Properties

Label 294.3.c.a.97.3
Level $294$
Weight $3$
Character 294.97
Analytic conductor $8.011$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,3,Mod(97,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 294.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.01091977219\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.3
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 294.97
Dual form 294.3.c.a.97.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} -1.73205i q^{3} +2.00000 q^{4} +8.36308i q^{5} -2.44949i q^{6} +2.82843 q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+1.41421 q^{2} -1.73205i q^{3} +2.00000 q^{4} +8.36308i q^{5} -2.44949i q^{6} +2.82843 q^{8} -3.00000 q^{9} +11.8272i q^{10} +6.00000 q^{11} -3.46410i q^{12} +17.8639i q^{13} +14.4853 q^{15} +4.00000 q^{16} +18.7554i q^{17} -4.24264 q^{18} -17.0233i q^{19} +16.7262i q^{20} +8.48528 q^{22} +13.4558 q^{23} -4.89898i q^{24} -44.9411 q^{25} +25.2633i q^{26} +5.19615i q^{27} +33.9411 q^{29} +20.4853 q^{30} -14.7479i q^{31} +5.65685 q^{32} -10.3923i q^{33} +26.5241i q^{34} -6.00000 q^{36} +5.97056 q^{37} -24.0746i q^{38} +30.9411 q^{39} +23.6544i q^{40} -35.2354i q^{41} +15.4853 q^{43} +12.0000 q^{44} -25.0892i q^{45} +19.0294 q^{46} -33.2061i q^{47} -6.92820i q^{48} -63.5563 q^{50} +32.4853 q^{51} +35.7277i q^{52} -34.5442 q^{53} +7.34847i q^{54} +50.1785i q^{55} -29.4853 q^{57} +48.0000 q^{58} -27.3647i q^{59} +28.9706 q^{60} -40.3805i q^{61} -20.8567i q^{62} +8.00000 q^{64} -149.397 q^{65} -14.6969i q^{66} -114.397 q^{67} +37.5108i q^{68} -23.3062i q^{69} +18.6030 q^{71} -8.48528 q^{72} +117.032i q^{73} +8.44365 q^{74} +77.8403i q^{75} -34.0467i q^{76} +43.7574 q^{78} -88.3381 q^{79} +33.4523i q^{80} +9.00000 q^{81} -49.8303i q^{82} -75.7601i q^{83} -156.853 q^{85} +21.8995 q^{86} -58.7878i q^{87} +16.9706 q^{88} -20.7846i q^{89} -35.4815i q^{90} +26.9117 q^{92} -25.5442 q^{93} -46.9606i q^{94} +142.368 q^{95} -9.79796i q^{96} -30.5826i q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{4} - 12 q^{9} + 24 q^{11} + 24 q^{15} + 16 q^{16} - 48 q^{23} - 44 q^{25} + 48 q^{30} - 24 q^{36} - 44 q^{37} - 12 q^{39} + 28 q^{43} + 48 q^{44} + 144 q^{46} - 192 q^{50} + 96 q^{51} - 240 q^{53} - 84 q^{57} + 192 q^{58} + 48 q^{60} + 32 q^{64} - 360 q^{65} - 220 q^{67} + 312 q^{71} + 96 q^{74} + 192 q^{78} + 20 q^{79} + 36 q^{81} - 288 q^{85} + 48 q^{86} - 96 q^{92} - 204 q^{93} + 264 q^{95} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 0.707107
\(3\) − 1.73205i − 0.577350i
\(4\) 2.00000 0.500000
\(5\) 8.36308i 1.67262i 0.548260 + 0.836308i \(0.315291\pi\)
−0.548260 + 0.836308i \(0.684709\pi\)
\(6\) − 2.44949i − 0.408248i
\(7\) 0 0
\(8\) 2.82843 0.353553
\(9\) −3.00000 −0.333333
\(10\) 11.8272i 1.18272i
\(11\) 6.00000 0.545455 0.272727 0.962091i \(-0.412074\pi\)
0.272727 + 0.962091i \(0.412074\pi\)
\(12\) − 3.46410i − 0.288675i
\(13\) 17.8639i 1.37414i 0.726590 + 0.687072i \(0.241104\pi\)
−0.726590 + 0.687072i \(0.758896\pi\)
\(14\) 0 0
\(15\) 14.4853 0.965685
\(16\) 4.00000 0.250000
\(17\) 18.7554i 1.10326i 0.834090 + 0.551629i \(0.185994\pi\)
−0.834090 + 0.551629i \(0.814006\pi\)
\(18\) −4.24264 −0.235702
\(19\) − 17.0233i − 0.895965i −0.894042 0.447983i \(-0.852143\pi\)
0.894042 0.447983i \(-0.147857\pi\)
\(20\) 16.7262i 0.836308i
\(21\) 0 0
\(22\) 8.48528 0.385695
\(23\) 13.4558 0.585037 0.292518 0.956260i \(-0.405507\pi\)
0.292518 + 0.956260i \(0.405507\pi\)
\(24\) − 4.89898i − 0.204124i
\(25\) −44.9411 −1.79765
\(26\) 25.2633i 0.971666i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 33.9411 1.17038 0.585192 0.810895i \(-0.301019\pi\)
0.585192 + 0.810895i \(0.301019\pi\)
\(30\) 20.4853 0.682843
\(31\) − 14.7479i − 0.475740i −0.971297 0.237870i \(-0.923551\pi\)
0.971297 0.237870i \(-0.0764491\pi\)
\(32\) 5.65685 0.176777
\(33\) − 10.3923i − 0.314918i
\(34\) 26.5241i 0.780121i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 5.97056 0.161367 0.0806833 0.996740i \(-0.474290\pi\)
0.0806833 + 0.996740i \(0.474290\pi\)
\(38\) − 24.0746i − 0.633543i
\(39\) 30.9411 0.793362
\(40\) 23.6544i 0.591359i
\(41\) − 35.2354i − 0.859399i −0.902972 0.429700i \(-0.858619\pi\)
0.902972 0.429700i \(-0.141381\pi\)
\(42\) 0 0
\(43\) 15.4853 0.360123 0.180061 0.983655i \(-0.442370\pi\)
0.180061 + 0.983655i \(0.442370\pi\)
\(44\) 12.0000 0.272727
\(45\) − 25.0892i − 0.557539i
\(46\) 19.0294 0.413683
\(47\) − 33.2061i − 0.706514i −0.935526 0.353257i \(-0.885074\pi\)
0.935526 0.353257i \(-0.114926\pi\)
\(48\) − 6.92820i − 0.144338i
\(49\) 0 0
\(50\) −63.5563 −1.27113
\(51\) 32.4853 0.636966
\(52\) 35.7277i 0.687072i
\(53\) −34.5442 −0.651777 −0.325888 0.945408i \(-0.605663\pi\)
−0.325888 + 0.945408i \(0.605663\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 50.1785i 0.912336i
