 1988.60i 1.38945i −0.719277 0.694723i \(-0.755527\pi\)
0.719277 0.694723i \(-0.244473\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) −347.424 + 347.424i −0.234393 + 0.234393i
\(131\) −694.086 694.086i −0.462920 0.462920i 0.436691 0.899611i \(-0.356150\pi\)
−0.899611 + 0.436691i \(0.856150\pi\)
\(132\) 0 0
\(133\) 271.667 + 271.667i 0.177117 + 0.177117i
\(134\) 882.532i 0.568949i
\(135\) 0 0
\(136\) 544.203 135.186i 0.343125 0.0852361i
\(137\) 2788.01 1.73866 0.869328 0.494236i \(-0.164552\pi\)
0.869328 + 0.494236i \(0.164552\pi\)
\(138\) 0 0
\(139\) −118.311 118.311i −0.0721944 0.0721944i 0.670088 0.742282i \(-0.266257\pi\)
−0.742282 + 0.670088i \(0.766257\pi\)
\(140\) 1795.69 1.08403
\(141\) 0 0
\(142\) −607.677 + 607.677i −0.359121 + 0.359121i
\(143\) 338.766 338.766i 0.198105 0.198105i
\(144\) 0 0
\(145\) 2449.56i 1.40293i
\(146\) 172.737 172.737i 0.0979163 0.0979163i
\(147\) 0 0
\(148\) 775.872 + 775.872i 0.430921 + 0.430921i
\(149\) 2926.77 1.60920 0.804598 0.593820i \(-0.202381\pi\)
0.804598 + 0.593820i \(0.202381\pi\)
\(150\) 0 0
\(151\) 2142.40i 1.15461i 0.816528 + 0.577306i \(0.195896\pi\)
−0.816528 + 0.577306i \(0.804104\pi\)
\(152\) 125.380 0.0669057
\(153\) 0 0
\(154\) −1750.94 −0.916201
\(155\) 3466.64i 1.79643i
\(156\) 0 0
\(157\) 1329.27 0.675714 0.337857 0.941197i \(-0.390298\pi\)
0.337857 + 0.941197i \(0.390298\pi\)
\(158\) −928.526 928.526i −0.467529 0.467529i
\(159\) 0 0
\(160\) 414.375 414.375i 0.204745 0.204745i
\(161\) 3479.83i 1.70341i
\(162\) 0 0
\(163\) 1846.81 1846.81i 0.887442 0.887442i −0.106834 0.994277i \(-0.534071\pi\)
0.994277 + 0.106834i \(0.0340715\pi\)
\(164\) 686.114 686.114i 0.326686 0.326686i
\(165\) 0 0
\(166\) −2487.88 −1.16323
\(167\) −884.150 884.150i −0.409686 0.409686i 0.471943 0.881629i \(-0.343553\pi\)
−0.881629 + 0.471943i \(0.843553\pi\)
\(168\) 0 0
\(169\) −2017.04 −0.918089
\(170\) 2199.39 + 1324.11i 0.992266 + 0.597380i
\(171\) 0 0
\(172\) 1542.46i 0.683789i
\(173\) −2434.54 2434.54i −1.06991 1.06991i −0.997365 0.0725474i \(-0.976887\pi\)
−0.0725474 0.997365i \(-0.523113\pi\)
\(174\) 0 0
\(175\) 3646.45 + 3646.45i 1.57512 + 1.57512i
\(176\) −404.048 + 404.048i −0.173047 + 0.173047i
\(177\) 0 0
\(178\) 2997.00i 1.26199i
\(179\) 1640.52i 0.685019i 0.939514 + 0.342509i \(0.111277\pi\)
−0.939514 + 0.342509i \(0.888723\pi\)
\(180\) 0 0
\(181\) 185.058 185.058i 0.0759958 0.0759958i −0.668087 0.744083i \(-0.732887\pi\)
0.744083 + 0.668087i \(0.232887\pi\)
\(182\) −465.067 465.067i −0.189413 0.189413i
\(183\) 0 0
\(184\) 803.007 + 803.007i 0.321731 + 0.321731i
\(185\) 5023.46i 1.99639i
\(186\) 0 0
\(187\) −2144.57 1291.11i −0.838646 0.504895i
\(188\) −2132.04 −0.827099
\(189\) 0 0
\(190\) 405.893 + 405.893i 0.154982 + 0.154982i
\(191\) −2598.60 −0.984439 −0.492219 0.870471i \(-0.663814\pi\)
−0.492219 + 0.870471i \(0.663814\pi\)
\(192\) 0 0
\(193\) −2925.77 + 2925.77i −1.09120 + 1.09120i −0.0957997 + 0.995401i \(0.530541\pi\)
−0.995401 + 0.0957997i \(0.969459\pi\)
\(194\) −180.082 + 180.082i −0.0666449 + 0.0666449i
\(195\) 0 0
\(196\) 1031.74i 0.376000i
\(197\) 897.733 897.733i 0.324674 0.324674i −0.525883 0.850557i \(-0.676265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(198\) 0 0
\(199\) −3823.88 3823.88i −1.36215 1.36215i −0.871174 0.490975i \(-0.836641\pi\)
−0.490975 0.871174i \(-0.663359\pi\)
\(200\) 1682.91 0.594999
\(201\) 0 0
\(202\) 2305.29i 0.802970i
\(203\) −3279.02 −1.13370
\(204\) 0 0
\(205\) 4442.31 1.51349
\(206\) 256.084i 0.0866128i
\(207\) 0 0
\(208\) −214.638 −0.0715503
\(209\) −395.778 395.778i −0.130988 0.130988i
\(210\) 0 0
\(211\) 2349.49 2349.49i 0.766567 0.766567i −0.210933 0.977501i \(-0.567650\pi\)
0.977501 + 0.210933i \(0.0676502\pi\)
\(212\) 1615.21i 0.523268i
\(213\) 0 0
\(214\) 2341.42 2341.42i 0.747925 0.747925i
\(215\) 4993.42 4993.42i 1.58395 1.58395i
\(216\) 0 0
\(217\) 4640.49 1.45169
\(218\) −2363.05 2363.05i −0.734156 0.734156i
\(219\) 0 0
\(220\) −2616.05 −0.801700
\(221\) −226.688 912.552i −0.0689986 0.277760i
\(222\) 0 0
\(223\) 2244.32i 0.673951i −0.941513 0.336975i \(-0.890596\pi\)
0.941513 0.336975i \(-0.109404\pi\)
\(224\) 554.688 + 554.688i 0.165454 + 0.165454i
\(225\) 0 0
\(226\) 254.111 + 254.111i 0.0747930 + 0.0747930i
\(227\) −2441.46 + 2441.46i −0.713856 + 0.713856i −0.967340 0.253484i \(-0.918423\pi\)
0.253484 + 0.967340i \(0.418423\pi\)
\(228\) 0 0
\(229\) 2682.67i 0.774130i −0.922052 0.387065i \(-0.873489\pi\)
0.922052 0.387065i \(-0.126511\pi\)
\(230\) 5199.15i 1.49053i
\(231\) 0 0
