Properties

Label 1024.2.e.m.257.1
Level $1024$
Weight $2$
Character 1024.257
Analytic conductor $8.177$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1024,2,Mod(257,1024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1024, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1024.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 257.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1024.257
Dual form 1024.2.e.m.769.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{3} +(-1.41421 + 1.41421i) q^{5} -4.00000i q^{7} +1.00000i q^{9} +(1.41421 - 1.41421i) q^{11} +(-1.41421 - 1.41421i) q^{13} +4.00000 q^{15} +2.00000 q^{17} +(1.41421 + 1.41421i) q^{19} +(-5.65685 + 5.65685i) q^{21} -4.00000i q^{23} +1.00000i q^{25} +(-2.82843 + 2.82843i) q^{27} +(-4.24264 - 4.24264i) q^{29} -4.00000 q^{33} +(5.65685 + 5.65685i) q^{35} +(-7.07107 + 7.07107i) q^{37} +4.00000i q^{39} -6.00000i q^{41} +(-4.24264 + 4.24264i) q^{43} +(-1.41421 - 1.41421i) q^{45} -8.00000 q^{47} -9.00000 q^{49} +(-2.82843 - 2.82843i) q^{51} +(-4.24264 + 4.24264i) q^{53} +4.00000i q^{55} -4.00000i q^{57} +(9.89949 - 9.89949i) q^{59} +(1.41421 + 1.41421i) q^{61} +4.00000 q^{63} +4.00000 q^{65} +(-7.07107 - 7.07107i) q^{67} +(-5.65685 + 5.65685i) q^{69} +12.0000i q^{71} +14.0000i q^{73} +(1.41421 - 1.41421i) q^{75} +(-5.65685 - 5.65685i) q^{77} -8.00000 q^{79} +11.0000 q^{81} +(-4.24264 - 4.24264i) q^{83} +(-2.82843 + 2.82843i) q^{85} +12.0000i q^{87} +2.00000i q^{89} +(-5.65685 + 5.65685i) q^{91} -4.00000 q^{95} -2.00000 q^{97} +(1.41421 + 1.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{15} + 8 q^{17} - 16 q^{33} - 32 q^{47} - 36 q^{49} + 16 q^{63} + 16 q^{65} - 32 q^{79} + 44 q^{81} - 16 q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1023\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 1.41421i −0.816497 0.816497i 0.169102 0.985599i \(-0.445913\pi\)
−0.985599 + 0.169102i \(0.945913\pi\)
\(4\) 0 0
\(5\) −1.41421 + 1.41421i −0.632456 + 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.41421 1.41421i 0.426401 0.426401i −0.460999 0.887401i \(-0.652509\pi\)
0.887401 + 0.460999i \(0.152509\pi\)
\(12\) 0 0
\(13\) −1.41421 1.41421i −0.392232 0.392232i 0.483250 0.875482i \(-0.339456\pi\)
−0.875482 + 0.483250i \(0.839456\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.41421 + 1.41421i 0.324443 + 0.324443i 0.850469 0.526026i \(-0.176318\pi\)
−0.526026 + 0.850469i \(0.676318\pi\)
\(20\) 0 0
\(21\) −5.65685 + 5.65685i −1.23443 + 1.23443i
\(22\) 0 0
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −2.82843 + 2.82843i −0.544331 + 0.544331i
\(28\) 0 0
\(29\) −4.24264 4.24264i −0.787839 0.787839i 0.193301 0.981140i \(-0.438081\pi\)
−0.981140 + 0.193301i \(0.938081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 5.65685 + 5.65685i 0.956183 + 0.956183i
\(36\) 0 0
\(37\) −7.07107 + 7.07107i −1.16248 + 1.16248i −0.178545 + 0.983932i \(0.557139\pi\)
−0.983932 + 0.178545i \(0.942861\pi\)
\(38\) 0 0
\(39\) 4.00000i 0.640513i
\(40\) 0 0
\(41\) 6.00000i 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) −4.24264 + 4.24264i −0.646997 + 0.646997i −0.952266 0.305269i \(-0.901253\pi\)
0.305269 + 0.952266i \(0.401253\pi\)
\(44\) 0 0
\(45\) −1.41421 1.41421i −0.210819 0.210819i
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) −2.82843 2.82843i −0.396059 0.396059i
\(52\) 0 0
\(53\) −4.24264 + 4.24264i −0.582772 + 0.582772i −0.935664 0.352892i \(-0.885198\pi\)
0.352892 + 0.935664i \(0.385198\pi\)
\(54\) 0 0
\(55\) 4.00000i 0.539360i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 9.89949 9.89949i 1.28880 1.28880i 0.353291 0.935513i \(-0.385063\pi\)
0.935513 0.353291i \(-0.114937\pi\)
\(60\) 0 0
\(61\) 1.41421 + 1.41421i 0.181071 + 0.181071i 0.791823 0.610751i \(-0.209132\pi\)
−0.610751 + 0.791823i \(0.709132\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −7.07107 7.07107i −0.863868 0.863868i 0.127917 0.991785i \(-0.459171\pi\)
−0.991785 + 0.127917i \(0.959171\pi\)
\(68\) 0 0
\(69\) −5.65685 + 5.65685i −0.681005 + 0.681005i
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 1.41421 1.41421i 0.163299 0.163299i
\(76\) 0 0
\(77\) −5.65685 5.65685i −0.644658 0.644658i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 11.0000 1.22222
\(82\) 0 0
\(83\) −4.24264 4.24264i −0.465690 0.465690i 0.434825 0.900515i \(-0.356810\pi\)
−0.900515 + 0.434825i \(0.856810\pi\)
\(84\) 0 0