\(56\) 0 0
\(57\) −29.4853 −0.517286
\(58\) 48.0000 0.827586
\(59\) − 27.3647i − 0.463808i −0.972739 0.231904i \(-0.925505\pi\)
0.972739 0.231904i \(-0.0744955\pi\)
\(60\) 28.9706 0.482843
\(61\) − 40.3805i − 0.661976i −0.943635 0.330988i \(-0.892618\pi\)
0.943635 0.330988i \(-0.107382\pi\)
\(62\) − 20.8567i − 0.336399i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −149.397 −2.29841
\(66\) − 14.6969i − 0.222681i
\(67\) −114.397 −1.70742 −0.853709 0.520751i \(-0.825652\pi\)
−0.853709 + 0.520751i \(0.825652\pi\)
\(68\) 37.5108i 0.551629i
\(69\) − 23.3062i − 0.337771i
\(70\) 0 0
\(71\) 18.6030 0.262015 0.131007 0.991381i \(-0.458179\pi\)
0.131007 + 0.991381i \(0.458179\pi\)
\(72\) −8.48528 −0.117851
\(73\) 117.032i 1.60318i 0.597874 + 0.801590i \(0.296012\pi\)
−0.597874 + 0.801590i \(0.703988\pi\)
\(74\) 8.44365 0.114103
\(75\) 77.8403i 1.03787i
\(76\) − 34.0467i − 0.447983i
\(77\) 0 0
\(78\) 43.7574 0.560992
\(79\) −88.3381 −1.11820 −0.559102 0.829099i \(-0.688854\pi\)
−0.559102 + 0.829099i \(0.688854\pi\)
\(80\) 33.4523i 0.418154i
\(81\) 9.00000 0.111111
\(82\) − 49.8303i − 0.607687i
\(83\) − 75.7601i − 0.912772i −0.889782 0.456386i \(-0.849144\pi\)
0.889782 0.456386i \(-0.150856\pi\)
\(84\) 0 0
\(85\) −156.853 −1.84533
\(86\) 21.8995 0.254645
\(87\) − 58.7878i − 0.675721i
\(88\) 16.9706 0.192847
\(89\) − 20.7846i − 0.233535i −0.993159 0.116767i \(-0.962747\pi\)
0.993159 0.116767i \(-0.0372532\pi\)
\(90\) − 35.4815i − 0.394239i
\(91\) 0 0
\(92\) 26.9117 0.292518
\(93\) −25.5442 −0.274668
\(94\) − 46.9606i − 0.499581i
\(95\) 142.368 1.49861
\(96\) − 9.79796i − 0.102062i
\(97\) − 30.5826i − 0.315284i −0.987496 0.157642i \(-0.949611\pi\)
0.987496 0.157642i \(-0.0503892\pi\)
\(98\) 0 0
\(99\) −18.0000 −0.181818
\(100\) −89.8823 −0.898823
\(101\) − 127.968i − 1.26701i −0.773739 0.633504i \(-0.781616\pi\)
0.773739 0.633504i \(-0.218384\pi\)
\(102\) 45.9411 0.450403
\(103\) − 80.9563i − 0.785983i −0.919542 0.392992i \(-0.871440\pi\)
0.919542 0.392992i \(-0.128560\pi\)
\(104\) 50.5266i 0.485833i
\(105\) 0 0
\(106\) −48.8528 −0.460876
\(107\) 169.456 1.58370 0.791850 0.610716i \(-0.209118\pi\)
0.791850 + 0.610716i \(0.209118\pi\)
\(108\) 10.3923i 0.0962250i
\(109\) 178.941 1.64166 0.820831 0.571171i \(-0.193511\pi\)
0.820831 + 0.571171i \(0.193511\pi\)
\(110\) 70.9631i 0.645119i
\(111\) − 10.3413i − 0.0931650i
\(112\) 0 0
\(113\) −17.3970 −0.153955 −0.0769777 0.997033i \(-0.524527\pi\)
−0.0769777 + 0.997033i \(0.524527\pi\)
\(114\) −41.6985 −0.365776
\(115\) 112.532i 0.978542i
\(116\) 67.8823 0.585192
\(117\) − 53.5916i − 0.458048i
\(118\) − 38.6995i − 0.327962i
\(119\) 0 0
\(120\) 40.9706 0.341421
\(121\) −85.0000 −0.702479
\(122\) − 57.1067i − 0.468088i
\(123\) −61.0294 −0.496174
\(124\) − 29.4959i − 0.237870i
\(125\) − 166.769i − 1.33415i
\(126\) 0 0
\(127\) 167.426 1.31832 0.659159 0.752004i \(-0.270912\pi\)
0.659159 + 0.752004i \(0.270912\pi\)
\(128\) 11.3137 0.0883883
\(129\) − 26.8213i − 0.207917i
\(130\) −211.279 −1.62522
\(131\) − 1.78304i − 0.0136110i −0.999977 0.00680549i \(-0.997834\pi\)
0.999977 0.00680549i \(-0.00216627\pi\)
\(132\) − 20.7846i − 0.157459i
\(133\) 0 0
\(134\) −161.782 −1.20733
\(135\) −43.4558 −0.321895
\(136\) 53.0482i 0.390061i
\(137\) 100.971 0.737011 0.368506 0.929625i \(-0.379870\pi\)
0.368506 + 0.929625i \(0.379870\pi\)
\(138\) − 32.9600i − 0.238840i
\(139\) 140.542i 1.01110i 0.862799 + 0.505548i \(0.168710\pi\)
−0.862799 + 0.505548i \(0.831290\pi\)
\(140\) 0 0
\(141\) −57.5147 −0.407906
\(142\) 26.3087 0.185272
\(143\) 107.183i 0.749533i
\(144\) −12.0000 −0.0833333
\(145\) 283.852i 1.95760i
\(146\) 165.508i 1.13362i
\(147\) 0 0
\(148\) 11.9411 0.0806833
\(149\) 182.912 1.22760 0.613798 0.789463i \(-0.289641\pi\)
0.613798 + 0.789463i \(0.289641\pi\)
\(150\) 110.083i 0.733886i
\(151\) −288.794 −1.91254 −0.956271 0.292481i \(-0.905519\pi\)
−0.956271 + 0.292481i \(0.905519\pi\)
\(152\) − 48.1493i − 0.316771i
\(153\) − 56.2662i − 0.367753i
\(154\) 0 0
\(155\) 123.338 0.795730
\(156\) 61.8823 0.396681
\(157\) − 187.061i − 1.19147i −0.803179 0.595737i \(-0.796860\pi\)
0.803179 0.595737i \(-0.203140\pi\)
\(158\) −124.929 −0.790689
\(159\) 59.8322i 0.376303i
\(160\) 47.3087i 0.295680i
\(161\) 0 0
\(162\) 12.7279 0.0785674
\(163\) 16.0589 0.0985207 0.0492604 0.998786i \(-0.484314\pi\)
0.0492604 + 0.998786i \(0.484314\pi\)
\(164\) − 70.4707i − 0.429700i
\(165\) 86.9117 0.526738
\(166\) − 107.141i − 0.645427i
\(167\) 176.117i 1.05459i 0.849681 + 0.527297i \(0.176794\pi\)
−0.849681 + 0.527297i \(0.823206\pi\)
\(168\) 0 0
\(169\) −150.118 −0.888271
\(170\) −221.823 −1.30484
\(171\) 51.0700i 0.298655i
\(172\) 30.9706 0.180061
\(173\) − 231.152i − 1.33614i −0.744098 0.668070i \(-0.767121\pi\)