\(232\) −756.667 + 756.667i −0.214128 + 0.214128i
\(233\) 1116.03 + 1116.03i 0.313791 + 0.313791i 0.846376 0.532585i \(-0.178780\pi\)
−0.532585 + 0.846376i \(0.678780\pi\)
\(234\) 0 0
\(235\) −6902.04 6902.04i −1.91591 1.91591i
\(236\) 1067.47i 0.294434i
\(237\) 0 0
\(238\) −1772.47 + 2944.13i −0.482742 + 0.801848i
\(239\) −5016.20 −1.35762 −0.678810 0.734314i \(-0.737504\pi\)
−0.678810 + 0.734314i \(0.737504\pi\)
\(240\) 0 0
\(241\) −1150.94 1150.94i −0.307629 0.307629i 0.536360 0.843989i \(-0.319799\pi\)
−0.843989 + 0.536360i \(0.819799\pi\)
\(242\) −111.147 −0.0295240
\(243\) 0 0
\(244\) 1936.39 1936.39i 0.508051 0.508051i
\(245\) −3340.06 + 3340.06i −0.870975 + 0.870975i
\(246\) 0 0
\(247\) 210.245i 0.0541602i
\(248\) 1070.84 1070.84i 0.274188 0.274188i
\(249\) 0 0
\(250\) 2210.79 + 2210.79i 0.559291 + 0.559291i
\(251\) −296.264 −0.0745021 −0.0372510 0.999306i \(-0.511860\pi\)
−0.0372510 + 0.999306i \(0.511860\pi\)
\(252\) 0 0
\(253\) 5069.58i 1.25977i
\(254\) 3977.20 0.982487
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2885.16i 0.700278i 0.936698 + 0.350139i \(0.113866\pi\)
−0.936698 + 0.350139i \(0.886134\pi\)
\(258\) 0 0
\(259\) −6724.49 −1.61328
\(260\) −694.848 694.848i −0.165741 0.165741i
\(261\) 0 0
\(262\) 1388.17 1388.17i 0.327334 0.327334i
\(263\) 2958.63i 0.693677i −0.937925 0.346839i \(-0.887255\pi\)
0.937925 0.346839i \(-0.112745\pi\)
\(264\) 0 0
\(265\) −5228.91 + 5228.91i −1.21211 + 1.21211i
\(266\) −543.335 + 543.335i −0.125241 + 0.125241i
\(267\) 0 0
\(268\) 1765.06 0.402308
\(269\) −1852.83 1852.83i −0.419958 0.419958i 0.465231 0.885189i \(-0.345971\pi\)
−0.885189 + 0.465231i \(0.845971\pi\)
\(270\) 0 0
\(271\) −2252.27 −0.504856 −0.252428 0.967616i \(-0.581229\pi\)
−0.252428 + 0.967616i \(0.581229\pi\)
\(272\) 270.372 + 1088.41i 0.0602710 + 0.242626i
\(273\) 0 0
\(274\) 5576.02i 1.22942i
\(275\) −5312.32 5312.32i −1.16489 1.16489i
\(276\) 0 0
\(277\) 3241.37 + 3241.37i 0.703087 + 0.703087i 0.965072 0.261985i \(-0.0843771\pi\)
−0.261985 + 0.965072i \(0.584377\pi\)
\(278\) 236.622 236.622i 0.0510492 0.0510492i
\(279\) 0 0
\(280\) 3591.39i 0.766523i
\(281\) 5686.53i 1.20722i −0.797278 0.603612i \(-0.793728\pi\)
0.797278 0.603612i \(-0.206272\pi\)
\(282\) 0 0
\(283\) −389.733 + 389.733i −0.0818629 + 0.0818629i −0.746853 0.664990i \(-0.768436\pi\)
0.664990 + 0.746853i \(0.268436\pi\)
\(284\) −1215.35 1215.35i −0.253937 0.253937i
\(285\) 0 0
\(286\) 677.531 + 677.531i 0.140081 + 0.140081i
\(287\) 5946.55i 1.22304i
\(288\) 0 0
\(289\) −4341.90 + 2299.02i −0.883757 + 0.467946i
\(290\) −4899.12 −0.992021
\(291\) 0 0
\(292\) 345.473 + 345.473i 0.0692373 + 0.0692373i
\(293\) −5505.48 −1.09772 −0.548862 0.835913i \(-0.684939\pi\)
−0.548862 + 0.835913i \(0.684939\pi\)
\(294\) 0 0
\(295\) −3455.72 + 3455.72i −0.682034 + 0.682034i
\(296\) −1551.74 + 1551.74i −0.304707 + 0.304707i
\(297\) 0 0
\(298\) 5853.54i 1.13787i
\(299\) 1346.53 1346.53i 0.260441 0.260441i
\(300\) 0 0
\(301\) 6684.27 + 6684.27i 1.27998 + 1.27998i
\(302\) −4284.81 −0.816433
\(303\) 0 0
\(304\) 250.760i 0.0473095i
\(305\) 12537.3 2.35373
\(306\) 0 0
\(307\) −3279.39 −0.609657 −0.304829 0.952407i \(-0.598599\pi\)
−0.304829 + 0.952407i \(0.598599\pi\)
\(308\) 3501.88i 0.647852i
\(309\) 0 0
\(310\) 6933.28 1.27027
\(311\) 6043.27 + 6043.27i 1.10187 + 1.10187i 0.994185 + 0.107687i \(0.0343445\pi\)
0.107687 + 0.994185i \(0.465656\pi\)
\(312\) 0 0
\(313\) −1413.61 + 1413.61i −0.255277 + 0.255277i −0.823130 0.567853i \(-0.807774\pi\)
0.567853 + 0.823130i \(0.307774\pi\)
\(314\) 2658.54i 0.477802i
\(315\) 0 0
\(316\) 1857.05 1857.05i 0.330593 0.330593i
\(317\) −3348.70 + 3348.70i −0.593317 + 0.593317i −0.938526 0.345209i \(-0.887808\pi\)
0.345209 + 0.938526i \(0.387808\pi\)
\(318\) 0 0
\(319\) 4777.03 0.838439
\(320\) 828.749 + 828.749i 0.144777 + 0.144777i
\(321\) 0 0
\(322\) −6959.66 −1.20449
\(323\) −1066.13 + 264.838i −0.183656 + 0.0456223i
\(324\) 0 0
\(325\) 2822.01i 0.481652i
\(326\) 3693.61 + 3693.61i 0.627517 + 0.627517i
\(327\) 0 0
\(328\) 1372.23 + 1372.23i 0.231002 + 0.231002i
\(329\) 9239.18 9239.18i 1.54824 1.54824i
\(330\) 0 0
\(331\) 3878.09i 0.643985i 0.946742 + 0.321993i \(0.104353\pi\)
−0.946742 + 0.321993i \(0.895647\pi\)
\(332\) 4975.76i 0.822530i
\(333\) 0 0
\(334\) 1768.30 1768.30i 0.289692 0.289692i
\(335\) 5714.04 + 5714.04i 0.931915 + 0.931915i
\(336\) 0 0
\(337\) −1904.95 1904.95i −0.307921 0.307921i 0.536182 0.844103i \(-0.319866\pi\)
−0.844103 + 0.536182i \(0.819866\pi\)
\(338\) 4034.08i 0.649187i
