Properties

Label 1050.3.p.a.901.2
Level $1050$
Weight $3$
Character 1050.901
Analytic conductor $28.610$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,3,Mod(451,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.451");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.2
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1050.901
Dual form 1050.3.p.a.451.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +2.44949i q^{6} +(6.74264 - 1.88064i) q^{7} -2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +2.44949i q^{6} +(6.74264 - 1.88064i) q^{7} -2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +(-3.00000 - 5.19615i) q^{11} +(3.00000 + 1.73205i) q^{12} +17.8639i q^{13} +(2.46447 - 9.58783i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(16.2426 - 9.37769i) q^{17} +(-2.12132 - 3.67423i) q^{18} +(-14.7426 - 8.51167i) q^{19} +(-8.48528 + 8.66025i) q^{21} -8.48528 q^{22} +(6.72792 - 11.6531i) q^{23} +(4.24264 - 2.44949i) q^{24} +(21.8787 + 12.6317i) q^{26} +5.19615i q^{27} +(-10.0000 - 9.79796i) q^{28} +33.9411 q^{29} +(12.7721 - 7.37396i) q^{31} +(2.82843 + 4.89898i) q^{32} +(9.00000 + 5.19615i) q^{33} -26.5241i q^{34} -6.00000 q^{36} +(2.98528 - 5.17066i) q^{37} +(-20.8492 + 12.0373i) q^{38} +(-15.4706 - 26.7958i) q^{39} +35.2354i q^{41} +(4.60660 + 16.5160i) q^{42} -15.4853 q^{43} +(-6.00000 + 10.3923i) q^{44} +(-9.51472 - 16.4800i) q^{46} +(28.7574 + 16.6031i) q^{47} -6.92820i q^{48} +(41.9264 - 25.3609i) q^{49} +(-16.2426 + 28.1331i) q^{51} +(30.9411 - 17.8639i) q^{52} +(-17.2721 - 29.9161i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-19.0711 + 5.31925i) q^{56} +29.4853 q^{57} +(24.0000 - 41.5692i) q^{58} +(23.6985 - 13.6823i) q^{59} +(-34.9706 - 20.1903i) q^{61} -20.8567i q^{62} +(5.22792 - 20.3389i) q^{63} +8.00000 q^{64} +(12.7279 - 7.34847i) q^{66} +(-57.1985 - 99.0707i) q^{67} +(-32.4853 - 18.7554i) q^{68} +23.3062i q^{69} +18.6030 q^{71} +(-4.24264 + 7.34847i) q^{72} +(101.353 - 58.5161i) q^{73} +(-4.22183 - 7.31242i) q^{74} +34.0467i q^{76} +(-30.0000 - 29.3939i) q^{77} -43.7574 q^{78} +(44.1690 - 76.5030i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(43.1543 + 24.9152i) q^{82} -75.7601i q^{83} +(23.4853 + 6.03668i) q^{84} +(-10.9497 + 18.9655i) q^{86} +(-50.9117 + 29.3939i) q^{87} +(8.48528 + 14.6969i) q^{88} +(-18.0000 - 10.3923i) q^{89} +(33.5955 + 120.450i) q^{91} -26.9117 q^{92} +(-12.7721 + 22.1219i) q^{93} +(40.6690 - 23.4803i) q^{94} +(-8.48528 - 4.89898i) q^{96} -30.5826i q^{97} +(-1.41421 - 69.2820i) q^{98} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 4 q^{4} + 10 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} - 4 q^{4} + 10 q^{7} + 6 q^{9} - 12 q^{11} + 12 q^{12} + 24 q^{14} - 8 q^{16} + 48 q^{17} - 42 q^{19} - 24 q^{23} + 96 q^{26} - 40 q^{28} + 102 q^{31} + 36 q^{33} - 24 q^{36} - 22 q^{37} - 24 q^{38} + 6 q^{39} - 24 q^{42} - 28 q^{43} - 24 q^{44} - 72 q^{46} + 132 q^{47} - 2 q^{49} - 48 q^{51} - 12 q^{52} - 120 q^{53} - 48 q^{56} + 84 q^{57} + 96 q^{58} - 24 q^{59} - 72 q^{61} - 30 q^{63} + 32 q^{64} - 110 q^{67} - 96 q^{68} + 312 q^{71} + 66 q^{73} - 48 q^{74} - 120 q^{77} - 192 q^{78} - 10 q^{79} - 18 q^{81} - 48 q^{82} + 60 q^{84} - 24 q^{86} - 72 q^{89} - 222 q^{91} + 96 q^{92} - 102 q^{93} - 24 q^{94} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.353553 0.612372i
\(3\) −1.50000 + 0.866025i −0.500000 + 0.288675i
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) 6.74264 1.88064i 0.963234 0.268662i
\(8\) −2.82843 −0.353553
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 0 0
\(11\) −3.00000 5.19615i −0.272727 0.472377i 0.696832 0.717234i \(-0.254592\pi\)
−0.969559 + 0.244857i \(0.921259\pi\)
\(12\) 3.00000 + 1.73205i 0.250000 + 0.144338i
\(13\) 17.8639i 1.37414i 0.726590 + 0.687072i \(0.241104\pi\)
−0.726590 + 0.687072i \(0.758896\pi\)
\(14\) 2.46447 9.58783i 0.176033 0.684845i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 16.2426 9.37769i 0.955449 0.551629i 0.0606799 0.998157i \(-0.480673\pi\)
0.894770 + 0.446528i \(0.147340\pi\)
\(18\) −2.12132 3.67423i −0.117851 0.204124i
\(19\) −14.7426 8.51167i −0.775928 0.447983i 0.0590569 0.998255i \(-0.481191\pi\)
−0.834985 + 0.550272i \(0.814524\pi\)
\(20\) 0 0
\(21\) −8.48528 + 8.66025i −0.404061 + 0.412393i
\(22\) −8.48528 −0.385695
\(23\) 6.72792 11.6531i 0.292518 0.506657i −0.681886 0.731458i \(-0.738840\pi\)
0.974405 + 0.224802i \(0.0721734\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 0 0
\(26\) 21.8787 + 12.6317i 0.841488 + 0.485833i
\(27\) 5.19615i 0.192450i
\(28\) −10.0000 9.79796i −0.357143 0.349927i
\(29\) 33.9411 1.17038 0.585192 0.810895i \(-0.301019\pi\)
0.585192 + 0.810895i \(0.301019\pi\)
\(30\) 0 0
\(31\) 12.7721 7.37396i 0.412003 0.237870i −0.279647 0.960103i \(-0.590218\pi\)
0.691650 + 0.722233i \(0.256884\pi\)
\(32\) 2.82843 + 4.89898i 0.0883883 + 0.153093i
\(33\) 9.00000 + 5.19615i 0.272727 + 0.157459i
\(34\) 26.5241i 0.780121i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 2.98528 5.17066i 0.0806833 0.139748i −0.822860 0.568244i \(-0.807623\pi\)
0.903544 + 0.428496i \(0.140956\pi\)
\(38\) −20.8492 + 12.0373i −0.548664 + 0.316771i
\(39\) −15.4706 26.7958i −0.396681 0.687072i
\(40\) 0 0
\(41\) 35.2354i 0.859399i 0.902972 + 0.429700i \(0.141381\pi\)
−0.902972 + 0.429700i \(0.858619\pi\)
\(42\) 4.60660 + 16.5160i 0.109681 + 0.393239i
\(43\) −15.4853 −0.360123 −0.180061 0.983655i \(-0.557630\pi\)
−0.180061 + 0.983655i \(0.557630\pi\)
\(44\) −6.00000 + 10.3923i −0.136364 + 0.236189i
\(45\) 0 0
\(46\) −9.51472 16.4800i −0.206842 0.358260i
\(47\) 28.7574 + 16.6031i 0.611859 + 0.353257i 0.773693 0.633561i \(-0.218408\pi\)
−0.161834 + 0.986818i \(0.551741\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 41.9264 25.3609i 0.855641 0.517570i
\(50\) 0 0
\(51\) −16.2426 + 28.1331i −0.318483 + 0.551629i
\(52\) 30.9411 17.8639i 0.595022 0.343536i
\(53\) −17.2721 29.9161i −0.325888 0.564455i 0.655803 0.754932i \(-0.272330\pi\)
−0.981692 + 0.190477i \(0.938997\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 0 0
\(56\) −19.0711 + 5.31925i −0.340555 + 0.0949865i
\(57\) 29.4853 0.517286
\(58\) 24.0000 41.5692i 0.413793 0.716711i
\(59\) 23.6985 13.6823i 0.401669 0.231904i −0.285535 0.958368i \(-0.592171\pi\)
0.687204 + 0.726465i \(0.258838\pi\)
\(60\) 0 0
\(61\) −34.9706 20.1903i −0.573288 0.330988i 0.185174 0.982706i \(-0.440715\pi\)
−0.758461 + 0.651718i \(0.774049\pi\)
\(62\) 20.8567i 0.336399i
\(63\) 5.22792 20.3389i 0.0829829 0.322839i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 12.7279 7.34847i 0.192847 0.111340i