0.744098 0.668070i \(-0.232879\pi\)
\(174\) − 83.1384i − 0.477807i
\(175\) 0 0
\(176\) 24.0000 0.136364
\(177\) −47.3970 −0.267779
\(178\) − 29.3939i − 0.165134i
\(179\) −85.2792 −0.476420 −0.238210 0.971214i \(-0.576561\pi\)
−0.238210 + 0.971214i \(0.576561\pi\)
\(180\) − 50.1785i − 0.278769i
\(181\) 5.58655i 0.0308649i 0.999881 + 0.0154325i \(0.00491250\pi\)
−0.999881 + 0.0154325i \(0.995087\pi\)
\(182\) 0 0
\(183\) −69.9411 −0.382192
\(184\) 38.0589 0.206842
\(185\) 49.9323i 0.269904i
\(186\) −36.1249 −0.194220
\(187\) 112.532i 0.601777i
\(188\) − 66.4123i − 0.353257i
\(189\) 0 0
\(190\) 201.338 1.05967
\(191\) 185.397 0.970665 0.485332 0.874330i \(-0.338699\pi\)
0.485332 + 0.874330i \(0.338699\pi\)
\(192\) − 13.8564i − 0.0721688i
\(193\) 227.794 1.18028 0.590140 0.807301i \(-0.299073\pi\)
0.590140 + 0.807301i \(0.299073\pi\)
\(194\) − 43.2503i − 0.222940i
\(195\) 258.763i 1.32699i
\(196\) 0 0
\(197\) 123.161 0.625185 0.312593 0.949887i \(-0.398803\pi\)
0.312593 + 0.949887i \(0.398803\pi\)
\(198\) −25.4558 −0.128565
\(199\) − 6.23188i − 0.0313160i −0.999877 0.0156580i \(-0.995016\pi\)
0.999877 0.0156580i \(-0.00498430\pi\)
\(200\) −127.113 −0.635563
\(201\) 198.141i 0.985778i
\(202\) − 180.974i − 0.895910i
\(203\) 0 0
\(204\) 64.9706 0.318483
\(205\) 294.676 1.43744
\(206\) − 114.489i − 0.555774i
\(207\) −40.3675 −0.195012
\(208\) 71.4555i 0.343536i
\(209\) − 102.140i − 0.488708i
\(210\) 0 0
\(211\) −124.912 −0.591999 −0.295999 0.955188i \(-0.595653\pi\)
−0.295999 + 0.955188i \(0.595653\pi\)
\(212\) −69.0883 −0.325888
\(213\) − 32.2214i − 0.151274i
\(214\) 239.647 1.11984
\(215\) 129.505i 0.602347i
\(216\) 14.6969i 0.0680414i
\(217\) 0 0
\(218\) 253.061 1.16083
\(219\) 202.706 0.925596
\(220\) 100.357i 0.456168i
\(221\) −335.044 −1.51603
\(222\) − 14.6248i − 0.0658776i
\(223\) 228.631i 1.02525i 0.858613 + 0.512625i \(0.171327\pi\)
−0.858613 + 0.512625i \(0.828673\pi\)
\(224\) 0 0
\(225\) 134.823 0.599215
\(226\) −24.6030 −0.108863
\(227\) 169.537i 0.746859i 0.927659 + 0.373430i \(0.121818\pi\)
−0.927659 + 0.373430i \(0.878182\pi\)
\(228\) −58.9706 −0.258643
\(229\) 34.6920i 0.151493i 0.997127 + 0.0757467i \(0.0241340\pi\)
−0.997127 + 0.0757467i \(0.975866\pi\)
\(230\) 159.145i 0.691934i
\(231\) 0 0
\(232\) 96.0000 0.413793
\(233\) −254.485 −1.09221 −0.546106 0.837716i \(-0.683890\pi\)
−0.546106 + 0.837716i \(0.683890\pi\)
\(234\) − 75.7900i − 0.323889i
\(235\) 277.706 1.18173
\(236\) − 54.7293i − 0.231904i
\(237\) 153.006i 0.645595i
\(238\) 0 0
\(239\) 197.147 0.824884 0.412442 0.910984i \(-0.364676\pi\)
0.412442 + 0.910984i \(0.364676\pi\)
\(240\) 57.9411 0.241421
\(241\) − 88.4701i − 0.367096i −0.983011 0.183548i \(-0.941242\pi\)
0.983011 0.183548i \(-0.0587582\pi\)
\(242\) −120.208 −0.496728
\(243\) − 15.5885i − 0.0641500i
\(244\) − 80.7611i − 0.330988i
\(245\) 0 0
\(246\) −86.3087 −0.350848
\(247\) 304.103 1.23118
\(248\) − 41.7134i − 0.168199i
\(249\) −131.220 −0.526989
\(250\) − 235.847i − 0.943389i
\(251\) 215.903i 0.860172i 0.902788 + 0.430086i \(0.141517\pi\)
−0.902788 + 0.430086i \(0.858483\pi\)
\(252\) 0 0
\(253\) 80.7351 0.319111
\(254\) 236.777 0.932192
\(255\) 271.677i 1.06540i
\(256\) 16.0000 0.0625000
\(257\) − 4.30463i − 0.0167495i −0.999965 0.00837477i \(-0.997334\pi\)
0.999965 0.00837477i \(-0.00266580\pi\)
\(258\) − 37.9310i − 0.147020i
\(259\) 0 0
\(260\) −298.794 −1.14921
\(261\) −101.823 −0.390128
\(262\) − 2.52160i − 0.00962441i
\(263\) 282.676 1.07481 0.537407 0.843323i \(-0.319404\pi\)
0.537407 + 0.843323i \(0.319404\pi\)
\(264\) − 29.3939i − 0.111340i
\(265\) − 288.896i − 1.09017i
\(266\) 0 0
\(267\) −36.0000 −0.134831
\(268\) −228.794 −0.853709
\(269\) 381.934i 1.41983i 0.704288 + 0.709914i \(0.251266\pi\)
−0.704288 + 0.709914i \(0.748734\pi\)
\(270\) −61.4558 −0.227614
\(271\) − 84.3271i − 0.311170i −0.987822 0.155585i \(-0.950274\pi\)
0.987822 0.155585i \(-0.0497263\pi\)
\(272\) 75.0215i 0.275814i
\(273\) 0 0
\(274\) 142.794 0.521146
\(275\) −269.647 −0.980534
\(276\) − 46.6124i − 0.168886i
\(277\) −137.118 −0.495010 −0.247505 0.968887i \(-0.579611\pi\)
−0.247505 + 0.968887i \(0.579611\pi\)
\(278\) 198.757i 0.714953i
\(279\) 44.2438i 0.158580i
\(280\) 0 0
\(281\) −325.103 −1.15695 −0.578474 0.815701i \(-0.696352\pi\)
−0.578474 + 0.815701i \(0.696352\pi\)
\(282\) −81.3381 −0.288433
\(283\) − 194.575i − 0.687545i −0.939053 0.343773i \(-0.888295\pi\)
0.939053 0.343773i \(-0.111705\pi\)
\(284\) 37.2061 0.131007
\(285\) − 246.588i − 0.865220i
\(286\) 151.580i 0.530000i
\(287\) 0 0
\(288\) −16.9706 −0.0589256
\(289\) −62.7645 −0.217178
\(290\) 401.428i 1.38423i
\(291\) −52.9706 −0.182029
\(292\) 234.064i 0.801590i
\(293\) 239.702i 0.818095i 0.912513 + 0.409048i \(0.134139\pi\)
−0.912513 + 0.409048i \(0.865861\pi\)