\(339\) 0 0
\(340\) −2648.22 + 4398.77i −0.422412 + 0.701638i
\(341\) −6760.49 −1.07361
\(342\) 0 0
\(343\) 1474.51 + 1474.51i 0.232116 + 0.232116i
\(344\) 3084.93 0.483512
\(345\) 0 0
\(346\) 4869.08 4869.08i 0.756542 0.756542i
\(347\) −5068.32 + 5068.32i −0.784098 + 0.784098i −0.980519 0.196422i \(-0.937068\pi\)
0.196422 + 0.980519i \(0.437068\pi\)
\(348\) 0 0
\(349\) 1517.31i 0.232722i −0.993207 0.116361i \(-0.962877\pi\)
0.993207 0.116361i \(-0.0371230\pi\)
\(350\) −7292.90 + 7292.90i −1.11378 + 1.11378i
\(351\) 0 0
\(352\) −808.095 808.095i −0.122363 0.122363i
\(353\) −4647.31 −0.700711 −0.350356 0.936617i \(-0.613939\pi\)
−0.350356 + 0.936617i \(0.613939\pi\)
\(354\) 0 0
\(355\) 7868.94i 1.17645i
\(356\) 5993.99 0.892362
\(357\) 0 0
\(358\) −3281.04 −0.484381
\(359\) 2365.09i 0.347702i −0.984772 0.173851i \(-0.944379\pi\)
0.984772 0.173851i \(-0.0556210\pi\)
\(360\) 0 0
\(361\) 6613.37 0.964189
\(362\) 370.116 + 370.116i 0.0537372 + 0.0537372i
\(363\) 0 0
\(364\) 930.134 930.134i 0.133935 0.133935i
\(365\) 2236.80i 0.320766i
\(366\) 0 0
\(367\) −0.150296 + 0.150296i −2.13771e−5 + 2.13771e-5i −0.707117 0.707096i \(-0.750005\pi\)
0.707096 + 0.707117i \(0.250005\pi\)
\(368\) −1606.01 + 1606.01i −0.227498 + 0.227498i
\(369\) 0 0
\(370\) −10046.9 −1.41166
\(371\) −6999.50 6999.50i −0.979504 0.979504i
\(372\) 0 0
\(373\) 8478.48 1.17694 0.588471 0.808519i \(-0.299730\pi\)
0.588471 + 0.808519i \(0.299730\pi\)
\(374\) 2582.22 4289.15i 0.357015 0.593012i
\(375\) 0 0
\(376\) 4264.07i 0.584848i
\(377\) 1268.82 + 1268.82i 0.173336 + 0.173336i
\(378\) 0 0
\(379\) −4121.44 4121.44i −0.558586 0.558586i 0.370319 0.928905i \(-0.379248\pi\)
−0.928905 + 0.370319i \(0.879248\pi\)
\(380\) −811.787 + 811.787i −0.109589 + 0.109589i
\(381\) 0 0
\(382\) 5197.19i 0.696103i
\(383\) 1561.85i 0.208373i 0.994558 + 0.104187i \(0.0332240\pi\)
−0.994558 + 0.104187i \(0.966776\pi\)
\(384\) 0 0
\(385\) 11336.7 11336.7i 1.50070 1.50070i
\(386\) −5851.54 5851.54i −0.771595 0.771595i
\(387\) 0 0
\(388\) −360.164 360.164i −0.0471251 0.0471251i
\(389\) 7043.78i 0.918081i 0.888415 + 0.459041i \(0.151807\pi\)
−0.888415 + 0.459041i \(0.848193\pi\)
\(390\) 0 0
\(391\) −8524.28 5131.93i −1.10254 0.663766i
\(392\) −2063.49 −0.265872
\(393\) 0 0
\(394\) 1795.47 + 1795.47i 0.229579 + 0.229579i
\(395\) 12023.7 1.53159
\(396\) 0 0
\(397\) −8311.58 + 8311.58i −1.05075 + 1.05075i −0.0521045 + 0.998642i \(0.516593\pi\)
−0.998642 + 0.0521045i \(0.983407\pi\)
\(398\) 7647.76 7647.76i 0.963185 0.963185i
\(399\) 0 0
\(400\) 3365.82i 0.420728i
\(401\) −191.110 + 191.110i −0.0237995 + 0.0237995i −0.718906 0.695107i \(-0.755357\pi\)
0.695107 + 0.718906i \(0.255357\pi\)
\(402\) 0 0
\(403\) −1795.65 1795.65i −0.221955 0.221955i
\(404\) −4610.59 −0.567785
\(405\) 0 0
\(406\) 6558.04i 0.801650i
\(407\) 9796.54 1.19311
\(408\) 0 0
\(409\) −10961.4 −1.32520 −0.662598 0.748975i \(-0.730546\pi\)
−0.662598 + 0.748975i \(0.730546\pi\)
\(410\) 8884.63i 1.07020i
\(411\) 0 0
\(412\) −512.168 −0.0612445
\(413\) −4625.88 4625.88i −0.551150 0.551150i
\(414\) 0 0
\(415\) 16108.0 16108.0i 1.90533 1.90533i
\(416\) 429.276i 0.0505937i
\(417\) 0 0
\(418\) 791.555 791.555i 0.0926226 0.0926226i
\(419\) 8128.39 8128.39i 0.947727 0.947727i −0.0509730 0.998700i \(-0.516232\pi\)
0.998700 + 0.0509730i \(0.0162322\pi\)
\(420\) 0 0
\(421\) 11175.3 1.29371 0.646854 0.762614i \(-0.276084\pi\)
0.646854 + 0.762614i \(0.276084\pi\)
\(422\) 4698.99 + 4698.99i 0.542045 + 0.542045i
\(423\) 0 0
\(424\) −3230.41 −0.370006
\(425\) −14310.1 + 3554.79i −1.63327 + 0.405723i
\(426\) 0 0
\(427\) 16782.7i 1.90204i
\(428\) 4682.83 + 4682.83i 0.528863 + 0.528863i
\(429\) 0 0
\(430\) 9986.84 + 9986.84i 1.12002 + 1.12002i
\(431\) 8830.33 8830.33i 0.986873 0.986873i −0.0130424 0.999915i \(-0.504152\pi\)
0.999915 + 0.0130424i \(0.00415165\pi\)
\(432\) 0 0
\(433\) 2035.22i 0.225881i −0.993602 0.112940i \(-0.963973\pi\)
0.993602 0.112940i \(-0.0360269\pi\)
\(434\) 9280.99i 1.02650i
\(435\) 0 0
\(436\) 4726.10 4726.10i 0.519126 0.519126i
\(437\) −1573.14 1573.14i −0.172205 0.172205i
\(438\) 0 0
\(439\) −6948.56 6948.56i −0.755437 0.755437i 0.220051 0.975488i \(-0.429378\pi\)
−0.975488 + 0.220051i \(0.929378\pi\)
\(440\) 5232.10i 0.566888i
\(441\) 0 0
\(442\) 1825.10 453.376i 0.196406 0.0487894i
\(443\) 1404.92 0.150677 0.0753385 0.997158i \(-0.475996\pi\)
0.0753385 + 0.997158i \(0.475996\pi\)
\(444\) 0 0
\(445\) 19404.4 + 19404.4i 2.06709 + 2.06709i
\(446\) 4488.65 0.476555
\(447\) 0 0