\(67\) −57.1985 99.0707i −0.853709 1.47867i −0.877838 0.478958i \(-0.841015\pi\)
0.0241291 0.999709i \(-0.492319\pi\)
\(68\) −32.4853 18.7554i −0.477725 0.275814i
\(69\) 23.3062i 0.337771i
\(70\) 0 0
\(71\) 18.6030 0.262015 0.131007 0.991381i \(-0.458179\pi\)
0.131007 + 0.991381i \(0.458179\pi\)
\(72\) −4.24264 + 7.34847i −0.0589256 + 0.102062i
\(73\) 101.353 58.5161i 1.38839 0.801590i 0.395260 0.918569i \(-0.370654\pi\)
0.993134 + 0.116979i \(0.0373210\pi\)
\(74\) −4.22183 7.31242i −0.0570517 0.0988164i
\(75\) 0 0
\(76\) 34.0467i 0.447983i
\(77\) −30.0000 29.3939i −0.389610 0.381739i
\(78\) −43.7574 −0.560992
\(79\) 44.1690 76.5030i 0.559102 0.968393i −0.438470 0.898746i \(-0.644479\pi\)
0.997572 0.0696469i \(-0.0221873\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 43.1543 + 24.9152i 0.526272 + 0.303843i
\(83\) 75.7601i 0.912772i −0.889782 0.456386i \(-0.849144\pi\)
0.889782 0.456386i \(-0.150856\pi\)
\(84\) 23.4853 + 6.03668i 0.279587 + 0.0718653i
\(85\) 0 0
\(86\) −10.9497 + 18.9655i −0.127323 + 0.220529i
\(87\) −50.9117 + 29.3939i −0.585192 + 0.337861i
\(88\) 8.48528 + 14.6969i 0.0964237 + 0.167011i
\(89\) −18.0000 10.3923i −0.202247 0.116767i 0.395456 0.918485i \(-0.370587\pi\)
−0.597703 + 0.801717i \(0.703920\pi\)
\(90\) 0 0
\(91\) 33.5955 + 120.450i 0.369181 + 1.32362i
\(92\) −26.9117 −0.292518
\(93\) −12.7721 + 22.1219i −0.137334 + 0.237870i
\(94\) 40.6690 23.4803i 0.432649 0.249790i
\(95\) 0 0
\(96\) −8.48528 4.89898i −0.0883883 0.0510310i
\(97\) 30.5826i 0.315284i −0.987496 0.157642i \(-0.949611\pi\)
0.987496 0.157642i \(-0.0503892\pi\)
\(98\) −1.41421 69.2820i −0.0144308 0.706960i
\(99\) −18.0000 −0.181818
\(100\) 0 0
\(101\) 110.823 63.9839i 1.09726 0.633504i 0.161761 0.986830i \(-0.448283\pi\)
0.935500 + 0.353326i \(0.114949\pi\)
\(102\) 22.9706 + 39.7862i 0.225202 + 0.390061i
\(103\) 70.1102 + 40.4781i 0.680681 + 0.392992i 0.800112 0.599851i \(-0.204774\pi\)
−0.119430 + 0.992843i \(0.538107\pi\)
\(104\) 50.5266i 0.485833i
\(105\) 0 0
\(106\) −48.8528 −0.460876
\(107\) 84.7279 146.753i 0.791850 1.37152i −0.132971 0.991120i \(-0.542452\pi\)
0.924820 0.380404i \(-0.124215\pi\)
\(108\) 9.00000 5.19615i 0.0833333 0.0481125i
\(109\) −89.4706 154.968i −0.820831 1.42172i −0.905064 0.425275i \(-0.860177\pi\)
0.0842335 0.996446i \(-0.473156\pi\)
\(110\) 0 0
\(111\) 10.3413i 0.0931650i
\(112\) −6.97056 + 27.1185i −0.0622372 + 0.242129i
\(113\) 17.3970 0.153955 0.0769777 0.997033i \(-0.475473\pi\)
0.0769777 + 0.997033i \(0.475473\pi\)
\(114\) 20.8492 36.1119i 0.182888 0.316771i
\(115\) 0 0
\(116\) −33.9411 58.7878i −0.292596 0.506791i
\(117\) 46.4117 + 26.7958i 0.396681 + 0.229024i
\(118\) 38.6995i 0.327962i
\(119\) 91.8823 93.7769i 0.772120 0.788041i
\(120\) 0 0
\(121\) 42.5000 73.6122i 0.351240 0.608365i
\(122\) −49.4558 + 28.5533i −0.405376 + 0.234044i
\(123\) −30.5147 52.8530i −0.248087 0.429700i
\(124\) −25.5442 14.7479i −0.206001 0.118935i
\(125\) 0 0
\(126\) −21.2132 20.7846i −0.168359 0.164957i
\(127\) −167.426 −1.31832 −0.659159 0.752004i \(-0.729088\pi\)
−0.659159 + 0.752004i \(0.729088\pi\)
\(128\) 5.65685 9.79796i 0.0441942 0.0765466i
\(129\) 23.2279 13.4106i 0.180061 0.103959i
\(130\) 0 0
\(131\) −1.54416 0.891519i −0.0117874 0.00680549i 0.494095 0.869408i \(-0.335500\pi\)
−0.505882 + 0.862603i \(0.668833\pi\)
\(132\) 20.7846i 0.157459i
\(133\) −115.412 29.6656i −0.867757 0.223049i
\(134\) −161.782 −1.20733
\(135\) 0 0
\(136\) −45.9411 + 26.5241i −0.337802 + 0.195030i
\(137\) 50.4853 + 87.4431i 0.368506 + 0.638271i 0.989332 0.145677i \(-0.0465362\pi\)
−0.620826 + 0.783948i \(0.713203\pi\)
\(138\) 28.5442 + 16.4800i 0.206842 + 0.119420i
\(139\) 140.542i 1.01110i −0.862799 0.505548i \(-0.831290\pi\)
0.862799 0.505548i \(-0.168710\pi\)
\(140\) 0 0
\(141\) −57.5147 −0.407906
\(142\) 13.1543 22.7840i 0.0926361 0.160450i
\(143\) 92.8234 53.5916i 0.649115 0.374766i
\(144\) 6.00000 + 10.3923i 0.0416667 + 0.0721688i
\(145\) 0 0
\(146\) 165.508i 1.13362i
\(147\) −40.9264 + 74.3507i −0.278411 + 0.505787i
\(148\) −11.9411 −0.0806833
\(149\) −91.4558 + 158.406i −0.613798 + 1.06313i 0.376797 + 0.926296i \(0.377026\pi\)
−0.990594 + 0.136833i \(0.956308\pi\)
\(150\) 0 0
\(151\) 144.397 + 250.103i 0.956271 + 1.65631i 0.731432 + 0.681915i \(0.238852\pi\)
0.224840 + 0.974396i \(0.427814\pi\)
\(152\) 41.6985 + 24.0746i 0.274332 + 0.158386i
\(153\) 56.2662i 0.367753i
\(154\) −57.2132 + 15.9577i −0.371514 + 0.103622i
\(155\) 0 0
\(156\) −30.9411 + 53.5916i −0.198341 + 0.343536i
\(157\) −162.000 + 93.5307i −1.03185 + 0.595737i −0.917513 0.397705i \(-0.869807\pi\)
−0.114334 + 0.993442i \(0.536473\pi\)
\(158\) −62.4645 108.192i −0.395345 0.684757i
\(159\) 51.8162 + 29.9161i 0.325888 + 0.188152i
\(160\) 0 0
\(161\) 23.4487 91.2255i 0.145644 0.566618i
\(162\) −12.7279 −0.0785674
\(163\) 8.02944 13.9074i 0.0492604 0.0853214i −0.840344 0.542054i \(-0.817647\pi\)
0.889604 + 0.456732i \(0.150980\pi\)
\(164\) 61.0294 35.2354i 0.372131 0.214850i
\(165\) 0 0
\(166\) −92.7868 53.5705i −0.558957 0.322714i
\(167\) 176.117i 1.05459i 0.849681 + 0.527297i \(0.176794\pi\)
−0.849681 + 0.527297i \(0.823206\pi\)
\(168\) 24.0000 24.4949i 0.142857 0.145803i
\(169\) −150.118 −0.888271
\(170\) 0 0
\(171\) −44.2279 + 25.5350i −0.258643 + 0.149328i
\(172\) 15.4853 + 26.8213i 0.0900307 + 0.155938i
\(173\) 200.184 + 115.576i 1.15713 + 0.668070i 0.950615 0.310373i \(-0.100454\pi\)
0.206517 + 0.978443i \(0.433787\pi\)
\(174\) 83.1384i 0.477807i
\(175\) 0 0
\(176\) 24.0000 0.136364
\(177\) −23.6985 + 41.0470i −0.133890 + 0.231904i
\(178\) −25.4558 + 14.6969i −0.143010 + 0.0825671i
\(179\) 42.6396 + 73.8540i 0.238210 + 0.412592i 0.960201 0.279311i \(-0.0901060\pi\)
−0.721991 + 0.691903i \(0.756773\pi\)
\(180\) 0 0
\(181\) 5.58655i 0.0308649i −0.999881 0.0154325i \(-0.995087\pi\)
0.999881 0.0154325i \(-0.00491250\pi\)
\(182\) 171.276 + 44.0249i 0.941075 + 0.241895i
\(183\) 69.9411 0.382192
\(184\) −19.0294 + 32.9600i −0.103421 + 0.179130i
\(185\) 0 0
\(186\) 18.0624 + 31.2851i 0.0971099 + 0.168199i
\(187\) −97.4558 56.2662i −0.521154 0.300889i
\(188\) 66.4123i 0.353257i
\(189\) 9.77208 + 35.0358i 0.0517041 + 0.185375i
\(190\) 0 0
\(191\) −92.6985 + 160.558i −0.485332 + 0.840620i −0.999858 0.0168547i \(-0.994635\pi\)
0.514526 + 0.857475i \(0.327968\pi\)
\(192\) −12.0000 + 6.92820i −0.0625000 + 0.0360844i
\(193\) 113.897 + 197.275i 0.590140 + 1.02215i 0.994213 + 0.107425i \(0.0342607\pi\)
−0.404073 + 0.914727i \(0.632406\pi\)
\(194\) −37.4558 21.6251i −0.193071 0.111470i
\(195\) 0 0
\(196\) −85.8528 47.2577i −0.438025 0.241111i
\(197\) −123.161 −0.625185 −0.312593 0.949887i \(-0.601197\pi\)