\(294\) 0 0
\(295\) 228.853 0.775772
\(296\) 16.8873 0.0570517
\(297\) 31.1769i 0.104973i
\(298\) 258.676 0.868041
\(299\) 240.373i 0.803924i
\(300\) 155.681i 0.518935i
\(301\) 0 0
\(302\) −408.416 −1.35237
\(303\) −221.647 −0.731507
\(304\) − 68.0933i − 0.223991i
\(305\) 337.706 1.10723
\(306\) − 79.5724i − 0.260040i
\(307\) − 540.272i − 1.75984i −0.475120 0.879921i \(-0.657595\pi\)
0.475120 0.879921i \(-0.342405\pi\)
\(308\) 0 0
\(309\) −140.220 −0.453788
\(310\) 174.426 0.562666
\(311\) − 404.196i − 1.29966i −0.760078 0.649832i \(-0.774839\pi\)
0.760078 0.649832i \(-0.225161\pi\)
\(312\) 87.5147 0.280496
\(313\) − 131.296i − 0.419477i −0.977757 0.209739i \(-0.932739\pi\)
0.977757 0.209739i \(-0.0672613\pi\)
\(314\) − 264.545i − 0.842500i
\(315\) 0 0
\(316\) −176.676 −0.559102
\(317\) −93.9411 −0.296344 −0.148172 0.988962i \(-0.547339\pi\)
−0.148172 + 0.988962i \(0.547339\pi\)
\(318\) 84.6156i 0.266087i
\(319\) 203.647 0.638391
\(320\) 66.9046i 0.209077i
\(321\) − 293.506i − 0.914349i
\(322\) 0 0
\(323\) 319.279 0.988481
\(324\) 18.0000 0.0555556
\(325\) − 802.822i − 2.47022i
\(326\) 22.7107 0.0696647
\(327\) − 309.935i − 0.947814i
\(328\) − 99.6607i − 0.303843i
\(329\) 0 0
\(330\) 122.912 0.372460
\(331\) −261.368 −0.789630 −0.394815 0.918761i \(-0.629191\pi\)
−0.394815 + 0.918761i \(0.629191\pi\)
\(332\) − 151.520i − 0.456386i
\(333\) −17.9117 −0.0537889
\(334\) 249.067i 0.745710i
\(335\) − 956.711i − 2.85585i
\(336\) 0 0
\(337\) 136.265 0.404347 0.202173 0.979350i \(-0.435200\pi\)
0.202173 + 0.979350i \(0.435200\pi\)
\(338\) −212.299 −0.628102
\(339\) 30.1324i 0.0888862i
\(340\) −313.706 −0.922664
\(341\) − 88.4876i − 0.259494i
\(342\) 72.2239i 0.211181i
\(343\) 0 0
\(344\) 43.7990 0.127323
\(345\) 194.912 0.564961
\(346\) − 326.899i − 0.944794i
\(347\) −322.191 −0.928504 −0.464252 0.885703i \(-0.653677\pi\)
−0.464252 + 0.885703i \(0.653677\pi\)
\(348\) − 117.576i − 0.337861i
\(349\) − 346.495i − 0.992821i −0.868088 0.496411i \(-0.834651\pi\)
0.868088 0.496411i \(-0.165349\pi\)
\(350\) 0 0
\(351\) −92.8234 −0.264454
\(352\) 33.9411 0.0964237
\(353\) 620.591i 1.75805i 0.476777 + 0.879025i \(0.341805\pi\)
−0.476777 + 0.879025i \(0.658195\pi\)
\(354\) −67.0294 −0.189349
\(355\) 155.579i 0.438250i
\(356\) − 41.5692i − 0.116767i
\(357\) 0 0
\(358\) −120.603 −0.336880
\(359\) 20.2355 0.0563663 0.0281831 0.999603i \(-0.491028\pi\)
0.0281831 + 0.999603i \(0.491028\pi\)
\(360\) − 70.9631i − 0.197120i
\(361\) 71.2061 0.197247
\(362\) 7.90058i 0.0218248i
\(363\) 147.224i 0.405577i
\(364\) 0 0
\(365\) −978.749 −2.68151
\(366\) −98.9117 −0.270251
\(367\) 311.574i 0.848975i 0.905434 + 0.424488i \(0.139546\pi\)
−0.905434 + 0.424488i \(0.860454\pi\)
\(368\) 53.8234 0.146259
\(369\) 105.706i 0.286466i
\(370\) 70.6149i 0.190851i
\(371\) 0 0
\(372\) −51.0883 −0.137334
\(373\) −681.382 −1.82676 −0.913380 0.407107i \(-0.866538\pi\)
−0.913380 + 0.407107i \(0.866538\pi\)
\(374\) 159.145i 0.425521i
\(375\) −288.853 −0.770274
\(376\) − 93.9211i − 0.249790i
\(377\) 606.320i 1.60828i
\(378\) 0 0
\(379\) −624.779 −1.64849 −0.824246 0.566231i \(-0.808401\pi\)
−0.824246 + 0.566231i \(0.808401\pi\)
\(380\) 284.735 0.749303
\(381\) − 289.991i − 0.761131i
\(382\) 262.191 0.686364
\(383\) 138.300i 0.361098i 0.983566 + 0.180549i \(0.0577874\pi\)
−0.983566 + 0.180549i \(0.942213\pi\)
\(384\) − 19.5959i − 0.0510310i
\(385\) 0 0
\(386\) 322.149 0.834584
\(387\) −46.4558 −0.120041
\(388\) − 61.1651i − 0.157642i
\(389\) −563.574 −1.44878 −0.724388 0.689393i \(-0.757877\pi\)
−0.724388 + 0.689393i \(0.757877\pi\)
\(390\) 365.946i 0.938324i
\(391\) 252.370i 0.645446i
\(392\) 0 0
\(393\) −3.08831 −0.00785830
\(394\) 174.177 0.442073
\(395\) − 738.779i − 1.87033i
\(396\) −36.0000 −0.0909091
\(397\) − 453.338i − 1.14191i −0.820981 0.570955i \(-0.806573\pi\)
0.820981 0.570955i \(-0.193427\pi\)
\(398\) − 8.81321i − 0.0221438i
\(399\) 0 0
\(400\) −179.765 −0.449411
\(401\) −275.750 −0.687656 −0.343828 0.939033i \(-0.611724\pi\)
−0.343828 + 0.939033i \(0.611724\pi\)
\(402\) 280.214i 0.697050i
\(403\) 263.455 0.653734
\(404\) − 255.936i − 0.633504i
\(405\) 75.2677i 0.185846i
\(406\) 0 0
\(407\) 35.8234 0.0880181
\(408\) 91.8823 0.225202
\(409\) 435.831i 1.06560i 0.846240 + 0.532801i \(0.178861\pi\)
−0.846240 + 0.532801i \(0.821139\pi\)
\(410\) 416.735 1.01643
\(411\) − 174.886i − 0.425514i
\(412\) − 161.913i − 0.392992i
\(413\) 0 0
\(414\) −57.0883 −0.137894
\(415\) 633.588 1.52672
\(416\) 101.053i 0.242917i
\(417\) 243.426 0.583756
\(418\) − 144.448i − 0.345569i
\(419\) 301.257i 0.718991i 0.933147 + 0.359496i \(0.117051\pi\)
−0.933147 + 0.359496i \(0.882949\pi\)
\(420\) 0 0
\(421\) −203.794 −0.484071 −0.242036 0.970267i \(-0.577815\pi\)
−0.242036 + 0.970267i \(0.577815\pi\)