\(448\) −1109.38 + 1109.38i −0.116994 + 0.116994i
\(449\) −4441.50 + 4441.50i −0.466831 + 0.466831i −0.900886 0.434055i \(-0.857082\pi\)
0.434055 + 0.900886i \(0.357082\pi\)
\(450\) 0 0
\(451\) 8663.21i 0.904511i
\(452\) −508.222 + 508.222i −0.0528867 + 0.0528867i
\(453\) 0 0
\(454\) −4882.91 4882.91i −0.504772 0.504772i
\(455\) 6022.25 0.620500
\(456\) 0 0
\(457\) 16304.1i 1.66887i 0.551106 + 0.834435i \(0.314206\pi\)
−0.551106 + 0.834435i \(0.685794\pi\)
\(458\) 5365.34 0.547393
\(459\) 0 0
\(460\) −10398.3 −1.05396
\(461\) 80.0065i 0.00808302i −0.999992 0.00404151i \(-0.998714\pi\)
0.999992 0.00404151i \(-0.00128646\pi\)
\(462\) 0 0
\(463\) 2619.71 0.262955 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(464\) −1513.33 1513.33i −0.151411 0.151411i
\(465\) 0 0
\(466\) −2232.05 + 2232.05i −0.221884 + 0.221884i
\(467\) 1360.07i 0.134768i −0.997727 0.0673839i \(-0.978535\pi\)
0.997727 0.0673839i \(-0.0214652\pi\)
\(468\) 0 0
\(469\) −7648.91 + 7648.91i −0.753078 + 0.753078i
\(470\) 13804.1 13804.1i 1.35476 1.35476i
\(471\) 0 0
\(472\) −2134.94 −0.208196
\(473\) −9737.95 9737.95i −0.946620 0.946620i
\(474\) 0 0
\(475\) −3296.93 −0.318471
\(476\) −5888.27 3544.95i −0.566992 0.341350i
\(477\) 0 0
\(478\) 10032.4i 0.959983i
\(479\) 6950.26 + 6950.26i 0.662976 + 0.662976i 0.956080 0.293105i \(-0.0946884\pi\)
−0.293105 + 0.956080i \(0.594688\pi\)
\(480\) 0 0
\(481\) 2602.06 + 2602.06i 0.246660 + 0.246660i
\(482\) 2301.88 2301.88i 0.217527 0.217527i
\(483\) 0 0
\(484\) 222.294i 0.0208766i
\(485\) 2331.92i 0.218323i
\(486\) 0 0
\(487\) 5165.25 5165.25i 0.480616 0.480616i −0.424712 0.905328i \(-0.639625\pi\)
0.905328 + 0.424712i \(0.139625\pi\)
\(488\) 3872.78 + 3872.78i 0.359247 + 0.359247i
\(489\) 0 0
\(490\) −6680.13 6680.13i −0.615872 0.615872i
\(491\) 18687.3i 1.71761i −0.512305 0.858803i \(-0.671208\pi\)
0.512305 0.858803i \(-0.328792\pi\)
\(492\) 0 0
\(493\) 4835.77 8032.36i 0.441769 0.733792i
\(494\) 420.490 0.0382970
\(495\) 0 0
\(496\) 2141.68 + 2141.68i 0.193880 + 0.193880i
\(497\) 10533.5 0.950686
\(498\) 0 0
\(499\) 5768.60 5768.60i 0.517511 0.517511i −0.399307 0.916817i \(-0.630749\pi\)
0.916817 + 0.399307i \(0.130749\pi\)
\(500\) −4421.59 + 4421.59i −0.395479 + 0.395479i
\(501\) 0 0
\(502\) 592.528i 0.0526809i
\(503\) −3807.34 + 3807.34i −0.337497 + 0.337497i −0.855424 0.517928i \(-0.826704\pi\)
0.517928 + 0.855424i \(0.326704\pi\)
\(504\) 0 0
\(505\) −14925.9 14925.9i −1.31523 1.31523i
\(506\) 10139.2 0.890792
\(507\) 0 0
\(508\) 7954.40i 0.694723i
\(509\) −12438.1 −1.08313 −0.541563 0.840660i \(-0.682167\pi\)
−0.541563 + 0.840660i \(0.682167\pi\)
\(510\) 0 0
\(511\) −2994.22 −0.259210
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −5770.33 −0.495172
\(515\) −1658.04 1658.04i −0.141868 0.141868i
\(516\) 0 0
\(517\) −13460.1 + 13460.1i −1.14502 + 1.14502i
\(518\) 13449.0i 1.14076i
\(519\) 0 0
\(520\) 1389.70 1389.70i 0.117197 0.117197i
\(521\) 1409.93 1409.93i 0.118561 0.118561i −0.645337 0.763898i \(-0.723283\pi\)
0.763898 + 0.645337i \(0.223283\pi\)
\(522\) 0 0
\(523\) −171.269 −0.0143194 −0.00715970 0.999974i \(-0.502279\pi\)
−0.00715970 + 0.999974i \(0.502279\pi\)
\(524\) 2776.34 + 2776.34i 0.231460 + 0.231460i
\(525\) 0 0
\(526\) 5917.27 0.490504
\(527\) −6843.63 + 11367.5i −0.565680 + 0.939610i
\(528\) 0 0
\(529\) 7983.63i 0.656171i
\(530\) −10457.8 10457.8i −0.857092 0.857092i
\(531\) 0 0
\(532\) −1086.67 1086.67i −0.0885585 0.0885585i
\(533\) 2301.03 2301.03i 0.186996 0.186996i
\(534\) 0 0
\(535\) 30319.5i 2.45014i
\(536\) 3530.13i 0.284474i
\(537\) 0 0
\(538\) 3705.65 3705.65i 0.296955 0.296955i
\(539\) 6513.65 + 6513.65i 0.520524 + 0.520524i
\(540\) 0 0
\(541\) 11243.1 + 11243.1i 0.893492 + 0.893492i 0.994850 0.101358i \(-0.0323187\pi\)
−0.101358 + 0.994850i \(0.532319\pi\)
\(542\) 4504.55i 0.356987i
\(543\) 0 0
\(544\) −2176.81 + 540.744i −0.171563 + 0.0426181i
\(545\) 30599.6 2.40503
\(546\) 0 0
\(547\) −598.801 598.801i −0.0468060 0.0468060i 0.683316 0.730122i \(-0.260537\pi\)
−0.730122 + 0.683316i \(0.760537\pi\)
\(548\) −11152.0 −0.869328
\(549\) 0 0
\(550\) 10624.6 10624.6i 0.823702 0.823702i
\(551\) 1482.36 1482.36i 0.114611 0.114611i
\(552\) 0 0
\(553\) 16095.1i 1.23767i
\(554\) −6482.74 + 6482.74i −0.497158 + 0.497158i
\(555\) 0 0
\(556\) 473.245 + 473.245i 0.0360972 + 0.0360972i
\(557\) −7243.67 −0.551031 −0.275515 0.961297i \(-0.588848\pi\)
−0.275515 + 0.961297i \(0.588848\pi\)
\(558\) 0 0
\(559\) 5172.99i 0.391403i
\(560\) −7182.77 −0.542014
\(561\) 0 0
\(562\) 11373.1 0.853636