−0.312593 + 0.949887i \(0.601197\pi\)
\(198\) −12.7279 + 22.0454i −0.0642824 + 0.111340i
\(199\) 5.39697 3.11594i 0.0271205 0.0156580i −0.486378 0.873748i \(-0.661682\pi\)
0.513499 + 0.858090i \(0.328349\pi\)
\(200\) 0 0
\(201\) 171.595 + 99.0707i 0.853709 + 0.492889i
\(202\) 180.974i 0.895910i
\(203\) 228.853 63.8309i 1.12735 0.314438i
\(204\) 64.9706 0.318483
\(205\) 0 0
\(206\) 99.1508 57.2447i 0.481314 0.277887i
\(207\) −20.1838 34.9593i −0.0975061 0.168886i
\(208\) −61.8823 35.7277i −0.297511 0.171768i
\(209\) 102.140i 0.488708i
\(210\) 0 0
\(211\) −124.912 −0.591999 −0.295999 0.955188i \(-0.595653\pi\)
−0.295999 + 0.955188i \(0.595653\pi\)
\(212\) −34.5442 + 59.8322i −0.162944 + 0.282228i
\(213\) −27.9045 + 16.1107i −0.131007 + 0.0756371i
\(214\) −119.823 207.540i −0.559922 0.969814i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) 72.2498 73.7396i 0.332948 0.339814i
\(218\) −253.061 −1.16083
\(219\) −101.353 + 175.548i −0.462798 + 0.801590i
\(220\) 0 0
\(221\) 167.522 + 290.156i 0.758017 + 1.31292i
\(222\) 12.6655 + 7.31242i 0.0570517 + 0.0329388i
\(223\) 228.631i 1.02525i 0.858613 + 0.512625i \(0.171327\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(224\) 28.2843 + 27.7128i 0.126269 + 0.123718i
\(225\) 0 0
\(226\) 12.3015 21.3068i 0.0544315 0.0942781i
\(227\) 146.823 84.7685i 0.646799 0.373430i −0.140430 0.990091i \(-0.544848\pi\)
0.787229 + 0.616661i \(0.211515\pi\)
\(228\) −29.4853 51.0700i −0.129321 0.223991i
\(229\) 30.0442 + 17.3460i 0.131197 + 0.0757467i 0.564162 0.825664i \(-0.309199\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(230\) 0 0
\(231\) 70.4558 + 18.1101i 0.305004 + 0.0783985i
\(232\) −96.0000 −0.413793
\(233\) −127.243 + 220.391i −0.546106 + 0.945883i 0.452431 + 0.891800i \(0.350557\pi\)
−0.998536 + 0.0540833i \(0.982776\pi\)
\(234\) 65.6360 37.8950i 0.280496 0.161944i
\(235\) 0 0
\(236\) −47.3970 27.3647i −0.200835 0.115952i
\(237\) 153.006i 0.645595i
\(238\) −49.8823 178.843i −0.209589 0.751440i
\(239\) 197.147 0.824884 0.412442 0.910984i \(-0.364676\pi\)
0.412442 + 0.910984i \(0.364676\pi\)
\(240\) 0 0
\(241\) 76.6173 44.2350i 0.317914 0.183548i −0.332548 0.943086i \(-0.607908\pi\)
0.650462 + 0.759538i \(0.274575\pi\)
\(242\) −60.1041 104.103i −0.248364 0.430179i
\(243\) 13.5000 + 7.79423i 0.0555556 + 0.0320750i
\(244\) 80.7611i 0.330988i
\(245\) 0 0
\(246\) −86.3087 −0.350848
\(247\) 152.051 263.361i 0.615592 1.06624i
\(248\) −36.1249 + 20.8567i −0.145665 + 0.0840997i
\(249\) 65.6102 + 113.640i 0.263495 + 0.456386i
\(250\) 0 0
\(251\) 215.903i 0.860172i −0.902788 0.430086i \(-0.858483\pi\)
0.902788 0.430086i \(-0.141517\pi\)
\(252\) −40.4558 + 11.2838i −0.160539 + 0.0447771i
\(253\) −80.7351 −0.319111
\(254\) −118.388 + 205.055i −0.466096 + 0.807302i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 3.72792 + 2.15232i 0.0145055 + 0.00837477i 0.507235 0.861808i \(-0.330668\pi\)
−0.492730 + 0.870182i \(0.664001\pi\)
\(258\) 37.9310i 0.147020i
\(259\) 10.4045 40.4781i 0.0401720 0.156286i
\(260\) 0 0
\(261\) 50.9117 88.1816i 0.195064 0.337861i
\(262\) −2.18377 + 1.26080i −0.00833499 + 0.00481221i
\(263\) 141.338 + 244.805i 0.537407 + 0.930817i 0.999043 + 0.0437468i \(0.0139295\pi\)
−0.461635 + 0.887070i \(0.652737\pi\)
\(264\) −25.4558 14.6969i −0.0964237 0.0556702i
\(265\) 0 0
\(266\) −117.941 + 120.373i −0.443388 + 0.452531i
\(267\) 36.0000 0.134831
\(268\) −114.397 + 198.141i −0.426854 + 0.739333i
\(269\) −330.765 + 190.967i −1.22961 + 0.709914i −0.966948 0.254974i \(-0.917933\pi\)
−0.262660 + 0.964888i \(0.584600\pi\)
\(270\) 0 0
\(271\) −73.0294 42.1636i −0.269481 0.155585i 0.359171 0.933272i \(-0.383060\pi\)
−0.628652 + 0.777687i \(0.716393\pi\)
\(272\) 75.0215i 0.275814i
\(273\) −154.706 151.580i −0.566687 0.555238i
\(274\) 142.794 0.521146
\(275\) 0 0
\(276\) 40.3675 23.3062i 0.146259 0.0844428i
\(277\) −68.5589 118.747i −0.247505 0.428691i 0.715328 0.698789i \(-0.246277\pi\)
−0.962833 + 0.270098i \(0.912944\pi\)
\(278\) −172.128 99.3784i −0.619167 0.357476i
\(279\) 44.2438i 0.158580i
\(280\) 0 0
\(281\) −325.103 −1.15695 −0.578474 0.815701i \(-0.696352\pi\)
−0.578474 + 0.815701i \(0.696352\pi\)
\(282\) −40.6690 + 70.4409i −0.144216 + 0.249790i
\(283\) −168.507 + 97.2876i −0.595432 + 0.343773i −0.767242 0.641357i \(-0.778372\pi\)
0.171811 + 0.985130i \(0.445038\pi\)
\(284\) −18.6030 32.2214i −0.0655036 0.113456i
\(285\) 0 0
\(286\) 151.580i 0.530000i
\(287\) 66.2649 + 237.579i 0.230888 + 0.827803i
\(288\) 16.9706 0.0589256
\(289\) 31.3823 54.3557i 0.108589 0.188082i
\(290\) 0 0
\(291\) 26.4853 + 45.8739i 0.0910147 + 0.157642i
\(292\) −202.706 117.032i −0.694197 0.400795i
\(293\) 239.702i 0.818095i 0.912513 + 0.409048i \(0.134139\pi\)
−0.912513 + 0.409048i \(0.865861\pi\)
\(294\) 62.1213 + 102.698i 0.211297 + 0.349314i
\(295\) 0 0
\(296\) −8.44365 + 14.6248i −0.0285258 + 0.0494082i
\(297\) 27.0000 15.5885i 0.0909091 0.0524864i
\(298\) 129.338 + 224.020i 0.434020 + 0.751745i
\(299\) 208.169 + 120.187i 0.696219 + 0.401962i
\(300\) 0 0
\(301\) −104.412 + 29.1222i −0.346883 + 0.0967515i
\(302\) 408.416 1.35237
\(303\) −110.823 + 191.952i −0.365754 + 0.633504i
\(304\) 58.9706 34.0467i 0.193982 0.111996i
\(305\) 0 0
\(306\) −68.9117 39.7862i −0.225202 0.130020i
\(307\) 540.272i 1.75984i −0.475120 0.879921i \(-0.657595\pi\)
0.475120 0.879921i \(-0.342405\pi\)
\(308\) −20.9117 + 81.3554i −0.0678951 + 0.264141i
\(309\) −140.220 −0.453788
\(310\) 0 0
\(311\) 350.044 202.098i 1.12554 0.649832i 0.182732 0.983163i \(-0.441506\pi\)
0.942810 + 0.333330i \(0.108172\pi\)
\(312\) 43.7574 + 75.7900i 0.140248 + 0.242917i
\(313\) 113.706 + 65.6482i 0.363278 + 0.209739i 0.670518 0.741893i \(-0.266072\pi\)
−0.307240 + 0.951632i \(0.599405\pi\)
\(314\) 264.545i 0.842500i
\(315\) 0 0
\(316\) −176.676 −0.559102
\(317\) −46.9706 + 81.3554i −0.148172 + 0.256642i −0.930552 0.366160i \(-0.880672\pi\)
0.782380 + 0.622802i \(0.214006\pi\)
\(318\) 73.2792 42.3078i 0.230438 0.133043i
\(319\) −101.823 176.363i −0.319196 0.552863i
\(320\) 0 0
\(321\) 293.506i 0.914349i
\(322\) −95.1472 93.2248i −0.295488 0.289518i
\(323\) −319.279 −0.988481
\(324\) −9.00000 + 15.5885i −0.0277778 + 0.0481125i
\(325\) 0 0
\(326\) −11.3553 19.6680i −0.0348323 0.0603314i
\(327\) 268.412 + 154.968i 0.820831 + 0.473907i
\(328\) 99.6607i 0.303843i
\(329\) 225.125 + 57.8664i 0.684270 + 0.175886i
\(330\) 0 0
\(331\) 130.684 226.351i 0.394815 0.683840i −0.598263 0.801300i \(-0.704142\pi\)
0.993078 + 0.117460i \(0.0374754\pi\)
\(332\) −131.220 + 75.7601i −0.395242 + 0.228193i
\(333\) −8.95584 15.5120i −0.0268944 0.0465825i