\(422\) −176.652 −0.418606
\(423\) 99.6184i 0.235505i
\(424\) −97.7056 −0.230438
\(425\) − 842.888i − 1.98327i
\(426\) − 45.5679i − 0.106967i
\(427\) 0 0
\(428\) 338.912 0.791850
\(429\) 185.647 0.432743
\(430\) 183.147i 0.425924i
\(431\) −395.720 −0.918144 −0.459072 0.888399i \(-0.651818\pi\)
−0.459072 + 0.888399i \(0.651818\pi\)
\(432\) 20.7846i 0.0481125i
\(433\) 44.2685i 0.102237i 0.998693 + 0.0511184i \(0.0162786\pi\)
−0.998693 + 0.0511184i \(0.983721\pi\)
\(434\) 0 0
\(435\) 491.647 1.13022
\(436\) 357.882 0.820831
\(437\) − 229.063i − 0.524172i
\(438\) 286.669 0.654496
\(439\) 397.862i 0.906291i 0.891437 + 0.453146i \(0.149698\pi\)
−0.891437 + 0.453146i \(0.850302\pi\)
\(440\) 141.926i 0.322560i
\(441\) 0 0
\(442\) −473.823 −1.07200
\(443\) −118.544 −0.267594 −0.133797 0.991009i \(-0.542717\pi\)
−0.133797 + 0.991009i \(0.542717\pi\)
\(444\) − 20.6826i − 0.0465825i
\(445\) 173.823 0.390614
\(446\) 323.333i 0.724961i
\(447\) − 316.812i − 0.708752i
\(448\) 0 0
\(449\) 713.897 1.58997 0.794985 0.606629i \(-0.207479\pi\)
0.794985 + 0.606629i \(0.207479\pi\)
\(450\) 190.669 0.423709
\(451\) − 211.412i − 0.468763i
\(452\) −34.7939 −0.0769777
\(453\) 500.206i 1.10421i
\(454\) 239.762i 0.528109i
\(455\) 0 0
\(456\) −83.3970 −0.182888
\(457\) −125.177 −0.273909 −0.136955 0.990577i \(-0.543731\pi\)
−0.136955 + 0.990577i \(0.543731\pi\)
\(458\) 49.0619i 0.107122i
\(459\) −97.4558 −0.212322
\(460\) 225.065i 0.489271i
\(461\) − 655.767i − 1.42249i −0.702945 0.711244i \(-0.748132\pi\)
0.702945 0.711244i \(-0.251868\pi\)
\(462\) 0 0
\(463\) 869.396 1.87775 0.938873 0.344265i \(-0.111872\pi\)
0.938873 + 0.344265i \(0.111872\pi\)
\(464\) 135.765 0.292596
\(465\) − 213.628i − 0.459415i
\(466\) −359.897 −0.772310
\(467\) − 267.372i − 0.572532i −0.958150 0.286266i \(-0.907586\pi\)
0.958150 0.286266i \(-0.0924141\pi\)
\(468\) − 107.183i − 0.229024i
\(469\) 0 0
\(470\) 392.735 0.835607
\(471\) −324.000 −0.687898
\(472\) − 77.3989i − 0.163981i
\(473\) 92.9117 0.196431
\(474\) 216.383i 0.456505i
\(475\) 765.048i 1.61063i
\(476\) 0 0
\(477\) 103.632 0.217259
\(478\) 278.808 0.583281
\(479\) − 271.737i − 0.567300i −0.958928 0.283650i \(-0.908455\pi\)
0.958928 0.283650i \(-0.0915454\pi\)
\(480\) 81.9411 0.170711
\(481\) 106.657i 0.221741i
\(482\) − 125.116i − 0.259576i
\(483\) 0 0
\(484\) −170.000 −0.351240
\(485\) 255.765 0.527349
\(486\) − 22.0454i − 0.0453609i
\(487\) −561.514 −1.15301 −0.576503 0.817095i \(-0.695583\pi\)
−0.576503 + 0.817095i \(0.695583\pi\)
\(488\) − 114.213i − 0.234044i
\(489\) − 27.8148i − 0.0568810i
\(490\) 0 0
\(491\) −406.441 −0.827781 −0.413891 0.910327i \(-0.635830\pi\)
−0.413891 + 0.910327i \(0.635830\pi\)
\(492\) −122.059 −0.248087
\(493\) 636.579i 1.29124i
\(494\) 430.066 0.870579
\(495\) − 150.535i − 0.304112i
\(496\) − 58.9917i − 0.118935i
\(497\) 0 0
\(498\) −185.574 −0.372638
\(499\) −371.426 −0.744341 −0.372171 0.928164i \(-0.621386\pi\)
−0.372171 + 0.928164i \(0.621386\pi\)
\(500\) − 333.538i − 0.667077i
\(501\) 305.044 0.608870
\(502\) 305.333i 0.608234i
\(503\) − 64.6292i − 0.128488i −0.997934 0.0642438i \(-0.979536\pi\)
0.997934 0.0642438i \(-0.0204635\pi\)
\(504\) 0 0
\(505\) 1070.21 2.11922
\(506\) 114.177 0.225646
\(507\) 260.012i 0.512843i
\(508\) 334.853 0.659159
\(509\) 1006.77i 1.97794i 0.148125 + 0.988969i \(0.452676\pi\)
−0.148125 + 0.988969i \(0.547324\pi\)
\(510\) 384.209i 0.753352i
\(511\) 0 0
\(512\) 22.6274 0.0441942
\(513\) 88.4558 0.172429
\(514\) − 6.08767i − 0.0118437i
\(515\) 677.044 1.31465
\(516\) − 53.6426i − 0.103959i
\(517\) − 199.237i − 0.385371i
\(518\) 0 0
\(519\) −400.368 −0.771421
\(520\) −422.558 −0.812612
\(521\) 372.153i 0.714306i 0.934046 + 0.357153i \(0.116253\pi\)
−0.934046 + 0.357153i \(0.883747\pi\)
\(522\) −144.000 −0.275862
\(523\) − 637.284i − 1.21852i −0.792972 0.609258i \(-0.791467\pi\)
0.792972 0.609258i \(-0.208533\pi\)
\(524\) − 3.56608i − 0.00680549i
\(525\) 0 0
\(526\) 399.765 0.760009
\(527\) 276.603 0.524863
\(528\) − 41.5692i − 0.0787296i
\(529\) −347.940 −0.657732
\(530\) − 408.560i − 0.770868i
\(531\) 82.0940i 0.154603i
\(532\) 0 0
\(533\) 629.440 1.18094
\(534\) −50.9117 −0.0953402
\(535\) 1417.17i 2.64892i
\(536\) −323.563 −0.603663
\(537\) 147.708i 0.275061i
\(538\) 540.136i 1.00397i
\(539\) 0 0
\(540\) −86.9117 −0.160948
\(541\) 220.823 0.408176 0.204088 0.978953i \(-0.434577\pi\)
0.204088 + 0.978953i \(0.434577\pi\)
\(542\) − 119.257i − 0.220031i
\(543\) 9.67619 0.0178199
\(544\) 106.096i 0.195030i
\(545\) 1496.50i 2.74587i
\(546\) 0 0
\(547\) −160.676 −0.293741 −0.146870 0.989156i \(-0.546920\pi\)
−0.146870 + 0.989156i \(0.546920\pi\)
\(548\) 201.941 0.368506
\(549\) 121.142i 0.220659i
\(550\) −381.338 −0.693342
\(551\) − 577.791i − 1.04862i