\(563\) 4072.87i 0.304887i 0.988312 + 0.152443i \(0.0487142\pi\)
−0.988312 + 0.152443i \(0.951286\pi\)
\(564\) 0 0
\(565\) −3290.54 −0.245016
\(566\) −779.466 779.466i −0.0578858 0.0578858i
\(567\) 0 0
\(568\) 2430.71 2430.71i 0.179560 0.179560i
\(569\) 17415.3i 1.28311i 0.767079 + 0.641553i \(0.221709\pi\)
−0.767079 + 0.641553i \(0.778291\pi\)
\(570\) 0 0
\(571\) −3510.31 + 3510.31i −0.257271 + 0.257271i −0.823943 0.566672i \(-0.808231\pi\)
0.566672 + 0.823943i \(0.308231\pi\)
\(572\) −1355.06 + 1355.06i −0.0990525 + 0.0990525i
\(573\) 0 0
\(574\) −11893.1 −0.864823
\(575\) −21115.5 21115.5i −1.53144 1.53144i
\(576\) 0 0
\(577\) 2943.90 0.212402 0.106201 0.994345i \(-0.466131\pi\)
0.106201 + 0.994345i \(0.466131\pi\)
\(578\) −4598.04 8683.79i −0.330888 0.624910i
\(579\) 0 0
\(580\) 9798.24i 0.701465i
\(581\) 21562.4 + 21562.4i 1.53969 + 1.53969i
\(582\) 0 0
\(583\) 10197.2 + 10197.2i 0.724399 + 0.724399i
\(584\) −690.946 + 690.946i −0.0489581 + 0.0489581i
\(585\) 0 0
\(586\) 11011.0i 0.776209i
\(587\) 3580.59i 0.251767i 0.992045 + 0.125883i \(0.0401765\pi\)
−0.992045 + 0.125883i \(0.959824\pi\)
\(588\) 0 0
\(589\) −2097.85 + 2097.85i −0.146758 + 0.146758i
\(590\) −6911.45 6911.45i −0.482271 0.482271i
\(591\) 0 0
\(592\) −3103.49 3103.49i −0.215460 0.215460i
\(593\) 23081.4i 1.59838i 0.601077 + 0.799191i \(0.294738\pi\)
−0.601077 + 0.799191i \(0.705262\pi\)
\(594\) 0 0
\(595\) −7586.03 30538.2i −0.522684 2.10411i
\(596\) −11707.1 −0.804598
\(597\) 0 0
\(598\) 2693.06 + 2693.06i 0.184160 + 0.184160i
\(599\) 3524.31 0.240400 0.120200 0.992750i \(-0.461646\pi\)
0.120200 + 0.992750i \(0.461646\pi\)
\(600\) 0 0
\(601\) 9933.96 9933.96i 0.674234 0.674234i −0.284455 0.958689i \(-0.591813\pi\)
0.958689 + 0.284455i \(0.0918126\pi\)
\(602\) −13368.5 + 13368.5i −0.905084 + 0.905084i
\(603\) 0 0
\(604\) 8569.61i 0.577306i
\(605\) 719.634 719.634i 0.0483591 0.0483591i
\(606\) 0 0
\(607\) 6396.01 + 6396.01i 0.427687 + 0.427687i 0.887840 0.460153i \(-0.152205\pi\)
−0.460153 + 0.887840i \(0.652205\pi\)
\(608\) −501.520 −0.0334529
\(609\) 0 0
\(610\) 25074.7i 1.66434i
\(611\) −7150.25 −0.473434
\(612\) 0 0
\(613\) −17364.1 −1.14409 −0.572047 0.820221i \(-0.693851\pi\)
−0.572047 + 0.820221i \(0.693851\pi\)
\(614\) 6558.78i 0.431093i
\(615\) 0 0
\(616\) 7003.77 0.458100
\(617\) 16029.9 + 16029.9i 1.04593 + 1.04593i 0.998893 + 0.0470409i \(0.0149791\pi\)
0.0470409 + 0.998893i \(0.485021\pi\)
\(618\) 0 0
\(619\) −664.009 + 664.009i −0.0431160 + 0.0431160i −0.728336 0.685220i \(-0.759706\pi\)
0.685220 + 0.728336i \(0.259706\pi\)
\(620\) 13866.6i 0.898216i
\(621\) 0 0
\(622\) −12086.5 + 12086.5i −0.779141 + 0.779141i
\(623\) −25975.0 + 25975.0i −1.67041 + 1.67041i
\(624\) 0 0
\(625\) −2332.51 −0.149281
\(626\) −2827.22 2827.22i −0.180508 0.180508i
\(627\) 0 0
\(628\) −5317.07 −0.337857
\(629\) 9917.02 16472.5i 0.628645 1.04420i
\(630\) 0 0
\(631\) 10145.6i 0.640079i 0.947404 + 0.320040i \(0.103696\pi\)
−0.947404 + 0.320040i \(0.896304\pi\)
\(632\) 3714.10 + 3714.10i 0.233764 + 0.233764i
\(633\) 0 0
\(634\) −6697.40 6697.40i −0.419539 0.419539i
\(635\) −25750.8 + 25750.8i −1.60927 + 1.60927i
\(636\) 0 0
\(637\) 3460.18i 0.215223i
\(638\) 9554.05i 0.592866i
\(639\) 0 0
\(640\) −1657.50 + 1657.50i −0.102372 + 0.102372i
\(641\) −2416.01 2416.01i −0.148871 0.148871i 0.628742 0.777614i \(-0.283570\pi\)
−0.777614 + 0.628742i \(0.783570\pi\)
\(642\) 0 0
\(643\) −11621.0 11621.0i −0.712736 0.712736i 0.254371 0.967107i \(-0.418132\pi\)
−0.967107 + 0.254371i \(0.918132\pi\)
\(644\) 13919.3i 0.851706i
\(645\) 0 0
\(646\) −529.676 2132.26i −0.0322598 0.129865i
\(647\) −9019.31 −0.548046 −0.274023 0.961723i \(-0.588354\pi\)
−0.274023 + 0.961723i \(0.588354\pi\)
\(648\) 0 0
\(649\) 6739.20 + 6739.20i 0.407607 + 0.407607i
\(650\) 5644.01 0.340579
\(651\) 0 0
\(652\) −7387.23 + 7387.23i −0.443721 + 0.443721i
\(653\) 9946.84 9946.84i 0.596095 0.596095i −0.343176 0.939271i \(-0.611503\pi\)
0.939271 + 0.343176i \(0.111503\pi\)
\(654\) 0 0
\(655\) 17975.7i 1.07232i
\(656\) −2744.45 + 2744.45i −0.163343 + 0.163343i
\(657\) 0 0
\(658\) 18478.4 + 18478.4i 1.09477 + 1.09477i
\(659\) −18759.1 −1.10888 −0.554438 0.832225i \(-0.687067\pi\)
−0.554438 + 0.832225i \(0.687067\pi\)
\(660\) 0 0
\(661\) 22941.6i 1.34996i 0.737836 + 0.674980i \(0.235848\pi\)
−0.737836 + 0.674980i \(0.764152\pi\)
\(662\) −7756.18 −0.455366
\(663\) 0 0
\(664\) 9951.51 0.581617
\(665\) 7035.76i 0.410278i
\(666\) 0 0
\(667\) 18987.8 1.10226
\(668\) 3536.60 + 3536.60i 0.204843 + 0.204843i