\(85\) −2.82843 + 2.82843i −0.306786 + 0.306786i
\(86\) 0 0
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 0 0
\(91\) −5.65685 + 5.65685i −0.592999 + 0.592999i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 1.41421 + 1.41421i 0.142134 + 0.142134i
\(100\) 0 0
\(101\) 4.24264 4.24264i 0.422159 0.422159i −0.463788 0.885946i \(-0.653510\pi\)
0.885946 + 0.463788i \(0.153510\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 16.0000i 1.56144i
\(106\) 0 0
\(107\) 1.41421 1.41421i 0.136717 0.136717i −0.635436 0.772153i \(-0.719180\pi\)
0.772153 + 0.635436i \(0.219180\pi\)
\(108\) 0 0
\(109\) 4.24264 + 4.24264i 0.406371 + 0.406371i 0.880471 0.474100i \(-0.157226\pi\)
−0.474100 + 0.880471i \(0.657226\pi\)
\(110\) 0 0
\(111\) 20.0000 1.89832
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 5.65685 + 5.65685i 0.527504 + 0.527504i
\(116\) 0 0
\(117\) 1.41421 1.41421i 0.130744 0.130744i
\(118\) 0 0
\(119\) 8.00000i 0.733359i
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) −8.48528 + 8.48528i −0.765092 + 0.765092i
\(124\) 0 0
\(125\) −8.48528 8.48528i −0.758947 0.758947i
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) 4.24264 + 4.24264i 0.370681 + 0.370681i 0.867725 0.497044i \(-0.165581\pi\)
−0.497044 + 0.867725i \(0.665581\pi\)
\(132\) 0 0
\(133\) 5.65685 5.65685i 0.490511 0.490511i
\(134\) 0 0
\(135\) 8.00000i 0.688530i
\(136\) 0 0
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) 0 0
\(139\) 7.07107 7.07107i 0.599760 0.599760i −0.340489 0.940249i \(-0.610592\pi\)
0.940249 + 0.340489i \(0.110592\pi\)
\(140\) 0 0
\(141\) 11.3137 + 11.3137i 0.952786 + 0.952786i
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) 12.7279 + 12.7279i 1.04978 + 1.04978i
\(148\) 0 0
\(149\) 12.7279 12.7279i 1.04271 1.04271i 0.0436658 0.999046i \(-0.486096\pi\)
0.999046 0.0436658i \(-0.0139037\pi\)
\(150\) 0 0
\(151\) 4.00000i 0.325515i −0.986666 0.162758i \(-0.947961\pi\)
0.986666 0.162758i \(-0.0520389\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.7279 + 12.7279i 1.01580 + 1.01580i 0.999873 + 0.0159256i \(0.00506949\pi\)
0.0159256 + 0.999873i \(0.494931\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) −1.41421 1.41421i −0.110770 0.110770i 0.649550 0.760319i \(-0.274958\pi\)
−0.760319 + 0.649550i \(0.774958\pi\)
\(164\) 0 0
\(165\) 5.65685 5.65685i 0.440386 0.440386i
\(166\) 0 0
\(167\) 20.0000i 1.54765i −0.633402 0.773823i \(-0.718342\pi\)
0.633402 0.773823i \(-0.281658\pi\)
\(168\) 0 0
\(169\) 9.00000i 0.692308i
\(170\) 0 0
\(171\) −1.41421 + 1.41421i −0.108148 + 0.108148i
\(172\) 0 0
\(173\) −12.7279 12.7279i −0.967686 0.967686i 0.0318080 0.999494i \(-0.489873\pi\)
−0.999494 + 0.0318080i \(0.989873\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) −28.0000 −2.10461
\(178\) 0 0
\(179\) −4.24264 4.24264i −0.317110 0.317110i 0.530546 0.847656i \(-0.321987\pi\)
−0.847656 + 0.530546i \(0.821987\pi\)
\(180\) 0 0
\(181\) 1.41421 1.41421i 0.105118 0.105118i −0.652592 0.757710i \(-0.726318\pi\)
0.757710 + 0.652592i \(0.226318\pi\)
\(182\) 0 0
\(183\) 4.00000i 0.295689i
\(184\) 0 0
\(185\) 20.0000i 1.47043i
\(186\) 0 0
\(187\) 2.82843 2.82843i 0.206835 0.206835i
\(188\) 0 0
\(189\) 11.3137 + 11.3137i 0.822951 + 0.822951i
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −5.65685 5.65685i −0.405096 0.405096i
\(196\) 0 0
\(197\) 9.89949 9.89949i 0.705310 0.705310i −0.260235 0.965545i \(-0.583800\pi\)
0.965545 + 0.260235i \(0.0838002\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i −0.989899 0.141776i \(-0.954719\pi\)
0.989899 0.141776i \(-0.0452813\pi\)
\(200\) 0 0
\(201\) 20.0000i 1.41069i
\(202\) 0 0
\(203\) −16.9706 + 16.9706i −1.19110 + 1.19110i
\(204\) 0 0
\(205\) 8.48528 + 8.48528i 0.592638 + 0.592638i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −15.5563 15.5563i −1.07094 1.07094i −0.997283 0.0736598i \(-0.976532\pi\)
−0.0736598 0.997283i \(-0.523468\pi\)
\(212\) 0 0
\(213\) 16.9706 16.9706i 1.16280 1.16280i
\(214\) 0 0
\(215\) 12.0000i 0.818393i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 19.7990 19.7990i 1.33789 1.33789i
\(220\) 0 0
\(221\) −2.82843 2.82843i −0.190261 0.190261i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −12.7279 12.7279i −0.844782 0.844782i 0.144695 0.989476i \(-0.453780\pi\)
−0.989476 + 0.144695i \(0.953780\pi\)
\(228\) 0 0
\(229\) 9.89949 9.89949i 0.654177 0.654177i −0.299819 0.953996i \(-0.596926\pi\)