\(334\) 215.698 + 124.534i 0.645804 + 0.372855i
\(335\) 0 0
\(336\) −13.0294 46.7144i −0.0387781 0.139031i
\(337\) −136.265 −0.404347 −0.202173 0.979350i \(-0.564800\pi\)
−0.202173 + 0.979350i \(0.564800\pi\)
\(338\) −106.149 + 183.856i −0.314051 + 0.543952i
\(339\) −26.0955 + 15.0662i −0.0769777 + 0.0444431i
\(340\) 0 0
\(341\) −76.6325 44.2438i −0.224729 0.129747i
\(342\) 72.2239i 0.211181i
\(343\) 235.000 249.848i 0.685131 0.728420i
\(344\) 43.7990 0.127323
\(345\) 0 0
\(346\) 283.103 163.449i 0.818216 0.472397i
\(347\) −161.095 279.026i −0.464252 0.804108i 0.534915 0.844906i \(-0.320343\pi\)
−0.999167 + 0.0407975i \(0.987010\pi\)
\(348\) 101.823 + 58.7878i 0.292596 + 0.168930i
\(349\) 346.495i 0.992821i 0.868088 + 0.496411i \(0.165349\pi\)
−0.868088 + 0.496411i \(0.834651\pi\)
\(350\) 0 0
\(351\) −92.8234 −0.264454
\(352\) 16.9706 29.3939i 0.0482118 0.0835053i
\(353\) 537.448 310.296i 1.52252 0.879025i 0.522869 0.852413i \(-0.324862\pi\)
0.999646 0.0266116i \(-0.00847174\pi\)
\(354\) 33.5147 + 58.0492i 0.0946743 + 0.163981i
\(355\) 0 0
\(356\) 41.5692i 0.116767i
\(357\) −56.6102 + 220.238i −0.158572 + 0.616912i
\(358\) 120.603 0.336880
\(359\) −10.1177 + 17.5245i −0.0281831 + 0.0488146i −0.879773 0.475394i \(-0.842305\pi\)
0.851590 + 0.524209i \(0.175639\pi\)
\(360\) 0 0
\(361\) −35.6030 61.6663i −0.0986234 0.170821i
\(362\) −6.84210 3.95029i −0.0189008 0.0109124i
\(363\) 147.224i 0.405577i
\(364\) 175.029 178.639i 0.480850 0.490766i
\(365\) 0 0
\(366\) 49.4558 85.6600i 0.135125 0.234044i
\(367\) 269.831 155.787i 0.735234 0.424488i −0.0850998 0.996372i \(-0.527121\pi\)
0.820334 + 0.571885i \(0.193788\pi\)
\(368\) 26.9117 + 46.6124i 0.0731296 + 0.126664i
\(369\) 91.5442 + 52.8530i 0.248087 + 0.143233i
\(370\) 0 0
\(371\) −172.721 169.231i −0.465555 0.456149i
\(372\) 51.0883 0.137334
\(373\) −340.691 + 590.094i −0.913380 + 1.58202i −0.104125 + 0.994564i \(0.533204\pi\)
−0.809255 + 0.587457i \(0.800129\pi\)
\(374\) −137.823 + 79.5724i −0.368512 + 0.212760i
\(375\) 0 0
\(376\) −81.3381 46.9606i −0.216325 0.124895i
\(377\) 606.320i 1.60828i
\(378\) 49.8198 + 12.8057i 0.131798 + 0.0338776i
\(379\) −624.779 −1.64849 −0.824246 0.566231i \(-0.808401\pi\)
−0.824246 + 0.566231i \(0.808401\pi\)
\(380\) 0 0
\(381\) 251.140 144.996i 0.659159 0.380566i
\(382\) 131.095 + 227.064i 0.343182 + 0.594408i
\(383\) −119.772 69.1502i −0.312720 0.180549i 0.335423 0.942068i \(-0.391121\pi\)
−0.648143 + 0.761519i \(0.724454\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 322.149 0.834584
\(387\) −23.2279 + 40.2319i −0.0600205 + 0.103959i
\(388\) −52.9706 + 30.5826i −0.136522 + 0.0788211i
\(389\) 281.787 + 488.069i 0.724388 + 1.25468i 0.959226 + 0.282642i \(0.0912107\pi\)
−0.234838 + 0.972035i \(0.575456\pi\)
\(390\) 0 0
\(391\) 252.370i 0.645446i
\(392\) −118.586 + 71.7315i −0.302515 + 0.182989i
\(393\) 3.08831 0.00785830
\(394\) −87.0883 + 150.841i −0.221036 + 0.382846i
\(395\) 0 0
\(396\) 18.0000 + 31.1769i 0.0454545 + 0.0787296i
\(397\) 392.603 + 226.669i 0.988923 + 0.570955i 0.904952 0.425513i \(-0.139906\pi\)
0.0839711 + 0.996468i \(0.473240\pi\)
\(398\) 8.81321i 0.0221438i
\(399\) 198.809 55.4511i 0.498267 0.138975i
\(400\) 0 0
\(401\) 137.875 238.807i 0.343828 0.595528i −0.641312 0.767280i \(-0.721610\pi\)
0.985140 + 0.171752i \(0.0549429\pi\)
\(402\) 242.673 140.107i 0.603663 0.348525i
\(403\) 131.727 + 228.159i 0.326867 + 0.566151i
\(404\) −221.647 127.968i −0.548631 0.316752i
\(405\) 0 0
\(406\) 83.6468 325.422i 0.206026 0.801531i
\(407\) −35.8234 −0.0880181
\(408\) 45.9411 79.5724i 0.112601 0.195030i
\(409\) −377.441 + 217.916i −0.922839 + 0.532801i −0.884540 0.466465i \(-0.845527\pi\)
−0.0382993 + 0.999266i \(0.512194\pi\)
\(410\) 0 0
\(411\) −151.456 87.4431i −0.368506 0.212757i
\(412\) 161.913i 0.392992i
\(413\) 134.059 136.823i 0.324598 0.331291i
\(414\) −57.0883 −0.137894
\(415\) 0 0
\(416\) −87.5147 + 50.5266i −0.210372 + 0.121458i
\(417\) 121.713 + 210.813i 0.291878 + 0.505548i
\(418\) 125.095 + 72.2239i 0.299271 + 0.172784i
\(419\) 301.257i 0.718991i −0.933147 0.359496i \(-0.882949\pi\)
0.933147 0.359496i \(-0.117051\pi\)
\(420\) 0 0
\(421\) −203.794 −0.484071 −0.242036 0.970267i \(-0.577815\pi\)
−0.242036 + 0.970267i \(0.577815\pi\)
\(422\) −88.3259 + 152.985i −0.209303 + 0.362524i
\(423\) 86.2721 49.8092i 0.203953 0.117752i
\(424\) 48.8528 + 84.6156i 0.115219 + 0.199565i
\(425\) 0 0
\(426\) 45.5679i 0.106967i
\(427\) −273.765 70.3688i −0.641135 0.164798i
\(428\) −338.912 −0.791850
\(429\) −92.8234 + 160.775i −0.216372 + 0.374766i
\(430\) 0 0
\(431\) 197.860 + 342.703i 0.459072 + 0.795136i 0.998912 0.0466317i \(-0.0148487\pi\)
−0.539840 + 0.841767i \(0.681515\pi\)
\(432\) −18.0000 10.3923i −0.0416667 0.0240563i
\(433\) 44.2685i 0.102237i 0.998693 + 0.0511184i \(0.0162786\pi\)
−0.998693 + 0.0511184i \(0.983721\pi\)
\(434\) −39.2239 140.629i −0.0903777 0.324031i
\(435\) 0 0
\(436\) −178.941 + 309.935i −0.410415 + 0.710860i
\(437\) −198.375 + 114.532i −0.453947 + 0.262086i
\(438\) 143.335 + 248.263i 0.327248 + 0.566810i
\(439\) 344.558 + 198.931i 0.784871 + 0.453146i 0.838154 0.545434i \(-0.183635\pi\)
−0.0532827 + 0.998579i \(0.516968\pi\)
\(440\) 0 0
\(441\) −3.00000 146.969i −0.00680272 0.333264i
\(442\) 473.823 1.07200
\(443\) −59.2721 + 102.662i −0.133797 + 0.231743i −0.925137 0.379633i \(-0.876050\pi\)
0.791340 + 0.611376i \(0.209384\pi\)
\(444\) 17.9117 10.3413i 0.0403416 0.0232913i
\(445\) 0 0
\(446\) 280.014 + 161.666i 0.627835 + 0.362481i
\(447\) 316.812i 0.708752i
\(448\) 53.9411 15.0451i 0.120404 0.0335828i
\(449\) 713.897 1.58997 0.794985 0.606629i \(-0.207479\pi\)
0.794985 + 0.606629i \(0.207479\pi\)
\(450\) 0 0
\(451\) 183.088 105.706i 0.405961 0.234382i
\(452\) −17.3970 30.1324i −0.0384889 0.0666647i
\(453\) −433.191 250.103i −0.956271 0.552104i
\(454\) 239.762i 0.528109i
\(455\) 0 0
\(456\) −83.3970 −0.182888
\(457\) −62.5883 + 108.406i −0.136955 + 0.237213i −0.926342 0.376682i \(-0.877065\pi\)
0.789388 + 0.613895i \(0.210398\pi\)
\(458\) 42.4889 24.5310i 0.0927704 0.0535610i
\(459\) 48.7279 + 84.3992i 0.106161 + 0.183876i
\(460\) 0 0
\(461\) 655.767i 1.42249i 0.702945 + 0.711244i \(0.251868\pi\)
−0.702945 + 0.711244i \(0.748132\pi\)
\(462\) 72.0000 73.4847i 0.155844 0.159058i
\(463\) −869.396 −1.87775 −0.938873 0.344265i \(-0.888128\pi\)
−0.938873 + 0.344265i \(0.888128\pi\)
\(464\) −67.8823 + 117.576i −0.146298 + 0.253395i
\(465\) 0 0
\(466\) 179.948 + 311.680i 0.386155 + 0.668840i
\(467\) 231.551 + 133.686i 0.495827 + 0.286266i 0.726989 0.686649i \(-0.240919\pi\)
−0.231162 + 0.972915i \(0.574253\pi\)
\(468\) 107.183i 0.229024i