\(552\) − 65.9199i − 0.119420i
\(553\) 0 0
\(554\) −193.914 −0.350025
\(555\) 86.4853 0.155829
\(556\) 281.085i 0.505548i
\(557\) −474.353 −0.851622 −0.425811 0.904812i \(-0.640011\pi\)
−0.425811 + 0.904812i \(0.640011\pi\)
\(558\) 62.5701i 0.112133i
\(559\) 276.627i 0.494860i
\(560\) 0 0
\(561\) 194.912 0.347436
\(562\) −459.765 −0.818086
\(563\) 496.868i 0.882537i 0.897375 + 0.441269i \(0.145471\pi\)
−0.897375 + 0.441269i \(0.854529\pi\)
\(564\) −115.029 −0.203953
\(565\) − 145.492i − 0.257508i
\(566\) − 275.171i − 0.486168i
\(567\) 0 0
\(568\) 52.6173 0.0926361
\(569\) 785.294 1.38013 0.690065 0.723748i \(-0.257582\pi\)
0.690065 + 0.723748i \(0.257582\pi\)
\(570\) − 348.728i − 0.611803i
\(571\) −715.043 −1.25226 −0.626132 0.779717i \(-0.715363\pi\)
−0.626132 + 0.779717i \(0.715363\pi\)
\(572\) 214.366i 0.374766i
\(573\) − 321.117i − 0.560414i
\(574\) 0 0
\(575\) −604.721 −1.05169
\(576\) −24.0000 −0.0416667
\(577\) − 772.630i − 1.33905i −0.742791 0.669524i \(-0.766498\pi\)
0.742791 0.669524i \(-0.233502\pi\)
\(578\) −88.7624 −0.153568
\(579\) − 394.551i − 0.681435i
\(580\) 567.705i 0.978801i
\(581\) 0 0
\(582\) −74.9117 −0.128714
\(583\) −207.265 −0.355514
\(584\) 331.017i 0.566810i
\(585\) 448.191 0.766138
\(586\) 338.990i 0.578481i
\(587\) 436.477i 0.743572i 0.928318 + 0.371786i \(0.121254\pi\)
−0.928318 + 0.371786i \(0.878746\pi\)
\(588\) 0 0
\(589\) −251.059 −0.426246
\(590\) 323.647 0.548554
\(591\) − 213.322i − 0.360951i
\(592\) 23.8823 0.0403416
\(593\) 834.152i 1.40666i 0.710861 + 0.703332i \(0.248305\pi\)
−0.710861 + 0.703332i \(0.751695\pi\)
\(594\) 44.0908i 0.0742270i
\(595\) 0 0
\(596\) 365.823 0.613798
\(597\) −10.7939 −0.0180803
\(598\) 339.939i 0.568460i
\(599\) 873.588 1.45841 0.729205 0.684295i \(-0.239890\pi\)
0.729205 + 0.684295i \(0.239890\pi\)
\(600\) 220.166i 0.366943i
\(601\) − 198.982i − 0.331085i −0.986203 0.165542i \(-0.947063\pi\)
0.986203 0.165542i \(-0.0529375\pi\)
\(602\) 0 0
\(603\) 343.191 0.569139
\(604\) −577.588 −0.956271
\(605\) − 710.862i − 1.17498i
\(606\) −313.456 −0.517254
\(607\) 158.950i 0.261861i 0.991392 + 0.130930i \(0.0417964\pi\)
−0.991392 + 0.130930i \(0.958204\pi\)
\(608\) − 96.2985i − 0.158386i
\(609\) 0 0
\(610\) 477.588 0.782931
\(611\) 593.190 0.970851
\(612\) − 112.532i − 0.183876i
\(613\) −714.735 −1.16596 −0.582981 0.812486i \(-0.698114\pi\)
−0.582981 + 0.812486i \(0.698114\pi\)
\(614\) − 764.059i − 1.24440i
\(615\) − 510.394i − 0.829909i
\(616\) 0 0
\(617\) −639.381 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(618\) −198.302 −0.320876
\(619\) − 172.025i − 0.277908i −0.990299 0.138954i \(-0.955626\pi\)
0.990299 0.138954i \(-0.0443740\pi\)
\(620\) 246.676 0.397865
\(621\) 69.9186i 0.112590i
\(622\) − 571.619i − 0.919002i
\(623\) 0 0
\(624\) 123.765 0.198341
\(625\) 271.177 0.433883
\(626\) − 185.681i − 0.296615i
\(627\) −176.912 −0.282156
\(628\) − 374.123i − 0.595737i
\(629\) 111.980i 0.178029i
\(630\) 0 0
\(631\) −1141.06 −1.80833 −0.904166 0.427180i \(-0.859507\pi\)
−0.904166 + 0.427180i \(0.859507\pi\)
\(632\) −249.858 −0.395345
\(633\) 216.353i 0.341791i
\(634\) −132.853 −0.209547
\(635\) 1400.20i 2.20504i
\(636\) 119.664i 0.188152i
\(637\) 0 0
\(638\) 288.000 0.451411
\(639\) −55.8091 −0.0873382
\(640\) 94.6175i 0.147840i
\(641\) 229.103 0.357414 0.178707 0.983902i \(-0.442809\pi\)
0.178707 + 0.983902i \(0.442809\pi\)
\(642\) − 415.080i − 0.646543i
\(643\) − 707.670i − 1.10058i −0.834975 0.550288i \(-0.814518\pi\)
0.834975 0.550288i \(-0.185482\pi\)
\(644\) 0 0
\(645\) 224.309 0.347765
\(646\) 451.529 0.698961
\(647\) − 1179.37i − 1.82283i −0.411484 0.911417i \(-0.634989\pi\)
0.411484 0.911417i \(-0.365011\pi\)
\(648\) 25.4558 0.0392837
\(649\) − 164.188i − 0.252986i
\(650\) − 1135.36i − 1.74671i
\(651\) 0 0
\(652\) 32.1177 0.0492604
\(653\) −154.764 −0.237004 −0.118502 0.992954i \(-0.537809\pi\)
−0.118502 + 0.992954i \(0.537809\pi\)
\(654\) − 438.314i − 0.670206i
\(655\) 14.9117 0.0227659
\(656\) − 140.941i − 0.214850i
\(657\) − 351.096i − 0.534393i
\(658\) 0 0
\(659\) 591.308 0.897280 0.448640 0.893712i \(-0.351908\pi\)
0.448640 + 0.893712i \(0.351908\pi\)
\(660\) 173.823 0.263369
\(661\) − 162.167i − 0.245337i −0.992448 0.122668i \(-0.960855\pi\)
0.992448 0.122668i \(-0.0391451\pi\)
\(662\) −369.630 −0.558353
\(663\) 580.313i 0.875283i
\(664\) − 214.282i − 0.322714i
\(665\) 0 0
\(666\) −25.3310 −0.0380345
\(667\) 456.706 0.684717
\(668\) 352.234i 0.527297i
\(669\) 396.000 0.591928
\(670\) − 1352.99i − 2.01939i
\(671\) − 242.283i − 0.361078i
\(672\) 0 0
\(673\) 42.3238 0.0628883 0.0314441 0.999506i \(-0.489989\pi\)
0.0314441 + 0.999506i \(0.489989\pi\)
\(674\) 192.708 0.285916
\(675\) − 233.521i − 0.345957i
\(676\) −300.235 −0.444135