0.953996 + 0.299819i \(0.0969263\pi\)
\(230\) 0 0
\(231\) 16.0000i 1.05272i
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 11.3137 11.3137i 0.738025 0.738025i
\(236\) 0 0
\(237\) 11.3137 + 11.3137i 0.734904 + 0.734904i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −7.07107 7.07107i −0.453609 0.453609i
\(244\) 0 0
\(245\) 12.7279 12.7279i 0.813157 0.813157i
\(246\) 0 0
\(247\) 4.00000i 0.254514i
\(248\) 0 0
\(249\) 12.0000i 0.760469i
\(250\) 0 0
\(251\) −12.7279 + 12.7279i −0.803379 + 0.803379i −0.983622 0.180243i \(-0.942312\pi\)
0.180243 + 0.983622i \(0.442312\pi\)
\(252\) 0 0
\(253\) −5.65685 5.65685i −0.355643 0.355643i
\(254\) 0 0
\(255\) 8.00000 0.500979
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 28.2843 + 28.2843i 1.75750 + 1.75750i
\(260\) 0 0
\(261\) 4.24264 4.24264i 0.262613 0.262613i
\(262\) 0 0
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) 12.0000i 0.737154i
\(266\) 0 0
\(267\) 2.82843 2.82843i 0.173097 0.173097i
\(268\) 0 0
\(269\) −7.07107 7.07107i −0.431131 0.431131i 0.457882 0.889013i \(-0.348608\pi\)
−0.889013 + 0.457882i \(0.848608\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 16.0000 0.968364
\(274\) 0 0
\(275\) 1.41421 + 1.41421i 0.0852803 + 0.0852803i
\(276\) 0 0
\(277\) −4.24264 + 4.24264i −0.254916 + 0.254916i −0.822982 0.568067i \(-0.807691\pi\)
0.568067 + 0.822982i \(0.307691\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i 0.843649 + 0.536895i \(0.180403\pi\)
−0.843649 + 0.536895i \(0.819597\pi\)
\(282\) 0 0
\(283\) 4.24264 4.24264i 0.252199 0.252199i −0.569673 0.821872i \(-0.692930\pi\)
0.821872 + 0.569673i \(0.192930\pi\)
\(284\) 0 0
\(285\) 5.65685 + 5.65685i 0.335083 + 0.335083i
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.82843 + 2.82843i 0.165805 + 0.165805i
\(292\) 0 0
\(293\) 9.89949 9.89949i 0.578335 0.578335i −0.356110 0.934444i \(-0.615897\pi\)
0.934444 + 0.356110i \(0.115897\pi\)
\(294\) 0 0
\(295\) 28.0000i 1.63022i
\(296\) 0 0
\(297\) 8.00000i 0.464207i
\(298\) 0 0
\(299\) −5.65685 + 5.65685i −0.327144 + 0.327144i
\(300\) 0 0
\(301\) 16.9706 + 16.9706i 0.978167 + 0.978167i
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 12.7279 + 12.7279i 0.726421 + 0.726421i 0.969905 0.243484i \(-0.0782903\pi\)
−0.243484 + 0.969905i \(0.578290\pi\)
\(308\) 0 0
\(309\) −5.65685 + 5.65685i −0.321807 + 0.321807i
\(310\) 0 0
\(311\) 28.0000i 1.58773i 0.608091 + 0.793867i \(0.291935\pi\)
−0.608091 + 0.793867i \(0.708065\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) 0 0
\(315\) −5.65685 + 5.65685i −0.318728 + 0.318728i
\(316\) 0 0
\(317\) −4.24264 4.24264i −0.238290 0.238290i 0.577851 0.816142i \(-0.303891\pi\)
−0.816142 + 0.577851i \(0.803891\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 2.82843 + 2.82843i 0.157378 + 0.157378i
\(324\) 0 0
\(325\) 1.41421 1.41421i 0.0784465 0.0784465i
\(326\) 0 0
\(327\) 12.0000i 0.663602i
\(328\) 0 0
\(329\) 32.0000i 1.76422i
\(330\) 0 0
\(331\) −9.89949 + 9.89949i −0.544125 + 0.544125i −0.924736 0.380610i \(-0.875714\pi\)
0.380610 + 0.924736i \(0.375714\pi\)
\(332\) 0 0
\(333\) −7.07107 7.07107i −0.387492 0.387492i
\(334\) 0 0
\(335\) 20.0000 1.09272
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 2.82843 + 2.82843i 0.153619 + 0.153619i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 16.0000i 0.861411i
\(346\) 0 0
\(347\) −12.7279 + 12.7279i −0.683271 + 0.683271i −0.960736 0.277465i \(-0.910506\pi\)
0.277465 + 0.960736i \(0.410506\pi\)
\(348\) 0 0
\(349\) 7.07107 + 7.07107i 0.378506 + 0.378506i 0.870563 0.492057i \(-0.163755\pi\)
−0.492057 + 0.870563i \(0.663755\pi\)
\(350\) 0 0
\(351\) 8.00000 0.427008
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −16.9706 16.9706i −0.900704 0.900704i
\(356\) 0 0
\(357\) −11.3137 + 11.3137i −0.598785 + 0.598785i
\(358\) 0 0
\(359\) 4.00000i 0.211112i −0.994413 0.105556i \(-0.966338\pi\)
0.994413 0.105556i \(-0.0336622\pi\)
\(360\) 0 0
\(361\) 15.0000i 0.789474i
\(362\) 0 0
\(363\) 9.89949 9.89949i 0.519589 0.519589i
\(364\) 0 0
\(365\) −19.7990 19.7990i −1.03633 1.03633i
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 16.9706 + 16.9706i 0.881068 + 0.881068i
\(372\) 0 0
\(373\) 7.07107 7.07107i 0.366126 0.366126i −0.499936 0.866062i \(-0.666643\pi\)
0.866062 + 0.499936i \(0.166643\pi\)
\(374\) 0 0
\(375\) 24.0000i 1.23935i
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −1.41421 + 1.41421i −0.0726433 + 0.0726433i −0.742495 0.669852i \(-0.766358\pi\)