\(669\) 0 0
\(670\) −11428.1 + 11428.1i −0.658964 + 0.658964i
\(671\) 24449.8i 1.40667i
\(672\) 0 0
\(673\) 7783.39 7783.39i 0.445807 0.445807i −0.448151 0.893958i \(-0.647917\pi\)
0.893958 + 0.448151i \(0.147917\pi\)
\(674\) 3809.90 3809.90i 0.217733 0.217733i
\(675\) 0 0
\(676\) 8068.16 0.459044
\(677\) −6957.54 6957.54i −0.394978 0.394978i 0.481480 0.876457i \(-0.340100\pi\)
−0.876457 + 0.481480i \(0.840100\pi\)
\(678\) 0 0
\(679\) 3121.54 0.176427
\(680\) −8797.55 5296.44i −0.496133 0.298690i
\(681\) 0 0
\(682\) 13521.0i 0.759157i
\(683\) 13910.7 + 13910.7i 0.779323 + 0.779323i 0.979716 0.200392i \(-0.0642217\pi\)
−0.200392 + 0.979716i \(0.564222\pi\)
\(684\) 0 0
\(685\) −36102.5 36102.5i −2.01373 2.01373i
\(686\) −2949.01 + 2949.01i −0.164131 + 0.164131i
\(687\) 0 0
\(688\) 6169.85i 0.341894i
\(689\) 5416.95i 0.299520i
\(690\) 0 0
\(691\) 6593.82 6593.82i 0.363011 0.363011i −0.501909 0.864920i \(-0.667369\pi\)
0.864920 + 0.501909i \(0.167369\pi\)
\(692\) 9738.17 + 9738.17i 0.534956 + 0.534956i
\(693\) 0 0
\(694\) −10136.6 10136.6i −0.554441 0.554441i
\(695\) 3064.07i 0.167233i
\(696\) 0 0
\(697\) −14566.8 8769.75i −0.791618 0.476582i
\(698\) 3034.63 0.164559
\(699\) 0 0
\(700\) −14585.8 14585.8i −0.787559 0.787559i
\(701\) −4811.86 −0.259260 −0.129630 0.991562i \(-0.541379\pi\)
−0.129630 + 0.991562i \(0.541379\pi\)
\(702\) 0 0
\(703\) 3039.97 3039.97i 0.163093 0.163093i
\(704\) 1616.19 1616.19i 0.0865234 0.0865234i
\(705\) 0 0
\(706\) 9294.61i 0.495478i
\(707\) 19980.0 19980.0i 1.06284 1.06284i
\(708\) 0 0
\(709\) 19747.1 + 19747.1i 1.04600 + 1.04600i 0.998890 + 0.0471139i \(0.0150024\pi\)
0.0471139 + 0.998890i \(0.484998\pi\)
\(710\) 15737.9 0.831876
\(711\) 0 0
\(712\) 11988.0i 0.630995i
\(713\) −26871.7 −1.41143
\(714\) 0 0
\(715\) −8773.50 −0.458895
\(716\) 6562.09i 0.342509i
\(717\) 0 0
\(718\) 4730.19 0.245862
\(719\) 6565.65 + 6565.65i 0.340553 + 0.340553i 0.856575 0.516022i \(-0.172588\pi\)
−0.516022 + 0.856575i \(0.672588\pi\)
\(720\) 0 0
\(721\) 2219.48 2219.48i 0.114643 0.114643i
\(722\) 13226.7i 0.681785i
\(723\) 0 0
\(724\) −740.232 + 740.232i −0.0379979 + 0.0379979i
\(725\) 19896.9 19896.9i 1.01925 1.01925i
\(726\) 0 0
\(727\) −3740.62 −0.190828 −0.0954140 0.995438i \(-0.530418\pi\)
−0.0954140 + 0.995438i \(0.530418\pi\)
\(728\) 1860.27 + 1860.27i 0.0947063 + 0.0947063i
\(729\) 0 0
\(730\) −4473.60 −0.226816
\(731\) −26231.6 + 6516.23i −1.32724 + 0.329701i
\(732\) 0 0
\(733\) 23222.5i 1.17018i −0.810967 0.585092i \(-0.801059\pi\)
0.810967 0.585092i \(-0.198941\pi\)
\(734\) −0.300592 0.300592i −1.51159e−5 1.51159e-5i
\(735\) 0 0
\(736\) −3212.03 3212.03i −0.160865 0.160865i
\(737\) 11143.3 11143.3i 0.556944 0.556944i
\(738\) 0 0
\(739\) 9987.91i 0.497173i −0.968610 0.248587i \(-0.920034\pi\)
0.968610 0.248587i \(-0.0799661\pi\)
\(740\) 20093.9i 0.998196i
\(741\) 0 0
\(742\) 13999.0 13999.0i 0.692614 0.692614i
\(743\) −25752.7 25752.7i −1.27157 1.27157i −0.945266 0.326302i \(-0.894197\pi\)
−0.326302 0.945266i \(-0.605803\pi\)
\(744\) 0 0
\(745\) −37899.3 37899.3i −1.86379 1.86379i
\(746\) 16957.0i 0.832223i
\(747\) 0 0
\(748\) 8578.30 + 5164.45i 0.419323 + 0.252448i
\(749\) −40586.1 −1.97995
\(750\) 0 0
\(751\) −10329.3 10329.3i −0.501894 0.501894i 0.410132 0.912026i \(-0.365483\pi\)
−0.912026 + 0.410132i \(0.865483\pi\)
\(752\) 8528.14 0.413550
\(753\) 0 0
\(754\) −2537.65 + 2537.65i −0.122567 + 0.122567i
\(755\) 27742.4 27742.4i 1.33728 1.33728i
\(756\) 0 0
\(757\) 25138.4i 1.20696i 0.797378 + 0.603481i \(0.206220\pi\)
−0.797378 + 0.603481i \(0.793780\pi\)
\(758\) 8242.87 8242.87i 0.394980 0.394980i
\(759\) 0 0
\(760\) −1623.57 1623.57i −0.0774910 0.0774910i
\(761\) 13550.5 0.645473 0.322737 0.946489i \(-0.395397\pi\)
0.322737 + 0.946489i \(0.395397\pi\)
\(762\) 0 0
\(763\) 40961.1i 1.94350i
\(764\) 10394.4 0.492219
\(765\) 0 0
\(766\) −3123.71 −0.147342
\(767\) 3580.00i 0.168535i
\(768\) 0 0
\(769\) 30080.8 1.41059 0.705294 0.708915i \(-0.250815\pi\)
0.705294 + 0.708915i \(0.250815\pi\)
\(770\) 22673.3 + 22673.3i 1.06116 + 1.06116i
\(771\) 0 0
\(772\) 11703.1 11703.1i 0.545600 0.545600i
\(773\) 11588.8i 0.539226i 0.962969 + 0.269613i \(0.0868958\pi\)
−0.962969 + 0.269613i \(0.913104\pi\)
\(774\) 0 0
\(775\) −28158.3 + 28158.3i −1.30513 + 1.30513i
\(776\) 720.327 720.327i 0.0333225 0.0333225i
\(777\) 0 0
\(778\) −14087.6 −0.649182
\(779\) −2688.28 2688.28i −0.123643 0.123643i
\(780\) 0 0
\(781\) −15345.7 −0.703087
\(782\) 10263.9 17048.6i 0.469354 0.779610i
\(783\) 0 0