\(469\) −571.985 560.428i −1.21958 1.19494i
\(470\) 0 0
\(471\) 162.000 280.592i 0.343949 0.595737i
\(472\) −67.0294 + 38.6995i −0.142012 + 0.0819904i
\(473\) 46.4558 + 80.4639i 0.0982153 + 0.170114i
\(474\) 187.393 + 108.192i 0.395345 + 0.228252i
\(475\) 0 0
\(476\) −254.309 65.3678i −0.534262 0.137327i
\(477\) −103.632 −0.217259
\(478\) 139.404 241.455i 0.291640 0.505136i
\(479\) 235.331 135.868i 0.491296 0.283650i −0.233816 0.972281i \(-0.575121\pi\)
0.725112 + 0.688631i \(0.241788\pi\)
\(480\) 0 0
\(481\) 92.3680 + 53.3287i 0.192033 + 0.110870i
\(482\) 125.116i 0.259576i
\(483\) 43.8305 + 157.145i 0.0907464 + 0.325353i
\(484\) −170.000 −0.351240
\(485\) 0 0
\(486\) 19.0919 11.0227i 0.0392837 0.0226805i
\(487\) −280.757 486.285i −0.576503 0.998532i −0.995877 0.0907186i \(-0.971084\pi\)
0.419374 0.907814i \(-0.362250\pi\)
\(488\) 98.9117 + 57.1067i 0.202688 + 0.117022i
\(489\) 27.8148i 0.0568810i
\(490\) 0 0
\(491\) −406.441 −0.827781 −0.413891 0.910327i \(-0.635830\pi\)
−0.413891 + 0.910327i \(0.635830\pi\)
\(492\) −61.0294 + 105.706i −0.124044 + 0.214850i
\(493\) 551.294 318.289i 1.11824 0.645618i
\(494\) −215.033 372.448i −0.435289 0.753944i
\(495\) 0 0
\(496\) 58.9917i 0.118935i
\(497\) 125.434 34.9856i 0.252381 0.0703935i
\(498\) 185.574 0.372638
\(499\) 185.713 321.665i 0.372171 0.644619i −0.617728 0.786391i \(-0.711947\pi\)
0.989899 + 0.141773i \(0.0452802\pi\)
\(500\) 0 0
\(501\) −152.522 264.176i −0.304435 0.527297i
\(502\) −264.426 152.667i −0.526746 0.304117i
\(503\) 64.6292i 0.128488i −0.997934 0.0642438i \(-0.979536\pi\)
0.997934 0.0642438i \(-0.0204635\pi\)
\(504\) −14.7868 + 57.5270i −0.0293389 + 0.114141i
\(505\) 0 0
\(506\) −57.0883 + 98.8799i −0.112823 + 0.195415i
\(507\) 225.177 130.006i 0.444135 0.256422i
\(508\) 167.426 + 289.991i 0.329580 + 0.570849i
\(509\) 871.889 + 503.385i 1.71294 + 0.988969i 0.930534 + 0.366205i \(0.119343\pi\)
0.782410 + 0.622764i \(0.213990\pi\)
\(510\) 0 0
\(511\) 573.338 585.161i 1.12199 1.14513i
\(512\) −22.6274 −0.0441942
\(513\) 44.2279 76.6050i 0.0862143 0.149328i
\(514\) 5.27208 3.04384i 0.0102570 0.00592186i
\(515\) 0 0
\(516\) −46.4558 26.8213i −0.0900307 0.0519793i
\(517\) 199.237i 0.385371i
\(518\) −42.2183 41.3653i −0.0815024 0.0798557i
\(519\) −400.368 −0.771421
\(520\) 0 0
\(521\) −322.294 + 186.077i −0.618607 + 0.357153i −0.776327 0.630331i \(-0.782919\pi\)
0.157719 + 0.987484i \(0.449586\pi\)
\(522\) −72.0000 124.708i −0.137931 0.238904i
\(523\) 551.904 + 318.642i 1.05527 + 0.609258i 0.924119 0.382105i \(-0.124801\pi\)
0.131147 + 0.991363i \(0.458134\pi\)
\(524\) 3.56608i 0.00680549i
\(525\) 0 0
\(526\) 399.765 0.760009
\(527\) 138.302 239.545i 0.262432 0.454545i
\(528\) −36.0000 + 20.7846i −0.0681818 + 0.0393648i
\(529\) 173.970 + 301.325i 0.328866 + 0.569613i
\(530\) 0 0
\(531\) 82.0940i 0.154603i
\(532\) 64.0294 + 229.564i 0.120356 + 0.431512i
\(533\) −629.440 −1.18094
\(534\) 25.4558 44.0908i 0.0476701 0.0825671i
\(535\) 0 0
\(536\) 161.782 + 280.214i 0.301832 + 0.522788i
\(537\) −127.919 73.8540i −0.238210 0.137531i
\(538\) 540.136i 1.00397i
\(539\) −257.558 141.773i −0.477845 0.263030i
\(540\) 0 0
\(541\) −110.412 + 191.239i −0.204088 + 0.353491i −0.949842 0.312731i \(-0.898756\pi\)
0.745754 + 0.666222i \(0.232090\pi\)
\(542\) −103.279 + 59.6283i −0.190552 + 0.110015i
\(543\) 4.83810 + 8.37983i 0.00890994 + 0.0154325i
\(544\) 91.8823 + 53.0482i 0.168901 + 0.0975152i
\(545\) 0 0
\(546\) −295.040 + 82.2917i −0.540367 + 0.150717i
\(547\) 160.676 0.293741 0.146870 0.989156i \(-0.453080\pi\)
0.146870 + 0.989156i \(0.453080\pi\)
\(548\) 100.971 174.886i 0.184253 0.319135i
\(549\) −104.912 + 60.5708i −0.191096 + 0.110329i
\(550\) 0 0
\(551\) −500.382 288.896i −0.908134 0.524311i
\(552\) 65.9199i 0.119420i
\(553\) 153.942 598.898i 0.278375 1.08300i
\(554\) −193.914 −0.350025
\(555\) 0 0
\(556\) −243.426 + 140.542i −0.437817 + 0.252774i
\(557\) −237.177 410.802i −0.425811 0.737526i 0.570685 0.821169i \(-0.306678\pi\)
−0.996496 + 0.0836431i \(0.973344\pi\)
\(558\) −54.1873 31.2851i −0.0971099 0.0560664i
\(559\) 276.627i 0.494860i
\(560\) 0 0
\(561\) 194.912 0.347436
\(562\) −229.882 + 398.168i −0.409043 + 0.708484i
\(563\) 430.301 248.434i 0.764300 0.441269i −0.0665378 0.997784i \(-0.521195\pi\)
0.830837 + 0.556515i \(0.187862\pi\)
\(564\) 57.5147 + 99.6184i 0.101976 + 0.176628i
\(565\) 0 0
\(566\) 275.171i 0.486168i
\(567\) −45.0000 44.0908i −0.0793651 0.0777616i
\(568\) −52.6173 −0.0926361
\(569\) −392.647 + 680.084i −0.690065 + 1.19523i 0.281752 + 0.959487i \(0.409085\pi\)
−0.971816 + 0.235740i \(0.924249\pi\)
\(570\) 0 0
\(571\) 357.521 + 619.245i 0.626132 + 1.08449i 0.988321 + 0.152388i \(0.0486963\pi\)
−0.362189 + 0.932105i \(0.617970\pi\)
\(572\) −185.647 107.183i −0.324557 0.187383i
\(573\) 321.117i 0.560414i
\(574\) 337.831 + 86.8364i 0.588555 + 0.151283i
\(575\) 0 0
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −669.117 + 386.315i −1.15965 + 0.669524i −0.951220 0.308514i \(-0.900168\pi\)
−0.208429 + 0.978038i \(0.566835\pi\)
\(578\) −44.3812 76.8705i −0.0767841 0.132994i
\(579\) −341.691 197.275i −0.590140 0.340717i
\(580\) 0 0
\(581\) −142.477 510.823i −0.245228 0.879214i
\(582\) 74.9117 0.128714
\(583\) −103.632 + 179.497i −0.177757 + 0.307885i
\(584\) −286.669 + 165.508i −0.490872 + 0.283405i
\(585\) 0 0
\(586\) 293.574 + 169.495i 0.500979 + 0.289240i
\(587\) 436.477i 0.743572i 0.928318 + 0.371786i \(0.121254\pi\)
−0.928318 + 0.371786i \(0.878746\pi\)
\(588\) 169.706 3.46410i 0.288615 0.00589133i
\(589\) −251.059 −0.426246
\(590\) 0 0
\(591\) 184.742 106.661i 0.312593 0.180475i
\(592\) 11.9411 + 20.6826i 0.0201708 + 0.0349369i
\(593\) −722.397 417.076i −1.21821 0.703332i −0.253673 0.967290i \(-0.581639\pi\)
−0.964534 + 0.263958i \(0.914972\pi\)
\(594\) 44.0908i 0.0742270i
\(595\) 0 0
\(596\) 365.823 0.613798
\(597\) −5.39697 + 9.34783i −0.00904015 + 0.0156580i
\(598\) 294.396 169.970i 0.492301 0.284230i
\(599\) −436.794 756.549i −0.729205 1.26302i −0.957220 0.289363i \(-0.906557\pi\)
0.228014 0.973658i \(-0.426777\pi\)
\(600\) 0 0
\(601\) 198.982i 0.331085i 0.986203 + 0.165542i \(0.0529375\pi\)
−0.986203 + 0.165542i \(0.947063\pi\)
\(602\) −38.1630 + 148.470i −0.0633936 + 0.246628i
\(603\) −343.191 −0.569139
\(604\) 288.794 500.206i 0.478136 0.828155i
\(605\) 0 0
\(606\) 156.728 + 271.461i 0.258627 + 0.447955i
\(607\) −137.654 79.4748i −0.226778 0.130930i 0.382307 0.924035i \(-0.375130\pi\)
−0.609085 + 0.793105i \(0.708463\pi\)
\(608\) 96.2985i 0.158386i
\(609\) −288.000 + 293.939i −0.472906 + 0.482658i
\(610\) 0 0
\(611\) −296.595 + 513.718i −0.485426 + 0.840782i