0.669852 + 0.742495i \(0.266358\pi\)
\(380\) 0 0
\(381\) 22.6274 + 22.6274i 1.15924 + 1.15924i
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) −4.24264 4.24264i −0.215666 0.215666i
\(388\) 0 0
\(389\) −7.07107 + 7.07107i −0.358517 + 0.358517i −0.863266 0.504749i \(-0.831585\pi\)
0.504749 + 0.863266i \(0.331585\pi\)
\(390\) 0 0
\(391\) 8.00000i 0.404577i
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 11.3137 11.3137i 0.569254 0.569254i
\(396\) 0 0
\(397\) 4.24264 + 4.24264i 0.212932 + 0.212932i 0.805512 0.592580i \(-0.201890\pi\)
−0.592580 + 0.805512i \(0.701890\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −15.5563 + 15.5563i −0.773001 + 0.773001i
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) 10.0000i 0.494468i −0.968956 0.247234i \(-0.920478\pi\)
0.968956 0.247234i \(-0.0795217\pi\)
\(410\) 0 0
\(411\) 14.1421 14.1421i 0.697580 0.697580i
\(412\) 0 0
\(413\) −39.5980 39.5980i −1.94849 1.94849i
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) −18.3848 18.3848i −0.898155 0.898155i 0.0971178 0.995273i \(-0.469038\pi\)
−0.995273 + 0.0971178i \(0.969038\pi\)
\(420\) 0 0
\(421\) −24.0416 + 24.0416i −1.17172 + 1.17172i −0.189917 + 0.981800i \(0.560822\pi\)
−0.981800 + 0.189917i \(0.939178\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 2.00000i 0.0970143i
\(426\) 0 0
\(427\) 5.65685 5.65685i 0.273754 0.273754i
\(428\) 0 0
\(429\) 5.65685 + 5.65685i 0.273115 + 0.273115i
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) −16.9706 16.9706i −0.813676 0.813676i
\(436\) 0 0
\(437\) 5.65685 5.65685i 0.270604 0.270604i
\(438\) 0 0
\(439\) 36.0000i 1.71819i −0.511819 0.859093i \(-0.671028\pi\)
0.511819 0.859093i \(-0.328972\pi\)
\(440\) 0 0
\(441\) 9.00000i 0.428571i
\(442\) 0 0
\(443\) 4.24264 4.24264i 0.201574 0.201574i −0.599100 0.800674i \(-0.704475\pi\)
0.800674 + 0.599100i \(0.204475\pi\)
\(444\) 0 0
\(445\) −2.82843 2.82843i −0.134080 0.134080i
\(446\) 0 0
\(447\) −36.0000 −1.70274
\(448\) 0 0
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) −8.48528 8.48528i −0.399556 0.399556i
\(452\) 0 0
\(453\) −5.65685 + 5.65685i −0.265782 + 0.265782i
\(454\) 0 0
\(455\) 16.0000i 0.750092i
\(456\) 0 0
\(457\) 6.00000i 0.280668i −0.990104 0.140334i \(-0.955182\pi\)
0.990104 0.140334i \(-0.0448177\pi\)
\(458\) 0 0
\(459\) −5.65685 + 5.65685i −0.264039 + 0.264039i
\(460\) 0 0
\(461\) −7.07107 7.07107i −0.329332 0.329332i 0.523000 0.852333i \(-0.324813\pi\)
−0.852333 + 0.523000i \(0.824813\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.89949 9.89949i −0.458094 0.458094i 0.439935 0.898029i \(-0.355001\pi\)
−0.898029 + 0.439935i \(0.855001\pi\)
\(468\) 0 0
\(469\) −28.2843 + 28.2843i −1.30605 + 1.30605i
\(470\) 0 0
\(471\) 36.0000i 1.65879i
\(472\) 0 0
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) −1.41421 + 1.41421i −0.0648886 + 0.0648886i
\(476\) 0 0
\(477\) −4.24264 4.24264i −0.194257 0.194257i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 22.6274 + 22.6274i 1.02958 + 1.02958i
\(484\) 0 0
\(485\) 2.82843 2.82843i 0.128432 0.128432i
\(486\) 0 0
\(487\) 20.0000i 0.906287i −0.891438 0.453143i \(-0.850303\pi\)
0.891438 0.453143i \(-0.149697\pi\)
\(488\) 0 0
\(489\) 4.00000i 0.180886i
\(490\) 0 0
\(491\) 7.07107 7.07107i 0.319113 0.319113i −0.529313 0.848426i \(-0.677550\pi\)
0.848426 + 0.529313i \(0.177550\pi\)
\(492\) 0 0
\(493\) −8.48528 8.48528i −0.382158 0.382158i
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 48.0000 2.15309
\(498\) 0 0
\(499\) −15.5563 15.5563i −0.696398 0.696398i 0.267234 0.963632i \(-0.413890\pi\)
−0.963632 + 0.267234i \(0.913890\pi\)
\(500\) 0 0
\(501\) −28.2843 + 28.2843i −1.26365 + 1.26365i
\(502\) 0 0
\(503\) 20.0000i 0.891756i −0.895094 0.445878i \(-0.852892\pi\)
0.895094 0.445878i \(-0.147108\pi\)
\(504\) 0 0
\(505\) 12.0000i 0.533993i
\(506\) 0 0
\(507\) −12.7279 + 12.7279i −0.565267 + 0.565267i
\(508\) 0 0
\(509\) −9.89949 9.89949i −0.438787 0.438787i 0.452816 0.891604i \(-0.350419\pi\)
−0.891604 + 0.452816i \(0.850419\pi\)
\(510\) 0 0
\(511\) 56.0000 2.47729
\(512\) 0 0
\(513\) −8.00000 −0.353209
\(514\) 0 0
\(515\) 5.65685 + 5.65685i 0.249271 + 0.249271i
\(516\) 0 0
\(517\) −11.3137 + 11.3137i −0.497576 + 0.497576i
\(518\) 0 0
\(519\) 36.0000i 1.58022i
\(520\) 0 0
\(521\) 22.0000i 0.963837i −0.876216 0.481919i \(-0.839940\pi\)