\(677\) 497.354i 0.734643i 0.930094 + 0.367322i \(0.119725\pi\)
−0.930094 + 0.367322i \(0.880275\pi\)
\(678\) 42.6137i 0.0628521i
\(679\) 0 0
\(680\) −443.647 −0.652422
\(681\) 293.647 0.431199
\(682\) − 125.140i − 0.183490i
\(683\) 1216.16 1.78062 0.890308 0.455359i \(-0.150489\pi\)
0.890308 + 0.455359i \(0.150489\pi\)
\(684\) 102.140i 0.149328i
\(685\) 844.425i 1.23274i
\(686\) 0 0
\(687\) 60.0883 0.0874648
\(688\) 61.9411 0.0900307
\(689\) − 617.092i − 0.895635i
\(690\) 275.647 0.399488
\(691\) − 1076.39i − 1.55773i −0.627191 0.778865i \(-0.715796\pi\)
0.627191 0.778865i \(-0.284204\pi\)
\(692\) − 462.305i − 0.668070i
\(693\) 0 0
\(694\) −455.647 −0.656552
\(695\) −1175.37 −1.69118
\(696\) − 166.277i − 0.238904i
\(697\) 660.853 0.948139
\(698\) − 490.017i − 0.702031i
\(699\) 440.781i 0.630589i
\(700\) 0 0
\(701\) −695.897 −0.992720 −0.496360 0.868117i \(-0.665330\pi\)
−0.496360 + 0.868117i \(0.665330\pi\)
\(702\) −131.272 −0.186997
\(703\) − 101.639i − 0.144579i
\(704\) 48.0000 0.0681818
\(705\) − 481.000i − 0.682270i
\(706\) 877.649i 1.24313i
\(707\) 0 0
\(708\) −94.7939 −0.133890
\(709\) 254.824 0.359414 0.179707 0.983720i \(-0.442485\pi\)
0.179707 + 0.983720i \(0.442485\pi\)
\(710\) 220.021i 0.309889i
\(711\) 265.014 0.372735
\(712\) − 58.7878i − 0.0825671i
\(713\) − 198.446i − 0.278325i
\(714\) 0 0
\(715\) −896.382 −1.25368
\(716\) −170.558 −0.238210
\(717\) − 341.469i − 0.476247i
\(718\) 28.6173 0.0398570
\(719\) − 1114.20i − 1.54965i −0.632175 0.774826i \(-0.717838\pi\)
0.632175 0.774826i \(-0.282162\pi\)
\(720\) − 100.357i − 0.139385i
\(721\) 0 0
\(722\) 100.701 0.139474
\(723\) −153.235 −0.211943
\(724\) 11.1731i 0.0154325i
\(725\) −1525.35 −2.10393
\(726\) 208.207i 0.286786i
\(727\) 398.345i 0.547930i 0.961740 + 0.273965i \(0.0883353\pi\)
−0.961740 + 0.273965i \(0.911665\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −1384.16 −1.89611
\(731\) 290.432i 0.397308i
\(732\) −139.882 −0.191096
\(733\) 945.139i 1.28941i 0.764431 + 0.644706i \(0.223020\pi\)
−0.764431 + 0.644706i \(0.776980\pi\)
\(734\) 440.632i 0.600316i
\(735\) 0 0
\(736\) 76.1177 0.103421
\(737\) −686.382 −0.931319
\(738\) 149.491i 0.202562i
\(739\) 192.632 0.260666 0.130333 0.991470i \(-0.458395\pi\)
0.130333 + 0.991470i \(0.458395\pi\)
\(740\) 99.8646i 0.134952i
\(741\) − 526.721i − 0.710825i
\(742\) 0 0
\(743\) −911.616 −1.22694 −0.613470 0.789718i \(-0.710227\pi\)
−0.613470 + 0.789718i \(0.710227\pi\)
\(744\) −72.2498 −0.0971099
\(745\) 1529.71i 2.05330i
\(746\) −963.619 −1.29172
\(747\) 227.280i 0.304257i
\(748\) 225.065i 0.300889i
\(749\) 0 0
\(750\) −408.500 −0.544666
\(751\) −391.662 −0.521521 −0.260760 0.965404i \(-0.583973\pi\)
−0.260760 + 0.965404i \(0.583973\pi\)
\(752\) − 132.825i − 0.176628i
\(753\) 373.955 0.496621
\(754\) 857.466i 1.13722i
\(755\) − 2415.21i − 3.19895i
\(756\) 0 0
\(757\) −152.823 −0.201879 −0.100940 0.994893i \(-0.532185\pi\)
−0.100940 + 0.994893i \(0.532185\pi\)
\(758\) −883.571 −1.16566
\(759\) − 139.837i − 0.184239i
\(760\) 402.676 0.529837
\(761\) − 126.245i − 0.165893i −0.996554 0.0829465i \(-0.973567\pi\)
0.996554 0.0829465i \(-0.0264330\pi\)
\(762\) − 410.109i − 0.538201i
\(763\) 0 0
\(764\) 370.794 0.485332
\(765\) 470.558 0.615109
\(766\) 195.586i 0.255335i
\(767\) 488.839 0.637338
\(768\) − 27.7128i − 0.0360844i
\(769\) 369.148i 0.480037i 0.970768 + 0.240018i \(0.0771535\pi\)
−0.970768 + 0.240018i \(0.922847\pi\)
\(770\) 0 0
\(771\) −7.45584 −0.00967036
\(772\) 455.588 0.590140
\(773\) 1403.71i 1.81592i 0.419056 + 0.907961i \(0.362361\pi\)
−0.419056 + 0.907961i \(0.637639\pi\)
\(774\) −65.6985 −0.0848818
\(775\) 662.788i 0.855211i
\(776\) − 86.5006i − 0.111470i
\(777\) 0 0
\(778\) −797.013 −1.02444
\(779\) −599.823 −0.769991
\(780\) 517.526i 0.663495i
\(781\) 111.618 0.142917
\(782\) 356.904i 0.456400i
\(783\) 176.363i 0.225240i
\(784\) 0 0
\(785\) 1564.41 1.99288
\(786\) −4.36753 −0.00555666
\(787\) − 226.507i − 0.287810i −0.989591 0.143905i \(-0.954034\pi\)
0.989591 0.143905i \(-0.0459660\pi\)
\(788\) 246.323 0.312593
\(789\) − 489.610i − 0.620544i
\(790\) − 1044.79i − 1.32252i
\(791\) 0 0
\(792\) −50.9117 −0.0642824
\(793\) 721.352 0.909650
\(794\) − 641.117i − 0.807453i
\(795\) −500.382 −0.629411
\(796\) − 12.4638i − 0.0156580i
\(797\) 688.414i 0.863756i 0.901932 + 0.431878i \(0.142149\pi\)
−0.901932 + 0.431878i \(0.857851\pi\)
\(798\) 0 0
\(799\) 622.794 0.779467
\(800\) −254.225 −0.317782
\(801\) 62.3538i 0.0778450i
\(802\) −389.970 −0.486247
\(803\) 702.193i 0.874462i
\(804\) 396.283i 0.492889i
\(805\) 0 0
\(806\) 372.582 0.462260
\(807\) 661.529 0.819739
\(808\) − 361.948i − 0.447955i
\(809\) 25.2792 0.0312475 0.0156237 0.999878i \(-0.495027\pi\)
0.0156237 + 0.999878i \(0.495027\pi\)
\(810\) 106.445i 0.131413i