\(612\) −97.4558 + 56.2662i −0.159242 + 0.0919382i
\(613\) −357.368 618.979i −0.582981 1.00975i −0.995124 0.0986338i \(-0.968553\pi\)
0.412143 0.911119i \(-0.364781\pi\)
\(614\) −661.695 382.030i −1.07768 0.622198i
\(615\) 0 0
\(616\) 84.8528 + 83.1384i 0.137748 + 0.134965i
\(617\) 639.381 1.03627 0.518137 0.855298i \(-0.326626\pi\)
0.518137 + 0.855298i \(0.326626\pi\)
\(618\) −99.1508 + 171.734i −0.160438 + 0.277887i
\(619\) 148.978 86.0126i 0.240676 0.138954i −0.374812 0.927101i \(-0.622293\pi\)
0.615487 + 0.788147i \(0.288959\pi\)
\(620\) 0 0
\(621\) 60.5513 + 34.9593i 0.0975061 + 0.0562952i
\(622\) 571.619i 0.919002i
\(623\) −140.912 36.2201i −0.226182 0.0581382i
\(624\) 123.765 0.198341
\(625\) 0 0
\(626\) 160.805 92.8406i 0.256876 0.148308i
\(627\) −88.4558 153.210i −0.141078 0.244354i
\(628\) 324.000 + 187.061i 0.515924 + 0.297869i
\(629\) 111.980i 0.178029i
\(630\) 0 0
\(631\) −1141.06 −1.80833 −0.904166 0.427180i \(-0.859507\pi\)
−0.904166 + 0.427180i \(0.859507\pi\)
\(632\) −124.929 + 216.383i −0.197672 + 0.342379i
\(633\) 187.368 108.177i 0.295999 0.170895i
\(634\) 66.4264 + 115.054i 0.104774 + 0.181473i
\(635\) 0 0
\(636\) 119.664i 0.188152i
\(637\) 453.044 + 748.968i 0.711215 + 1.17577i
\(638\) −288.000 −0.451411
\(639\) 27.9045 48.3321i 0.0436691 0.0756371i
\(640\) 0 0
\(641\) −114.551 198.409i −0.178707 0.309530i 0.762731 0.646716i \(-0.223858\pi\)
−0.941438 + 0.337186i \(0.890525\pi\)
\(642\) 359.470 + 207.540i 0.559922 + 0.323271i
\(643\) 707.670i 1.10058i −0.834975 0.550288i \(-0.814518\pi\)
0.834975 0.550288i \(-0.185482\pi\)
\(644\) −181.456 + 50.6111i −0.281764 + 0.0785887i
\(645\) 0 0
\(646\) −225.765 + 391.036i −0.349481 + 0.605318i
\(647\) −1021.37 + 589.687i −1.57862 + 0.911417i −0.583568 + 0.812064i \(0.698344\pi\)
−0.995052 + 0.0993530i \(0.968323\pi\)
\(648\) 12.7279 + 22.0454i 0.0196419 + 0.0340207i
\(649\) −142.191 82.0940i −0.219092 0.126493i
\(650\) 0 0
\(651\) −44.5143 + 173.180i −0.0683783 + 0.266021i
\(652\) −32.1177 −0.0492604
\(653\) −77.3818 + 134.029i −0.118502 + 0.205252i −0.919174 0.393851i \(-0.871143\pi\)
0.800672 + 0.599103i \(0.204476\pi\)
\(654\) 379.591 219.157i 0.580415 0.335103i
\(655\) 0 0
\(656\) −122.059 70.4707i −0.186065 0.107425i
\(657\) 351.096i 0.534393i
\(658\) 230.059 234.803i 0.349634 0.356843i
\(659\) 591.308 0.897280 0.448640 0.893712i \(-0.351908\pi\)
0.448640 + 0.893712i \(0.351908\pi\)
\(660\) 0 0
\(661\) 140.441 81.0837i 0.212468 0.122668i −0.389990 0.920819i \(-0.627522\pi\)
0.602458 + 0.798151i \(0.294188\pi\)
\(662\) −184.815 320.109i −0.279176 0.483548i
\(663\) −502.566 290.156i −0.758017 0.437642i
\(664\) 214.282i 0.322714i
\(665\) 0 0
\(666\) −25.3310 −0.0380345
\(667\) 228.353 395.519i 0.342359 0.592983i
\(668\) 305.044 176.117i 0.456652 0.263648i
\(669\) −198.000 342.946i −0.295964 0.512625i
\(670\) 0 0
\(671\) 242.283i 0.361078i
\(672\) −66.4264 17.0743i −0.0988488 0.0254082i
\(673\) −42.3238 −0.0628883 −0.0314441 0.999506i \(-0.510011\pi\)
−0.0314441 + 0.999506i \(0.510011\pi\)
\(674\) −96.3539 + 166.890i −0.142958 + 0.247611i
\(675\) 0 0
\(676\) 150.118 + 260.012i 0.222068 + 0.384632i
\(677\) −430.721 248.677i −0.636220 0.367322i 0.146937 0.989146i \(-0.453059\pi\)
−0.783157 + 0.621824i \(0.786392\pi\)
\(678\) 42.6137i 0.0628521i
\(679\) −57.5147 206.207i −0.0847050 0.303693i
\(680\) 0 0
\(681\) −146.823 + 254.306i −0.215600 + 0.373430i
\(682\) −108.375 + 62.5701i −0.158907 + 0.0917451i
\(683\) 608.080 + 1053.23i 0.890308 + 1.54206i 0.839506 + 0.543350i \(0.182844\pi\)
0.0508015 + 0.998709i \(0.483822\pi\)
\(684\) 88.4558 + 51.0700i 0.129321 + 0.0746638i
\(685\) 0 0
\(686\) −139.830 464.484i −0.203834 0.677091i
\(687\) −60.0883 −0.0874648
\(688\) 30.9706 53.6426i 0.0450154 0.0779689i
\(689\) 534.418 308.546i 0.775642 0.447817i
\(690\) 0 0
\(691\) −932.182 538.196i −1.34903 0.778865i −0.360921 0.932596i \(-0.617538\pi\)
−0.988113 + 0.153731i \(0.950871\pi\)
\(692\) 462.305i 0.668070i
\(693\) −121.368 + 33.8515i −0.175134 + 0.0488477i
\(694\) −455.647 −0.656552
\(695\) 0 0
\(696\) 144.000 83.1384i 0.206897 0.119452i
\(697\) 330.426 + 572.315i 0.474069 + 0.821112i
\(698\) 424.368 + 245.009i 0.607976 + 0.351015i
\(699\) 440.781i 0.630589i
\(700\) 0 0
\(701\) −695.897 −0.992720 −0.496360 0.868117i \(-0.665330\pi\)
−0.496360 + 0.868117i \(0.665330\pi\)
\(702\) −65.6360 + 113.685i −0.0934986 + 0.161944i
\(703\) −88.0219 + 50.8194i −0.125209 + 0.0722894i
\(704\) −24.0000 41.5692i −0.0340909 0.0590472i
\(705\) 0 0
\(706\) 877.649i 1.24313i
\(707\) 626.912 639.839i 0.886721 0.905006i
\(708\) 94.7939 0.133890
\(709\) −127.412 + 220.684i −0.179707 + 0.311261i −0.941780 0.336229i \(-0.890848\pi\)
0.762073 + 0.647491i \(0.224182\pi\)
\(710\) 0 0
\(711\) −132.507 229.509i −0.186367 0.322798i
\(712\) 50.9117 + 29.3939i 0.0715052 + 0.0412835i
\(713\) 198.446i 0.278325i
\(714\) 229.706 + 225.065i 0.321717 + 0.315217i
\(715\) 0 0
\(716\) 85.2792 147.708i 0.119105 0.206296i
\(717\) −295.721 + 170.734i −0.412442 + 0.238123i
\(718\) 14.3087 + 24.7833i 0.0199285 + 0.0345172i
\(719\) −964.925 557.100i −1.34204 0.774826i −0.354931 0.934892i \(-0.615496\pi\)
−0.987106 + 0.160066i \(0.948829\pi\)
\(720\) 0 0
\(721\) 548.852 + 141.078i 0.761238 + 0.195669i
\(722\) −100.701 −0.139474
\(723\) −76.6173 + 132.705i −0.105971 + 0.183548i
\(724\) −9.67619 + 5.58655i −0.0133649 + 0.00771623i
\(725\) 0 0
\(726\) 180.312 + 104.103i 0.248364 + 0.143393i
\(727\) 398.345i 0.547930i 0.961740 + 0.273965i \(0.0883353\pi\)
−0.961740 + 0.273965i \(0.911665\pi\)
\(728\) −95.0223 340.683i −0.130525 0.467971i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −251.522 + 145.216i −0.344079 + 0.198654i
\(732\) −69.9411 121.142i −0.0955480 0.165494i
\(733\) −818.514 472.569i −1.11666 0.644706i −0.176116 0.984369i \(-0.556354\pi\)
−0.940547 + 0.339663i \(0.889687\pi\)
\(734\) 440.632i 0.600316i
\(735\) 0 0
\(736\) 76.1177 0.103421
\(737\) −343.191 + 594.424i −0.465659 + 0.806546i
\(738\) 129.463 74.7455i 0.175424 0.101281i
\(739\) −96.3162 166.825i −0.130333 0.225744i 0.793472 0.608607i \(-0.208271\pi\)
−0.923805 + 0.382863i \(0.874938\pi\)
\(740\) 0 0
\(741\) 526.721i 0.710825i
\(742\) −329.397 + 91.8744i −0.443931 + 0.123820i
\(743\) 911.616 1.22694 0.613470 0.789718i \(-0.289773\pi\)
0.613470 + 0.789718i \(0.289773\pi\)
\(744\) 36.1249 62.5701i 0.0485550 0.0840997i
\(745\) 0 0
\(746\) 481.810 + 834.519i 0.645858 + 1.11866i
\(747\) −196.831 113.640i −0.263495 0.152129i
\(748\) 225.065i 0.300889i
\(749\) 295.301 1148.85i 0.394260 1.53384i
\(750\) 0 0