0.876216 0.481919i \(-0.160060\pi\)
\(522\) 0 0
\(523\) −9.89949 + 9.89949i −0.432875 + 0.432875i −0.889605 0.456730i \(-0.849020\pi\)
0.456730 + 0.889605i \(0.349020\pi\)
\(524\) 0 0
\(525\) −5.65685 5.65685i −0.246885 0.246885i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 9.89949 + 9.89949i 0.429601 + 0.429601i
\(532\) 0 0
\(533\) −8.48528 + 8.48528i −0.367538 + 0.367538i
\(534\) 0 0
\(535\) 4.00000i 0.172935i
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) −12.7279 + 12.7279i −0.548230 + 0.548230i
\(540\) 0 0
\(541\) 24.0416 + 24.0416i 1.03363 + 1.03363i 0.999414 + 0.0342160i \(0.0108934\pi\)
0.0342160 + 0.999414i \(0.489107\pi\)
\(542\) 0 0
\(543\) −4.00000 −0.171656
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) 26.8701 + 26.8701i 1.14888 + 1.14888i 0.986773 + 0.162108i \(0.0518292\pi\)
0.162108 + 0.986773i \(0.448171\pi\)
\(548\) 0 0
\(549\) −1.41421 + 1.41421i −0.0603572 + 0.0603572i
\(550\) 0 0
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 32.0000i 1.36078i
\(554\) 0 0
\(555\) −28.2843 + 28.2843i −1.20060 + 1.20060i
\(556\) 0 0
\(557\) −1.41421 1.41421i −0.0599222 0.0599222i 0.676511 0.736433i \(-0.263491\pi\)
−0.736433 + 0.676511i \(0.763491\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) 0 0
\(563\) 12.7279 + 12.7279i 0.536418 + 0.536418i 0.922475 0.386057i \(-0.126163\pi\)
−0.386057 + 0.922475i \(0.626163\pi\)
\(564\) 0 0
\(565\) 2.82843 2.82843i 0.118993 0.118993i
\(566\) 0 0
\(567\) 44.0000i 1.84783i
\(568\) 0 0
\(569\) 26.0000i 1.08998i −0.838444 0.544988i \(-0.816534\pi\)
0.838444 0.544988i \(-0.183466\pi\)
\(570\) 0 0
\(571\) 26.8701 26.8701i 1.12448 1.12448i 0.133417 0.991060i \(-0.457405\pi\)
0.991060 0.133417i \(-0.0425949\pi\)
\(572\) 0 0
\(573\) −22.6274 22.6274i −0.945274 0.945274i
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 2.82843 + 2.82843i 0.117545 + 0.117545i
\(580\) 0 0
\(581\) −16.9706 + 16.9706i −0.704058 + 0.704058i
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) 0 0
\(585\) 4.00000i 0.165380i
\(586\) 0 0
\(587\) 24.0416 24.0416i 0.992304 0.992304i −0.00766632 0.999971i \(-0.502440\pi\)
0.999971 + 0.00766632i \(0.00244029\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −28.0000 −1.15177
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 11.3137 + 11.3137i 0.463817 + 0.463817i
\(596\) 0 0
\(597\) −5.65685 + 5.65685i −0.231520 + 0.231520i
\(598\) 0 0
\(599\) 12.0000i 0.490307i 0.969484 + 0.245153i \(0.0788383\pi\)
−0.969484 + 0.245153i \(0.921162\pi\)
\(600\) 0 0
\(601\) 30.0000i 1.22373i −0.790964 0.611863i \(-0.790420\pi\)
0.790964 0.611863i \(-0.209580\pi\)
\(602\) 0 0
\(603\) 7.07107 7.07107i 0.287956 0.287956i
\(604\) 0 0
\(605\) −9.89949 9.89949i −0.402472 0.402472i
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 48.0000 1.94506
\(610\) 0 0
\(611\) 11.3137 + 11.3137i 0.457704 + 0.457704i
\(612\) 0 0
\(613\) −24.0416 + 24.0416i −0.971032 + 0.971032i −0.999592 0.0285598i \(-0.990908\pi\)
0.0285598 + 0.999592i \(0.490908\pi\)
\(614\) 0 0
\(615\) 24.0000i 0.967773i
\(616\) 0 0
\(617\) 2.00000i 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 0 0
\(619\) −32.5269 + 32.5269i −1.30737 + 1.30737i −0.384058 + 0.923309i \(0.625474\pi\)
−0.923309 + 0.384058i \(0.874526\pi\)
\(620\) 0 0
\(621\) 11.3137 + 11.3137i 0.454003 + 0.454003i
\(622\) 0 0
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) 19.0000 0.760000
\(626\) 0 0
\(627\) −5.65685 5.65685i −0.225913 0.225913i
\(628\) 0 0
\(629\) −14.1421 + 14.1421i −0.563884 + 0.563884i
\(630\) 0 0
\(631\) 44.0000i 1.75161i 0.482663 + 0.875806i \(0.339670\pi\)
−0.482663 + 0.875806i \(0.660330\pi\)
\(632\) 0 0
\(633\) 44.0000i 1.74884i
\(634\) 0 0
\(635\) 22.6274 22.6274i 0.897942 0.897942i
\(636\) 0 0
\(637\) 12.7279 + 12.7279i 0.504299 + 0.504299i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −29.6985 29.6985i −1.17119 1.17119i −0.981925 0.189269i \(-0.939388\pi\)
−0.189269 0.981925i \(-0.560612\pi\)
\(644\) 0 0
\(645\) −16.9706 + 16.9706i −0.668215 + 0.668215i
\(646\) 0 0
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 0 0
\(649\) 28.0000i 1.09910i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.6985 29.6985i −1.16219 1.16219i −0.983995 0.178197i \(-0.942974\pi\)
−0.178197 0.983995i \(-0.557026\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) −4.24264 4.24264i −0.165270 0.165270i 0.619627 0.784897i \(-0.287284\pi\)