\(784\) 4126.97i 0.188000i
\(785\) −17213.0 17213.0i −0.782620 0.782620i
\(786\) 0 0
\(787\) 3121.23 + 3121.23i 0.141372 + 0.141372i 0.774251 0.632879i \(-0.218127\pi\)
−0.632879 + 0.774251i \(0.718127\pi\)
\(788\) −3590.93 + 3590.93i −0.162337 + 0.162337i
\(789\) 0 0
\(790\) 24047.4i 1.08300i
\(791\) 4404.77i 0.197997i
\(792\) 0 0
\(793\) 6494.10 6494.10i 0.290810 0.290810i
\(794\) −16623.2 16623.2i −0.742990 0.742990i
\(795\) 0 0
\(796\) 15295.5 + 15295.5i 0.681074 + 0.681074i
\(797\) 36966.3i 1.64293i 0.570260 + 0.821464i \(0.306843\pi\)
−0.570260 + 0.821464i \(0.693157\pi\)
\(798\) 0 0
\(799\) 9006.92 + 36258.1i 0.398801 + 1.60541i
\(800\) −6731.65 −0.297500
\(801\) 0 0
\(802\) −382.221 382.221i −0.0168288 0.0168288i
\(803\) 4362.11 0.191701
\(804\) 0 0
\(805\) 45061.1 45061.1i 1.97291 1.97291i
\(806\) 3591.30 3591.30i 0.156946 0.156946i
\(807\) 0 0
\(808\) 9221.17i 0.401485i
\(809\) 23264.9 23264.9i 1.01106 1.01106i 0.0111248 0.999938i \(-0.496459\pi\)
0.999938 0.0111248i \(-0.00354120\pi\)
\(810\) 0 0
\(811\) −12867.2 12867.2i −0.557126 0.557126i 0.371362 0.928488i \(-0.378891\pi\)
−0.928488 + 0.371362i \(0.878891\pi\)
\(812\) 13116.1 0.566852
\(813\) 0 0
\(814\) 19593.1i 0.843658i
\(815\) −47829.4 −2.05569
\(816\) 0 0
\(817\) −6043.57 −0.258798
\(818\) 21922.7i 0.937055i
\(819\) 0 0
\(820\) −17769.3 −0.756743
\(821\) −10846.1 10846.1i −0.461060 0.461060i 0.437943 0.899003i \(-0.355707\pi\)
−0.899003 + 0.437943i \(0.855707\pi\)
\(822\) 0 0
\(823\) 22850.1 22850.1i 0.967807 0.967807i −0.0316911 0.999498i \(-0.510089\pi\)
0.999498 + 0.0316911i \(0.0100893\pi\)
\(824\) 1024.34i 0.0433064i
\(825\) 0 0
\(826\) 9251.77 9251.77i 0.389722 0.389722i
\(827\) −8154.95 + 8154.95i −0.342896 + 0.342896i −0.857455 0.514559i \(-0.827956\pi\)
0.514559 + 0.857455i \(0.327956\pi\)
\(828\) 0 0
\(829\) 28488.7 1.19355 0.596774 0.802409i \(-0.296449\pi\)
0.596774 + 0.802409i \(0.296449\pi\)
\(830\) 32216.1 + 32216.1i 1.34727 + 1.34727i
\(831\) 0 0
\(832\) 858.552 0.0357752
\(833\) 17546.2 4358.67i 0.729818 0.181295i
\(834\) 0 0
\(835\) 22898.1i 0.949007i
\(836\) 1583.11 + 1583.11i 0.0654941 + 0.0654941i
\(837\) 0 0
\(838\) 16256.8 + 16256.8i 0.670144 + 0.670144i
\(839\) −13682.6 + 13682.6i −0.563021 + 0.563021i −0.930164 0.367143i \(-0.880336\pi\)
0.367143 + 0.930164i \(0.380336\pi\)
\(840\) 0 0
\(841\) 6496.97i 0.266389i
\(842\) 22350.6i 0.914789i
\(843\) 0 0
\(844\) −9397.97 + 9397.97i −0.383284 + 0.383284i
\(845\) 26119.1 + 26119.1i 1.06334 + 1.06334i
\(846\) 0 0
\(847\) 963.313 + 963.313i 0.0390789 + 0.0390789i
\(848\) 6460.83i 0.261634i
\(849\) 0 0
\(850\) −7109.57 28620.2i −0.286890 1.15490i
\(851\) 38939.4 1.56854
\(852\) 0 0
\(853\) −16798.3 16798.3i −0.674281 0.674281i 0.284419 0.958700i \(-0.408199\pi\)
−0.958700 + 0.284419i \(0.908199\pi\)
\(854\) −33565.4 −1.34494
\(855\) 0 0
\(856\) −9365.67 + 9365.67i −0.373963 + 0.373963i
\(857\) −3594.51 + 3594.51i −0.143274 + 0.143274i −0.775106 0.631831i \(-0.782303\pi\)
0.631831 + 0.775106i \(0.282303\pi\)
\(858\) 0 0
\(859\) 32488.7i 1.29046i −0.763990 0.645228i \(-0.776763\pi\)
0.763990 0.645228i \(-0.223237\pi\)
\(860\) −19973.7 + 19973.7i −0.791973 + 0.791973i
\(861\) 0 0
\(862\) 17660.7 + 17660.7i 0.697824 + 0.697824i
\(863\) 30304.2 1.19532 0.597662 0.801748i \(-0.296096\pi\)
0.597662 + 0.801748i \(0.296096\pi\)
\(864\) 0 0
\(865\) 63050.8i 2.47837i
\(866\) 4070.44 0.159722
\(867\) 0 0
\(868\) −18562.0 −0.725846
\(869\) 23448.1i 0.915329i
\(870\) 0 0
\(871\) 5919.53 0.230282
\(872\) 9452.20 + 9452.20i 0.367078 + 0.367078i
\(873\) 0 0
\(874\) 3146.28 3146.28i 0.121767 0.121767i
\(875\) 38321.9i 1.48059i
\(876\) 0 0
\(877\) −15323.5 + 15323.5i −0.590009 + 0.590009i −0.937634 0.347624i \(-0.886988\pi\)
0.347624 + 0.937634i \(0.386988\pi\)
\(878\) 13897.1 13897.1i 0.534175 0.534175i
\(879\) 0 0
\(880\) 10464.2 0.400850
\(881\) 24765.1 + 24765.1i 0.947056 + 0.947056i 0.998667 0.0516111i \(-0.0164356\pi\)
−0.0516111 + 0.998667i \(0.516436\pi\)
\(882\) 0 0
\(883\) 35916.7 1.36885 0.684425 0.729084i \(-0.260054\pi\)
0.684425 + 0.729084i \(0.260054\pi\)
\(884\) 906.753 + 3650.21i 0.0344993 + 0.138880i
\(885\) 0 0
\(886\) 2809.85i 0.106545i
\(887\) 17482.6 + 17482.6i 0.661790 + 0.661790i 0.955802 0.294012i \(-0.0949904\pi\)
−0.294012 + 0.955802i \(0.594990\pi\)
\(888\) 0 0
\(889\) −34470.4 34470.4i −1.30045 1.30045i
\(890\) −38808.7 + 38808.7i −1.46165 + 1.46165i
\(891\) 0 0
\(892\) 8977.29i 0.336975i
\(893\) 8353.59i 0.313037i
\(894\) 0 0
\(895\) 21243.5 21243.5i 0.793397 0.793397i