\(751\) 195.831 339.189i 0.260760 0.451650i −0.705684 0.708527i \(-0.749360\pi\)
0.966444 + 0.256877i \(0.0826935\pi\)
\(752\) −115.029 + 66.4123i −0.152965 + 0.0883142i
\(753\) 186.978 + 323.855i 0.248310 + 0.430086i
\(754\) 742.587 + 428.733i 0.984863 + 0.568611i
\(755\) 0 0
\(756\) 50.9117 51.9615i 0.0673435 0.0687322i
\(757\) 152.823 0.201879 0.100940 0.994893i \(-0.467815\pi\)
0.100940 + 0.994893i \(0.467815\pi\)
\(758\) −441.785 + 765.195i −0.582830 + 1.00949i
\(759\) 121.103 69.9186i 0.159555 0.0921194i
\(760\) 0 0
\(761\) −109.331 63.1223i −0.143667 0.0829465i 0.426443 0.904514i \(-0.359766\pi\)
−0.570111 + 0.821568i \(0.693100\pi\)
\(762\) 410.109i 0.538201i
\(763\) −894.706 876.629i −1.17262 1.14892i
\(764\) 370.794 0.485332
\(765\) 0 0
\(766\) −169.383 + 97.7931i −0.221126 + 0.127667i
\(767\) 244.419 + 423.347i 0.318669 + 0.551951i
\(768\) 24.0000 + 13.8564i 0.0312500 + 0.0180422i
\(769\) 369.148i 0.480037i −0.970768 0.240018i \(-0.922847\pi\)
0.970768 0.240018i \(-0.0771535\pi\)
\(770\) 0 0
\(771\) −7.45584 −0.00967036
\(772\) 227.794 394.551i 0.295070 0.511076i
\(773\) 1215.65 701.853i 1.57263 0.907961i 0.576789 0.816893i \(-0.304305\pi\)
0.995845 0.0910674i \(-0.0290279\pi\)
\(774\) 32.8492 + 56.8966i 0.0424409 + 0.0735098i
\(775\) 0 0
\(776\) 86.5006i 0.111470i
\(777\) 19.4483 + 69.7278i 0.0250299 + 0.0897398i
\(778\) 797.013 1.02444
\(779\) 299.912 519.462i 0.384996 0.666832i
\(780\) 0 0
\(781\) −55.8091 96.6642i −0.0714585 0.123770i
\(782\) −309.088 178.452i −0.395254 0.228200i
\(783\) 176.363i 0.225240i
\(784\) 4.00000 + 195.959i 0.00510204 + 0.249948i
\(785\) 0 0
\(786\) 2.18377 3.78239i 0.00277833 0.00481221i
\(787\) −196.161 + 113.253i −0.249251 + 0.143905i −0.619421 0.785059i \(-0.712633\pi\)
0.370170 + 0.928964i \(0.379299\pi\)
\(788\) 123.161 + 213.322i 0.156296 + 0.270713i
\(789\) −424.014 244.805i −0.537407 0.310272i
\(790\) 0 0
\(791\) 117.302 32.7174i 0.148295 0.0413621i
\(792\) 50.9117 0.0642824
\(793\) 360.676 624.709i 0.454825 0.787780i
\(794\) 555.224 320.559i 0.699274 0.403726i
\(795\) 0 0
\(796\) −10.7939 6.23188i −0.0135602 0.00782900i
\(797\) 688.414i 0.863756i 0.901932 + 0.431878i \(0.142149\pi\)
−0.901932 + 0.431878i \(0.857851\pi\)
\(798\) 72.6655 282.700i 0.0910595 0.354260i
\(799\) 622.794 0.779467
\(800\) 0 0
\(801\) −54.0000 + 31.1769i −0.0674157 + 0.0389225i
\(802\) −194.985 337.724i −0.243123 0.421102i
\(803\) −608.117 351.096i −0.757306 0.437231i
\(804\) 396.283i 0.492889i
\(805\) 0 0
\(806\) 372.582 0.462260
\(807\) 330.765 572.901i 0.409869 0.709914i
\(808\) −313.456 + 180.974i −0.387940 + 0.223977i
\(809\) −12.6396 21.8924i −0.0156237 0.0270611i 0.858108 0.513470i \(-0.171640\pi\)
−0.873732 + 0.486408i \(0.838307\pi\)
\(810\) 0 0
\(811\) 1527.62i 1.88362i 0.336145 + 0.941810i \(0.390877\pi\)
−0.336145 + 0.941810i \(0.609123\pi\)
\(812\) −339.411 332.554i −0.417994 0.409549i
\(813\) 146.059 0.179654
\(814\) −25.3310 + 43.8745i −0.0311191 + 0.0538999i
\(815\) 0 0
\(816\) −64.9706 112.532i −0.0796208 0.137907i
\(817\) 228.294 + 131.806i 0.279430 + 0.161329i
\(818\) 616.359i 0.753495i
\(819\) 363.331 + 93.3909i 0.443627 + 0.114030i
\(820\) 0 0
\(821\) 58.3310 101.032i 0.0710487 0.123060i −0.828312 0.560266i \(-0.810699\pi\)
0.899361 + 0.437206i \(0.144032\pi\)
\(822\) −214.191 + 123.663i −0.260573 + 0.150442i
\(823\) 62.9554 + 109.042i 0.0764950 + 0.132493i 0.901735 0.432288i \(-0.142294\pi\)
−0.825240 + 0.564782i \(0.808960\pi\)
\(824\) −198.302 114.489i −0.240657 0.138943i
\(825\) 0 0
\(826\) −72.7797 260.937i −0.0881110 0.315904i
\(827\) 1434.40 1.73446 0.867229 0.497910i \(-0.165899\pi\)
0.867229 + 0.497910i \(0.165899\pi\)
\(828\) −40.3675 + 69.9186i −0.0487531 + 0.0844428i
\(829\) −32.3225 + 18.6614i −0.0389898 + 0.0225107i −0.519368 0.854551i \(-0.673833\pi\)
0.480378 + 0.877061i \(0.340499\pi\)
\(830\) 0 0
\(831\) 205.677 + 118.747i 0.247505 + 0.142897i
\(832\) 142.911i 0.171768i
\(833\) 443.169 805.101i 0.532015 0.966508i
\(834\) 344.257 0.412778
\(835\) 0 0
\(836\) 176.912 102.140i 0.211617 0.122177i
\(837\) 38.3162 + 66.3657i 0.0457781 + 0.0792899i
\(838\) −368.963 213.021i −0.440290 0.254202i
\(839\) 3.07370i 0.00366353i 0.999998 + 0.00183177i \(0.000583069\pi\)
−0.999998 + 0.00183177i \(0.999417\pi\)
\(840\) 0 0
\(841\) 311.000 0.369798
\(842\) −144.104 + 249.596i −0.171145 + 0.296432i
\(843\) 487.654 281.547i 0.578474 0.333982i
\(844\) 124.912 + 216.353i 0.148000 + 0.256343i
\(845\) 0 0
\(846\) 140.882i 0.166527i
\(847\) 148.124 576.267i 0.174881 0.680363i
\(848\) 138.177 0.162944
\(849\) 168.507 291.863i 0.198477 0.343773i
\(850\) 0 0
\(851\) −40.1695 69.5756i −0.0472027 0.0817574i
\(852\) 55.8091 + 32.2214i 0.0655036 + 0.0378185i
\(853\) 155.257i 0.182013i 0.995850 + 0.0910063i \(0.0290083\pi\)
−0.995850 + 0.0910063i \(0.970992\pi\)
\(854\) −279.765 + 285.533i −0.327593 + 0.334348i
\(855\) 0 0
\(856\) −239.647 + 415.080i −0.279961 + 0.484907i
\(857\) 1388.98 801.931i 1.62075 0.935742i 0.634033 0.773306i \(-0.281398\pi\)
0.986719 0.162436i \(-0.0519352\pi\)
\(858\) 131.272 + 227.370i 0.152998 + 0.265000i
\(859\) 545.367 + 314.868i 0.634886 + 0.366551i 0.782642 0.622472i \(-0.213872\pi\)
−0.147756 + 0.989024i \(0.547205\pi\)
\(860\) 0 0
\(861\) −305.147 298.982i −0.354410 0.347250i
\(862\) 559.632 0.649226
\(863\) 514.706 891.496i 0.596414 1.03302i −0.396931 0.917848i \(-0.629925\pi\)
0.993346 0.115172i \(-0.0367418\pi\)
\(864\) −25.4558 + 14.6969i −0.0294628 + 0.0170103i
\(865\) 0 0
\(866\) 54.2176 + 31.3026i 0.0626070 + 0.0361462i
\(867\) 108.711i 0.125388i
\(868\) −199.971 51.4007i −0.230381 0.0592174i
\(869\) −530.029 −0.609929
\(870\) 0 0
\(871\) 1769.79 1021.79i 2.03190 1.17312i
\(872\) 253.061 + 438.314i 0.290208 + 0.502654i
\(873\) −79.4558 45.8739i −0.0910147 0.0525474i
\(874\) 323.944i 0.370646i
\(875\) 0 0
\(876\) 405.411 0.462798
\(877\) 324.220 561.566i 0.369693 0.640326i −0.619825 0.784740i \(-0.712796\pi\)
0.989517 + 0.144414i \(0.0461297\pi\)
\(878\) 487.279 281.331i 0.554988 0.320422i
\(879\) −207.588 359.553i −0.236164 0.409048i
\(880\) 0 0
\(881\) 363.857i 0.413005i −0.978446 0.206502i \(-0.933792\pi\)
0.978446 0.206502i \(-0.0662082\pi\)
\(882\) −182.121 100.249i −0.206487 0.113661i
\(883\) −1536.16 −1.73971 −0.869853 0.493312i \(-0.835786\pi\)
−0.869853 + 0.493312i \(0.835786\pi\)
\(884\) 335.044 580.313i 0.379009 0.656462i
\(885\) 0 0
\(886\) 83.8234 + 145.186i 0.0946088 + 0.163867i
\(887\) −974.720 562.755i −1.09890 0.634447i −0.162964 0.986632i \(-0.552106\pi\)
−0.935931 + 0.352185i \(0.885439\pi\)
\(888\) 29.2497i 0.0329388i
\(889\) −1128.90 + 314.868i −1.26985 + 0.354183i