−0.784897 + 0.619627i \(0.787284\pi\)
\(660\) 0 0
\(661\) 24.0416 24.0416i 0.935111 0.935111i −0.0629083 0.998019i \(-0.520038\pi\)
0.998019 + 0.0629083i \(0.0200376\pi\)
\(662\) 0 0
\(663\) 8.00000i 0.310694i
\(664\) 0 0
\(665\) 16.0000i 0.620453i
\(666\) 0 0
\(667\) −16.9706 + 16.9706i −0.657103 + 0.657103i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 0 0
\(675\) −2.82843 2.82843i −0.108866 0.108866i
\(676\) 0 0
\(677\) 15.5563 15.5563i 0.597879 0.597879i −0.341869 0.939748i \(-0.611060\pi\)
0.939748 + 0.341869i \(0.111060\pi\)
\(678\) 0 0
\(679\) 8.00000i 0.307012i
\(680\) 0 0
\(681\) 36.0000i 1.37952i
\(682\) 0 0
\(683\) 29.6985 29.6985i 1.13638 1.13638i 0.147287 0.989094i \(-0.452946\pi\)
0.989094 0.147287i \(-0.0470541\pi\)
\(684\) 0 0
\(685\) −14.1421 14.1421i −0.540343 0.540343i
\(686\) 0 0
\(687\) −28.0000 −1.06827
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −4.24264 4.24264i −0.161398 0.161398i 0.621788 0.783186i \(-0.286407\pi\)
−0.783186 + 0.621788i \(0.786407\pi\)
\(692\) 0 0
\(693\) 5.65685 5.65685i 0.214886 0.214886i
\(694\) 0 0
\(695\) 20.0000i 0.758643i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) −25.4558 + 25.4558i −0.962828 + 0.962828i
\(700\) 0 0
\(701\) 1.41421 + 1.41421i 0.0534141 + 0.0534141i 0.733309 0.679895i \(-0.237975\pi\)
−0.679895 + 0.733309i \(0.737975\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) 0 0
\(705\) −32.0000 −1.20519
\(706\) 0 0
\(707\) −16.9706 16.9706i −0.638244 0.638244i
\(708\) 0 0
\(709\) 15.5563 15.5563i 0.584231 0.584231i −0.351832 0.936063i \(-0.614441\pi\)
0.936063 + 0.351832i \(0.114441\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 5.65685 5.65685i 0.211554 0.211554i
\(716\) 0 0
\(717\) 33.9411 + 33.9411i 1.26755 + 1.26755i
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) −2.82843 2.82843i −0.105190 0.105190i
\(724\) 0 0
\(725\) 4.24264 4.24264i 0.157568 0.157568i
\(726\) 0 0
\(727\) 12.0000i 0.445055i 0.974926 + 0.222528i \(0.0714308\pi\)
−0.974926 + 0.222528i \(0.928569\pi\)
\(728\) 0 0
\(729\) 13.0000i 0.481481i
\(730\) 0 0
\(731\) −8.48528 + 8.48528i −0.313839 + 0.313839i
\(732\) 0 0
\(733\) −4.24264 4.24264i −0.156706 0.156706i 0.624400 0.781105i \(-0.285344\pi\)
−0.781105 + 0.624400i \(0.785344\pi\)
\(734\) 0 0
\(735\) −36.0000 −1.32788
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) −12.7279 12.7279i −0.468204 0.468204i 0.433128 0.901332i \(-0.357410\pi\)
−0.901332 + 0.433128i \(0.857410\pi\)
\(740\) 0 0
\(741\) −5.65685 + 5.65685i −0.207810 + 0.207810i
\(742\) 0 0
\(743\) 44.0000i 1.61420i 0.590412 + 0.807102i \(0.298965\pi\)
−0.590412 + 0.807102i \(0.701035\pi\)
\(744\) 0 0
\(745\) 36.0000i 1.31894i
\(746\) 0 0
\(747\) 4.24264 4.24264i 0.155230 0.155230i
\(748\) 0 0
\(749\) −5.65685 5.65685i −0.206697 0.206697i
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 36.0000 1.31191
\(754\) 0 0
\(755\) 5.65685 + 5.65685i 0.205874 + 0.205874i
\(756\) 0 0
\(757\) −32.5269 + 32.5269i −1.18221 + 1.18221i −0.203040 + 0.979170i \(0.565082\pi\)
−0.979170 + 0.203040i \(0.934918\pi\)
\(758\) 0 0
\(759\) 16.0000i 0.580763i
\(760\) 0 0
\(761\) 10.0000i 0.362500i −0.983437 0.181250i \(-0.941986\pi\)
0.983437 0.181250i \(-0.0580143\pi\)
\(762\) 0 0
\(763\) 16.9706 16.9706i 0.614376 0.614376i
\(764\) 0 0
\(765\) −2.82843 2.82843i −0.102262 0.102262i
\(766\) 0 0
\(767\) −28.0000 −1.01102
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −25.4558 25.4558i −0.916770 0.916770i
\(772\) 0 0
\(773\) 38.1838 38.1838i 1.37337 1.37337i 0.517985 0.855390i \(-0.326682\pi\)
0.855390 0.517985i \(-0.173318\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 80.0000i 2.86998i
\(778\) 0 0
\(779\) 8.48528 8.48528i 0.304017 0.304017i
\(780\) 0 0
\(781\) 16.9706 + 16.9706i 0.607254 + 0.607254i
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) −36.0000 −1.28490
\(786\) 0 0
\(787\) −15.5563 15.5563i −0.554524 0.554524i 0.373219 0.927743i \(-0.378254\pi\)
−0.927743 + 0.373219i \(0.878254\pi\)
\(788\) 0 0
\(789\) 16.9706 16.9706i 0.604168 0.604168i
\(790\) 0 0
\(791\) 8.00000i 0.284447i
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) −16.9706 + 16.9706i −0.601884 + 0.601884i
\(796\) 0 0
\(797\) 12.7279 + 12.7279i 0.450846 + 0.450846i 0.895635 0.444789i \(-0.146721\pi\)
−0.444789 + 0.895635i \(0.646721\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) 19.7990 + 19.7990i 0.698691 + 0.698691i