\(896\) −2218.75 2218.75i −0.0827269 0.0827269i
\(897\) 0 0
\(898\) −8882.99 8882.99i −0.330099 0.330099i
\(899\) 25321.0i 0.939378i
\(900\) 0 0
\(901\) 27468.7 6823.55i 1.01567 0.252303i
\(902\) 17326.4 0.639586
\(903\) 0 0
\(904\) −1016.44 1016.44i −0.0373965 0.0373965i
\(905\) −4792.71 −0.176039
\(906\) 0 0
\(907\) −5525.49 + 5525.49i −0.202283 + 0.202283i −0.800978 0.598694i \(-0.795686\pi\)
0.598694 + 0.800978i \(0.295686\pi\)
\(908\) 9765.83 9765.83i 0.356928 0.356928i
\(909\) 0 0
\(910\) 12044.5i 0.438760i
\(911\) 11064.3 11064.3i 0.402390 0.402390i −0.476684 0.879074i \(-0.658162\pi\)
0.879074 + 0.476684i \(0.158162\pi\)
\(912\) 0 0
\(913\) −31413.2 31413.2i −1.13869 1.13869i
\(914\) −32608.2 −1.18007
\(915\) 0 0
\(916\) 10730.7i 0.387065i
\(917\) −24062.6 −0.866539
\(918\) 0 0
\(919\) −54133.9 −1.94310 −0.971552 0.236825i \(-0.923893\pi\)
−0.971552 + 0.236825i \(0.923893\pi\)
\(920\) 20796.6i 0.745265i
\(921\) 0 0
\(922\) 160.013 0.00571556
\(923\) −4075.96 4075.96i −0.145354 0.145354i
\(924\) 0 0
\(925\) 40803.9 40803.9i 1.45040 1.45040i
\(926\) 5239.41i 0.185937i
\(927\) 0 0
\(928\) 3026.67 3026.67i 0.107064 0.107064i
\(929\) 2614.28 2614.28i 0.0923270 0.0923270i −0.659435 0.751762i \(-0.729204\pi\)
0.751762 + 0.659435i \(0.229204\pi\)
\(930\) 0 0
\(931\) 4042.50 0.142307
\(932\) −4464.10 4464.10i −0.156895 0.156895i
\(933\) 0 0
\(934\) 2720.14 0.0952952
\(935\) 11051.7 + 44489.4i 0.386554 + 1.55611i
\(936\) 0 0
\(937\) 9888.38i 0.344759i −0.985031 0.172380i \(-0.944854\pi\)
0.985031 0.172380i \(-0.0551456\pi\)
\(938\) −15297.8 15297.8i −0.532507 0.532507i
\(939\) 0 0
\(940\) 27608.2 + 27608.2i 0.957957 + 0.957957i
\(941\) 1174.44 1174.44i 0.0406860 0.0406860i −0.686471 0.727157i \(-0.740841\pi\)
0.727157 + 0.686471i \(0.240841\pi\)
\(942\) 0 0
\(943\) 34434.6i 1.18913i
\(944\) 4269.88i 0.147217i
\(945\) 0 0
\(946\) 19475.9 19475.9i 0.669361 0.669361i
\(947\) 16396.0 + 16396.0i 0.562618 + 0.562618i 0.930050 0.367433i \(-0.119763\pi\)
−0.367433 + 0.930050i \(0.619763\pi\)
\(948\) 0 0
\(949\) 1158.62 + 1158.62i 0.0396316 + 0.0396316i
\(950\) 6593.87i 0.225193i
\(951\) 0 0
\(952\) 7089.90 11776.5i 0.241371 0.400924i
\(953\) 1163.54 0.0395495 0.0197748 0.999804i \(-0.493705\pi\)
0.0197748 + 0.999804i \(0.493705\pi\)
\(954\) 0 0
\(955\) 33649.8 + 33649.8i 1.14019 + 1.14019i
\(956\) 20064.8 0.678810
\(957\) 0 0
\(958\) −13900.5 + 13900.5i −0.468795 + 0.468795i
\(959\) 48327.4 48327.4i 1.62729 1.62729i
\(960\) 0 0
\(961\) 6043.44i 0.202861i
\(962\) −5204.11 + 5204.11i −0.174415 + 0.174415i
\(963\) 0 0
\(964\) 4603.76 + 4603.76i 0.153815 + 0.153815i
\(965\) 75772.9 2.52768
\(966\) 0 0
\(967\) 31087.8i 1.03383i −0.856036 0.516916i \(-0.827080\pi\)
0.856036 0.516916i \(-0.172920\pi\)
\(968\) 444.589 0.0147620
\(969\) 0 0
\(970\) 4663.83 0.154378
\(971\) 5352.03i 0.176885i 0.996081 + 0.0884423i \(0.0281889\pi\)
−0.996081 + 0.0884423i \(0.971811\pi\)
\(972\) 0 0
\(973\) −4101.62 −0.135141
\(974\) 10330.5 + 10330.5i 0.339847 + 0.339847i
\(975\) 0 0
\(976\) −7745.55 + 7745.55i −0.254026 + 0.254026i
\(977\) 27767.7i 0.909282i −0.890675 0.454641i \(-0.849768\pi\)
0.890675 0.454641i \(-0.150232\pi\)
\(978\) 0 0
\(979\) 37841.5 37841.5i 1.23536 1.23536i
\(980\) 13360.3 13360.3i 0.435487 0.435487i
\(981\) 0 0
\(982\) 37374.6 1.21453
\(983\) 20541.2 + 20541.2i 0.666492 + 0.666492i 0.956902 0.290410i \(-0.0937917\pi\)
−0.290410 + 0.956902i \(0.593792\pi\)
\(984\) 0 0
\(985\) −23249.9 −0.752083
\(986\) 16064.7 + 9671.55i 0.518869 + 0.312378i
\(987\) 0 0
\(988\) 840.979i 0.0270801i
\(989\) −38706.5 38706.5i −1.24448 1.24448i
\(990\) 0 0
\(991\) 16947.4 + 16947.4i 0.543242 + 0.543242i 0.924478 0.381236i \(-0.124501\pi\)
−0.381236 + 0.924478i \(0.624501\pi\)
\(992\) −4283.37 + 4283.37i −0.137094 + 0.137094i
\(993\) 0 0
\(994\) 21067.0i 0.672237i
\(995\) 99032.4i 3.15532i
\(996\) 0 0
\(997\) −29861.9 + 29861.9i −0.948582 + 0.948582i −0.998741 0.0501591i \(-0.984027\pi\)
0.0501591 + 0.998741i \(0.484027\pi\)
\(998\) 11537.2 + 11537.2i 0.365936 + 0.365936i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 306.4.g.g.217.1 12
3.2 odd 2 102.4.f.c.13.3 12
17.4 even 4 inner 306.4.g.g.55.1 12
51.2 odd 8 1734.4.a.bd.1.1 6
51.32 odd 8 1734.4.a.be.1.6 6
51.38 odd 4 102.4.f.c.55.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.f.c.13.3 12 3.2 odd 2
102.4.f.c.55.3 yes 12 51.38 odd 4
306.4.g.g.55.1 12 17.4 even 4 inner
306.4.g.g.217.1 12 1.1 even 1 trivial
1734.4.a.bd.1.1 6 51.2 odd 8
1734.4.a.be.1.6 6 51.32 odd 8