\(890\) 0 0
\(891\) −27.0000 + 46.7654i −0.0303030 + 0.0524864i
\(892\) 396.000 228.631i 0.443946 0.256312i
\(893\) −282.640 489.546i −0.316506 0.548204i
\(894\) −388.014 224.020i −0.434020 0.250582i
\(895\) 0 0
\(896\) 19.7157 76.7026i 0.0220042 0.0856056i
\(897\) −416.339 −0.464146
\(898\) 504.801 874.341i 0.562139 0.973654i
\(899\) 433.499 250.281i 0.482201 0.278399i
\(900\) 0 0
\(901\) −561.088 323.944i −0.622740 0.359539i
\(902\) 298.982i 0.331466i
\(903\) 131.397 134.106i 0.145512 0.148512i
\(904\) −49.2061 −0.0544315
\(905\) 0 0
\(906\) −612.624 + 353.699i −0.676186 + 0.390396i
\(907\) 117.448 + 203.426i 0.129491 + 0.224285i 0.923479 0.383648i \(-0.125332\pi\)
−0.793989 + 0.607933i \(0.791999\pi\)
\(908\) −293.647 169.537i −0.323400 0.186715i
\(909\) 383.903i 0.422336i
\(910\) 0 0
\(911\) 224.278 0.246189 0.123095 0.992395i \(-0.460718\pi\)
0.123095 + 0.992395i \(0.460718\pi\)
\(912\) −58.9706 + 102.140i −0.0646607 + 0.111996i
\(913\) −393.661 + 227.280i −0.431173 + 0.248938i
\(914\) 88.5132 + 153.309i 0.0968416 + 0.167735i
\(915\) 0 0
\(916\) 69.3840i 0.0757467i
\(917\) −12.0883 3.10719i −0.0131825 0.00338843i
\(918\) 137.823 0.150134
\(919\) 466.081 807.276i 0.507161 0.878428i −0.492805 0.870140i \(-0.664028\pi\)
0.999966 0.00828836i \(-0.00263830\pi\)
\(920\) 0 0
\(921\) 467.889 + 810.407i 0.508023 + 0.879921i
\(922\) 803.147 + 463.697i 0.871092 + 0.502925i
\(923\) 332.322i 0.360046i
\(924\) −39.0883 140.143i −0.0423034 0.151670i
\(925\) 0 0
\(926\) −614.756 + 1064.79i −0.663883 + 1.14988i
\(927\) 210.331 121.434i 0.226894 0.130997i
\(928\) 96.0000 + 166.277i 0.103448 + 0.179178i
\(929\) −618.390 357.028i −0.665651 0.384314i 0.128776 0.991674i \(-0.458895\pi\)
−0.794427 + 0.607360i \(0.792229\pi\)
\(930\) 0 0
\(931\) −833.970 + 17.0233i −0.895778 + 0.0182850i
\(932\) 508.971 0.546106
\(933\) −350.044 + 606.294i −0.375181 + 0.649832i
\(934\) 327.463 189.061i 0.350603 0.202421i
\(935\) 0 0
\(936\) −131.272 75.7900i −0.140248 0.0809722i
\(937\) 1723.25i 1.83912i 0.392952 + 0.919559i \(0.371454\pi\)
−0.392952 + 0.919559i \(0.628546\pi\)
\(938\) −1090.84 + 304.253i −1.16294 + 0.324363i
\(939\) −227.412 −0.242185
\(940\) 0 0
\(941\) 835.508 482.381i 0.887893 0.512625i 0.0146405 0.999893i \(-0.495340\pi\)
0.873253 + 0.487267i \(0.162006\pi\)
\(942\) −229.103 396.817i −0.243209 0.421250i
\(943\) 410.601 + 237.061i 0.435420 + 0.251390i
\(944\) 109.459i 0.115952i
\(945\) 0 0
\(946\) 131.397 0.138897
\(947\) 725.881 1257.26i 0.766506 1.32763i −0.172940 0.984932i \(-0.555327\pi\)
0.939447 0.342695i \(-0.111340\pi\)
\(948\) 265.014 153.006i 0.279551 0.161399i
\(949\) 1045.32 + 1810.55i 1.10150 + 1.90785i
\(950\) 0 0
\(951\) 162.711i 0.171094i
\(952\) −259.882 + 265.241i −0.272986 + 0.278615i
\(953\) −1147.43 −1.20401 −0.602007 0.798491i \(-0.705632\pi\)
−0.602007 + 0.798491i \(0.705632\pi\)
\(954\) −73.2792 + 126.923i −0.0768126 + 0.133043i
\(955\) 0 0
\(956\) −197.147 341.469i −0.206221 0.357185i
\(957\) 305.470 + 176.363i 0.319196 + 0.184288i
\(958\) 384.294i 0.401142i
\(959\) 504.853 + 494.653i 0.526437 + 0.515801i
\(960\) 0 0
\(961\) −371.749 + 643.889i −0.386836 + 0.670020i
\(962\) 130.628 75.4181i 0.135788 0.0783972i
\(963\) −254.184 440.259i −0.263950 0.457175i
\(964\) −153.235 88.4701i −0.158957 0.0917739i
\(965\) 0 0
\(966\) 223.456 + 57.4374i 0.231321 + 0.0594590i
\(967\) −412.190 −0.426257 −0.213128 0.977024i \(-0.568365\pi\)
−0.213128 + 0.977024i \(0.568365\pi\)
\(968\) −120.208 + 208.207i −0.124182 + 0.215089i
\(969\) 478.919 276.504i 0.494240 0.285350i
\(970\) 0 0
\(971\) 869.595 + 502.061i 0.895566 + 0.517056i 0.875759 0.482748i \(-0.160361\pi\)
0.0198073 + 0.999804i \(0.493695\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) −264.309 947.626i −0.271643 0.973922i
\(974\) −794.101 −0.815298
\(975\) 0 0
\(976\) 139.882 80.7611i 0.143322 0.0827470i
\(977\) −794.117 1375.45i −0.812812 1.40783i −0.910889 0.412652i \(-0.864603\pi\)
0.0980772 0.995179i \(-0.468731\pi\)
\(978\) 34.0660 + 19.6680i 0.0348323 + 0.0201105i
\(979\) 124.708i 0.127383i
\(980\) 0 0
\(981\) −536.823 −0.547221
\(982\) −287.397 + 497.786i −0.292665 + 0.506911i
\(983\) −721.861 + 416.767i −0.734345 + 0.423974i −0.820009 0.572350i \(-0.806032\pi\)
0.0856648 + 0.996324i \(0.472699\pi\)
\(984\) 86.3087 + 149.491i 0.0877121 + 0.151922i
\(985\) 0 0
\(986\) 900.259i 0.913041i
\(987\) −387.801 + 108.164i −0.392909 + 0.109589i
\(988\) −608.205 −0.615592
\(989\) −104.184 + 180.452i −0.105343 + 0.182459i
\(990\) 0 0
\(991\) −33.4483 57.9341i −0.0337520 0.0584602i 0.848656 0.528945i \(-0.177412\pi\)
−0.882408 + 0.470485i \(0.844079\pi\)
\(992\) 72.2498 + 41.7134i 0.0728324 + 0.0420498i
\(993\) 452.702i 0.455893i
\(994\) 45.8465 178.363i 0.0461233 0.179439i
\(995\) 0 0
\(996\) 131.220 227.280i 0.131747 0.228193i
\(997\) −1268.65 + 732.453i −1.27246 + 0.734657i −0.975451 0.220217i \(-0.929323\pi\)
−0.297012 + 0.954874i \(0.595990\pi\)
\(998\) −262.638 454.903i −0.263164 0.455814i
\(999\) 26.8675 + 15.5120i 0.0268944 + 0.0155275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.a.901.2 4
5.2 odd 4 1050.3.q.a.649.4 8
5.3 odd 4 1050.3.q.a.649.1 8
5.4 even 2 42.3.g.a.19.1 4
7.3 odd 6 inner 1050.3.p.a.451.2 4
15.14 odd 2 126.3.n.a.19.2 4
20.19 odd 2 336.3.bh.e.145.2 4
35.3 even 12 1050.3.q.a.199.4 8
35.4 even 6 294.3.g.a.31.1 4
35.9 even 6 294.3.c.a.97.4 4
35.17 even 12 1050.3.q.a.199.1 8
35.19 odd 6 294.3.c.a.97.3 4
35.24 odd 6 42.3.g.a.31.1 yes 4
35.34 odd 2 294.3.g.a.19.1 4
60.59 even 2 1008.3.cg.h.145.1 4
105.44 odd 6 882.3.c.b.685.2 4
105.59 even 6 126.3.n.a.73.2 4
105.74 odd 6 882.3.n.e.325.2 4
105.89 even 6 882.3.c.b.685.1 4
105.104 even 2 882.3.n.e.19.2 4
140.19 even 6 2352.3.f.e.97.4 4
140.59 even 6 336.3.bh.e.241.2 4
140.79 odd 6 2352.3.f.e.97.1 4
420.59 odd 6 1008.3.cg.h.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.3.g.a.19.1 4 5.4 even 2
42.3.g.a.31.1 yes 4 35.24 odd 6
126.3.n.a.19.2 4 15.14 odd 2
126.3.n.a.73.2 4 105.59 even 6
294.3.c.a.97.3 4 35.19 odd 6
294.3.c.a.97.4 4 35.9 even 6
294.3.g.a.19.1 4 35.34 odd 2
294.3.g.a.31.1 4 35.4 even 6
336.3.bh.e.145.2 4 20.19 odd 2
336.3.bh.e.241.2 4 140.59 even 6
882.3.c.b.685.1 4 105.89 even 6
882.3.c.b.685.2 4 105.44 odd 6
882.3.n.e.19.2 4 105.104 even 2
882.3.n.e.325.2 4 105.74 odd 6
1008.3.cg.h.145.1 4 60.59 even 2
1008.3.cg.h.577.1 4 420.59 odd 6
1050.3.p.a.451.2 4 7.3 odd 6 inner
1050.3.p.a.901.2 4 1.1 even 1 trivial
1050.3.q.a.199.1 8 35.17 even 12
1050.3.q.a.199.4 8 35.3 even 12
1050.3.q.a.649.1 8 5.3 odd 4
1050.3.q.a.649.4 8 5.2 odd 4
2352.3.f.e.97.1 4 140.79 odd 6
2352.3.f.e.97.4 4 140.19 even 6