\(804\) 0 0
\(805\) 22.6274 22.6274i 0.797512 0.797512i
\(806\) 0 0
\(807\) 20.0000i 0.704033i
\(808\) 0 0
\(809\) 6.00000i 0.210949i −0.994422 0.105474i \(-0.966364\pi\)
0.994422 0.105474i \(-0.0336361\pi\)
\(810\) 0 0
\(811\) 12.7279 12.7279i 0.446938 0.446938i −0.447397 0.894335i \(-0.647649\pi\)
0.894335 + 0.447397i \(0.147649\pi\)
\(812\) 0 0
\(813\) −11.3137 11.3137i −0.396789 0.396789i
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) −5.65685 5.65685i −0.197666 0.197666i
\(820\) 0 0
\(821\) 7.07107 7.07107i 0.246782 0.246782i −0.572867 0.819649i \(-0.694169\pi\)
0.819649 + 0.572867i \(0.194169\pi\)
\(822\) 0 0
\(823\) 28.0000i 0.976019i 0.872838 + 0.488009i \(0.162277\pi\)
−0.872838 + 0.488009i \(0.837723\pi\)
\(824\) 0 0
\(825\) 4.00000i 0.139262i
\(826\) 0 0
\(827\) 15.5563 15.5563i 0.540947 0.540947i −0.382859 0.923807i \(-0.625061\pi\)
0.923807 + 0.382859i \(0.125061\pi\)
\(828\) 0 0
\(829\) −9.89949 9.89949i −0.343824 0.343824i 0.513979 0.857803i \(-0.328171\pi\)
−0.857803 + 0.513979i \(0.828171\pi\)
\(830\) 0 0
\(831\) 12.0000 0.416275
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 28.2843 + 28.2843i 0.978818 + 0.978818i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.0000i 1.24286i −0.783470 0.621429i \(-0.786552\pi\)
0.783470 0.621429i \(-0.213448\pi\)
\(840\) 0 0
\(841\) 7.00000i 0.241379i
\(842\) 0 0
\(843\) 25.4558 25.4558i 0.876746 0.876746i
\(844\) 0 0
\(845\) 12.7279 + 12.7279i 0.437854 + 0.437854i
\(846\) 0 0
\(847\) 28.0000 0.962091
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 28.2843 + 28.2843i 0.969572 + 0.969572i
\(852\) 0 0
\(853\) 18.3848 18.3848i 0.629483 0.629483i −0.318455 0.947938i \(-0.603164\pi\)
0.947938 + 0.318455i \(0.103164\pi\)
\(854\) 0 0
\(855\) 4.00000i 0.136797i
\(856\) 0 0
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) −35.3553 + 35.3553i −1.20631 + 1.20631i −0.234095 + 0.972214i \(0.575213\pi\)
−0.972214 + 0.234095i \(0.924787\pi\)
\(860\) 0 0
\(861\) 33.9411 + 33.9411i 1.15671 + 1.15671i
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) 18.3848 + 18.3848i 0.624380 + 0.624380i
\(868\) 0 0
\(869\) −11.3137 + 11.3137i −0.383791 + 0.383791i
\(870\) 0 0
\(871\) 20.0000i 0.677674i
\(872\) 0 0
\(873\) 2.00000i 0.0676897i
\(874\) 0 0
\(875\) −33.9411 + 33.9411i −1.14742 + 1.14742i
\(876\) 0 0
\(877\) 15.5563 + 15.5563i 0.525301 + 0.525301i 0.919167 0.393867i \(-0.128863\pi\)
−0.393867 + 0.919167i \(0.628863\pi\)
\(878\) 0 0
\(879\) −28.0000 −0.944417
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) 24.0416 + 24.0416i 0.809065 + 0.809065i 0.984492 0.175427i \(-0.0561306\pi\)
−0.175427 + 0.984492i \(0.556131\pi\)
\(884\) 0 0
\(885\) 39.5980 39.5980i 1.33107 1.33107i
\(886\) 0 0
\(887\) 36.0000i 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) 0 0
\(889\) 64.0000i 2.14649i
\(890\) 0 0
\(891\) 15.5563 15.5563i 0.521157 0.521157i
\(892\) 0 0
\(893\) −11.3137 11.3137i −0.378599 0.378599i
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 16.0000 0.534224
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −8.48528 + 8.48528i −0.282686 + 0.282686i
\(902\) 0 0
\(903\) 48.0000i 1.59734i
\(904\) 0 0
\(905\) 4.00000i 0.132964i
\(906\) 0 0
\(907\) −26.8701 + 26.8701i −0.892206 + 0.892206i −0.994730 0.102525i \(-0.967308\pi\)
0.102525 + 0.994730i \(0.467308\pi\)
\(908\) 0 0
\(909\) 4.24264 + 4.24264i 0.140720 + 0.140720i
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) 5.65685 + 5.65685i 0.187010 + 0.187010i
\(916\) 0 0
\(917\) 16.9706 16.9706i 0.560417 0.560417i
\(918\) 0 0
\(919\) 36.0000i 1.18753i −0.804638 0.593765i \(-0.797641\pi\)
0.804638 0.593765i \(-0.202359\pi\)
\(920\) 0 0
\(921\) 36.0000i 1.18624i
\(922\) 0 0
\(923\) 16.9706 16.9706i 0.558593 0.558593i
\(924\) 0 0
\(925\) −7.07107 7.07107i −0.232495 0.232495i
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −12.7279 12.7279i −0.417141 0.417141i
\(932\) 0 0
\(933\) 39.5980 39.5980i 1.29638 1.29638i
\(934\) 0 0
\(935\) 8.00000i 0.261628i
\(936\) 0 0
\(937\) 46.0000i 1.50275i 0.659873 + 0.751377i \(0.270610\pi\)
−0.659873 + 0.751377i \(0.729390\pi\)
\(938\) 0 0
\(939\) −14.1421 + 14.1421i −0.461511 + 0.461511i
\(940\) 0 0
\(941\) 26.8701 + 26.8701i 0.875939 + 0.875939i 0.993112 0.117173i \(-0.0373831\pi\)
−0.117173 + 0.993112i \(0.537383\pi\)
\(942\) 0 0
\(943\) −24.0000 −0.781548
\(944\) 0 0
\(945\) −32.0000 −1.04096
\(946\) 0 0
\(947\) −9.89949 9.89949i −0.321690 0.321690i 0.527725 0.849415i \(-0.323045\pi\)
−0.849415 + 0.527725i \(0.823045\pi\)
\(948\) 0 0
\(949\) 19.7990 19.7990i 0.642702 0.642702i
\(950\) 0 0
\(951\) 12.0000i 0.389127i
\(952\) 0 0
\(953\) 58.0000i 1.87880i −0.342817 0.939402i \(-0.611381\pi\)
0.342817 0.939402i \(-0.388619\pi\)
\(954\) 0 0
\(955\) −22.6274 + 22.6274i −0.732206 + 0.732206i
\(956\) 0 0
\(957\) 16.9706 + 16.9706i 0.548580 + 0.548580i
\(958\) 0 0
\(959\) 40.0000 1.29167
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 1.41421 + 1.41421i 0.0455724 + 0.0455724i
\(964\) 0 0
\(965\) 2.82843 2.82843i 0.0910503 0.0910503i
\(966\) 0 0
\(967\) 28.0000i 0.900419i 0.892923 + 0.450210i \(0.148651\pi\)
−0.892923 + 0.450210i \(0.851349\pi\)
\(968\) 0 0
\(969\) 8.00000i 0.256997i
\(970\) 0 0
\(971\) −26.8701 + 26.8701i −0.862301 + 0.862301i −0.991605 0.129304i \(-0.958726\pi\)
0.129304 + 0.991605i \(0.458726\pi\)
\(972\) 0 0
\(973\) −28.2843 28.2843i −0.906752 0.906752i
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 2.82843 + 2.82843i 0.0903969 + 0.0903969i
\(980\) 0 0
\(981\) −4.24264 + 4.24264i −0.135457 + 0.135457i
\(982\) 0 0
\(983\) 20.0000i 0.637901i −0.947771 0.318950i \(-0.896670\pi\)
0.947771 0.318950i \(-0.103330\pi\)
\(984\) 0 0
\(985\) 28.0000i 0.892154i
\(986\) 0 0
\(987\) 45.2548 45.2548i 1.44048 1.44048i
\(988\) 0 0
\(989\) 16.9706 + 16.9706i 0.539633 + 0.539633i
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 28.0000 0.888553
\(994\) 0 0
\(995\) 5.65685 + 5.65685i 0.179334 + 0.179334i
\(996\) 0 0
\(997\) 38.1838 38.1838i 1.20929 1.20929i 0.238036 0.971256i \(-0.423497\pi\)
0.971256 0.238036i \(-0.0765035\pi\)
\(998\) 0 0
\(999\) 40.0000i 1.26554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1024.2.e.m.257.1 4
4.3 odd 2 1024.2.e.i.257.2 4
8.3 odd 2 1024.2.e.i.257.1 4
8.5 even 2 inner 1024.2.e.m.257.2 4
16.3 odd 4 1024.2.e.i.769.1 4
16.5 even 4 inner 1024.2.e.m.769.1 4
16.11 odd 4 1024.2.e.i.769.2 4
16.13 even 4 inner 1024.2.e.m.769.2 4
32.3 odd 8 256.2.b.c.129.2 2
32.5 even 8 128.2.a.c.1.1 yes 1
32.11 odd 8 128.2.a.d.1.1 yes 1
32.13 even 8 256.2.b.a.129.2 2
32.19 odd 8 256.2.b.c.129.1 2
32.21 even 8 128.2.a.b.1.1 yes 1
32.27 odd 8 128.2.a.a.1.1 1
32.29 even 8 256.2.b.a.129.1 2
96.5 odd 8 1152.2.a.r.1.1 1
96.11 even 8 1152.2.a.c.1.1 1
96.29 odd 8 2304.2.d.b.1153.2 2
96.35 even 8 2304.2.d.r.1153.2 2
96.53 odd 8 1152.2.a.h.1.1 1
96.59 even 8 1152.2.a.m.1.1 1
96.77 odd 8 2304.2.d.b.1153.1 2
96.83 even 8 2304.2.d.r.1153.1 2
160.27 even 8 3200.2.c.l.2049.2 2
160.37 odd 8 3200.2.c.f.2049.1 2
160.43 even 8 3200.2.c.e.2049.2 2
160.53 odd 8 3200.2.c.k.2049.1 2
160.59 odd 8 3200.2.a.x.1.1 1
160.69 even 8 3200.2.a.e.1.1 1
160.107 even 8 3200.2.c.e.2049.1 2
160.117 odd 8 3200.2.c.k.2049.2 2
160.123 even 8 3200.2.c.l.2049.1 2
160.133 odd 8 3200.2.c.f.2049.2 2
160.139 odd 8 3200.2.a.h.1.1 1
160.149 even 8 3200.2.a.u.1.1 1
224.27 even 8 6272.2.a.h.1.1 1
224.69 odd 8 6272.2.a.b.1.1 1
224.139 even 8 6272.2.a.a.1.1 1
224.181 odd 8 6272.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.2.a.a.1.1 1 32.27 odd 8
128.2.a.b.1.1 yes 1 32.21 even 8
128.2.a.c.1.1 yes 1 32.5 even 8
128.2.a.d.1.1 yes 1 32.11 odd 8
256.2.b.a.129.1 2 32.29 even 8
256.2.b.a.129.2 2 32.13 even 8
256.2.b.c.129.1 2 32.19 odd 8
256.2.b.c.129.2 2 32.3 odd 8
1024.2.e.i.257.1 4 8.3 odd 2
1024.2.e.i.257.2 4 4.3 odd 2
1024.2.e.i.769.1 4 16.3 odd 4
1024.2.e.i.769.2 4 16.11 odd 4
1024.2.e.m.257.1 4 1.1 even 1 trivial
1024.2.e.m.257.2 4 8.5 even 2 inner
1024.2.e.m.769.1 4 16.5 even 4 inner
1024.2.e.m.769.2 4 16.13 even 4 inner
1152.2.a.c.1.1 1 96.11 even 8
1152.2.a.h.1.1 1 96.53 odd 8
1152.2.a.m.1.1 1 96.59 even 8
1152.2.a.r.1.1 1 96.5 odd 8
2304.2.d.b.1153.1 2 96.77 odd 8
2304.2.d.b.1153.2 2 96.29 odd 8
2304.2.d.r.1153.1 2 96.83 even 8
2304.2.d.r.1153.2 2 96.35 even 8
3200.2.a.e.1.1 1 160.69 even 8
3200.2.a.h.1.1 1 160.139 odd 8
3200.2.a.u.1.1 1 160.149 even 8
3200.2.a.x.1.1 1 160.59 odd 8
3200.2.c.e.2049.1 2 160.107 even 8
3200.2.c.e.2049.2 2 160.43 even 8
3200.2.c.f.2049.1 2 160.37 odd 8
3200.2.c.f.2049.2 2 160.133 odd 8
3200.2.c.k.2049.1 2 160.53 odd 8
3200.2.c.k.2049.2 2 160.117 odd 8
3200.2.c.l.2049.1 2 160.123 even 8
3200.2.c.l.2049.2 2 160.27 even 8
6272.2.a.a.1.1 1 224.139 even 8
6272.2.a.b.1.1 1 224.69 odd 8
6272.2.a.g.1.1 1 224.181 odd 8
6272.2.a.h.1.1 1 224.27 even 8