\(811\) − 1527.62i − 1.88362i −0.336145 0.941810i \(-0.609123\pi\)
0.336145 0.941810i \(-0.390877\pi\)
\(812\) 0 0
\(813\) −146.059 −0.179654
\(814\) 50.6619 0.0622382
\(815\) 134.302i 0.164787i
\(816\) 129.941 0.159242
\(817\) − 263.611i − 0.322657i
\(818\) 616.359i 0.753495i
\(819\) 0 0
\(820\) 589.352 0.718722
\(821\) −116.662 −0.142097 −0.0710487 0.997473i \(-0.522635\pi\)
−0.0710487 + 0.997473i \(0.522635\pi\)
\(822\) − 247.326i − 0.300884i
\(823\) 125.911 0.152990 0.0764950 0.997070i \(-0.475627\pi\)
0.0764950 + 0.997070i \(0.475627\pi\)
\(824\) − 228.979i − 0.277887i
\(825\) 467.042i 0.566111i
\(826\) 0 0
\(827\) −1434.40 −1.73446 −0.867229 0.497910i \(-0.834101\pi\)
−0.867229 + 0.497910i \(0.834101\pi\)
\(828\) −80.7351 −0.0975061
\(829\) 37.3228i 0.0450215i 0.999747 + 0.0225107i \(0.00716600\pi\)
−0.999747 + 0.0225107i \(0.992834\pi\)
\(830\) 896.029 1.07955
\(831\) 237.495i 0.285794i
\(832\) 142.911i 0.171768i
\(833\) 0 0
\(834\) 344.257 0.412778
\(835\) −1472.88 −1.76393
\(836\) − 204.280i − 0.244354i
\(837\) 76.6325 0.0915561
\(838\) 426.042i 0.508404i
\(839\) − 3.07370i − 0.00366353i −0.999998 0.00183177i \(-0.999417\pi\)
0.999998 0.00183177i \(-0.000583069\pi\)
\(840\) 0 0
\(841\) 311.000 0.369798
\(842\) −288.208 −0.342290
\(843\) 563.094i 0.667965i
\(844\) −249.823 −0.295999
\(845\) − 1255.45i − 1.48574i
\(846\) 140.882i 0.166527i
\(847\) 0 0
\(848\) −138.177 −0.162944
\(849\) −337.014 −0.396954
\(850\) − 1192.02i − 1.40238i
\(851\) 80.3390 0.0944054
\(852\) − 64.4428i − 0.0756371i
\(853\) 155.257i 0.182013i 0.995850 + 0.0910063i \(0.0290083\pi\)
−0.995850 + 0.0910063i \(0.970992\pi\)
\(854\) 0 0
\(855\) −427.103 −0.499535
\(856\) 479.294 0.559922
\(857\) 1603.86i 1.87148i 0.352686 + 0.935742i \(0.385269\pi\)
−0.352686 + 0.935742i \(0.614731\pi\)
\(858\) 262.544 0.305996
\(859\) 629.735i 0.733103i 0.930398 + 0.366551i \(0.119462\pi\)
−0.930398 + 0.366551i \(0.880538\pi\)
\(860\) 259.009i 0.301174i
\(861\) 0 0
\(862\) −559.632 −0.649226
\(863\) 1029.41 1.19283 0.596414 0.802677i \(-0.296592\pi\)
0.596414 + 0.802677i \(0.296592\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 1933.15 2.23485
\(866\) 62.6051i 0.0722923i
\(867\) 108.711i 0.125388i
\(868\) 0 0
\(869\) −530.029 −0.609929
\(870\) 695.294 0.799188
\(871\) − 2043.57i − 2.34624i
\(872\) 506.122 0.580415
\(873\) 91.7477i 0.105095i
\(874\) − 323.944i − 0.370646i
\(875\) 0 0
\(876\) 405.411 0.462798
\(877\) 648.441 0.739385 0.369693 0.929154i \(-0.379463\pi\)
0.369693 + 0.929154i \(0.379463\pi\)
\(878\) 562.662i 0.640845i
\(879\) 415.176 0.472327
\(880\) 200.714i 0.228084i
\(881\) 363.857i 0.413005i 0.978446 + 0.206502i \(0.0662082\pi\)
−0.978446 + 0.206502i \(0.933792\pi\)
\(882\) 0 0
\(883\) 1536.16 1.73971 0.869853 0.493312i \(-0.164214\pi\)
0.869853 + 0.493312i \(0.164214\pi\)
\(884\) −670.087 −0.758017
\(885\) − 396.385i − 0.447892i
\(886\) −167.647 −0.189218
\(887\) 1125.51i 1.26889i 0.772966 + 0.634447i \(0.218772\pi\)
−0.772966 + 0.634447i \(0.781228\pi\)
\(888\) − 29.2497i − 0.0329388i
\(889\) 0 0
\(890\) 245.823 0.276206
\(891\) 54.0000 0.0606061
\(892\) 457.261i 0.512625i
\(893\) −565.279 −0.633011
\(894\) − 448.040i − 0.501164i
\(895\) − 713.197i − 0.796868i
\(896\) 0 0
\(897\) 416.339 0.464146
\(898\) 1009.60 1.12428
\(899\) − 500.561i − 0.556798i
\(900\) 269.647 0.299608
\(901\) − 647.889i − 0.719078i
\(902\) − 298.982i − 0.331466i
\(903\) 0 0
\(904\) −49.2061 −0.0544315
\(905\) −46.7208 −0.0516252
\(906\) 707.398i 0.780792i
\(907\) 234.897 0.258982 0.129491 0.991581i \(-0.458666\pi\)
0.129491 + 0.991581i \(0.458666\pi\)
\(908\) 339.074i 0.373430i
\(909\) 383.903i 0.422336i
\(910\) 0 0
\(911\) 224.278 0.246189 0.123095 0.992395i \(-0.460718\pi\)
0.123095 + 0.992395i \(0.460718\pi\)
\(912\) −117.941 −0.129321
\(913\) − 454.561i − 0.497876i
\(914\) −177.026 −0.193683
\(915\) − 584.923i − 0.639260i
\(916\) 69.3840i 0.0757467i
\(917\) 0 0
\(918\) −137.823 −0.150134
\(919\) −932.161 −1.01432 −0.507161 0.861851i \(-0.669305\pi\)
−0.507161 + 0.861851i \(0.669305\pi\)
\(920\) 318.289i 0.345967i
\(921\) −935.778 −1.01605
\(922\) − 927.394i − 1.00585i
\(923\) 332.322i 0.360046i
\(924\) 0 0
\(925\) −268.324 −0.290080
\(926\) 1229.51 1.32777
\(927\) 242.869i 0.261994i
\(928\) 192.000 0.206897
\(929\) − 714.055i − 0.768628i −0.923203 0.384314i \(-0.874438\pi\)
0.923203 0.384314i \(-0.125562\pi\)
\(930\) − 302.115i − 0.324855i
\(931\) 0 0
\(932\) −508.971 −0.546106
\(933\) −700.087 −0.750362
\(934\) − 378.122i − 0.404841i
\(935\) −941.117 −1.00654
\(936\) − 151.580i − 0.161944i
\(937\) 1723.25i 1.83912i 0.392952 + 0.919559i \(0.371454\pi\)
−0.392952 + 0.919559i \(0.628546\pi\)
\(938\) 0 0
\(939\) −227.412 −0.242185
\(940\) 555.411 0.590863
\(941\) − 964.761i − 1.02525i −0.858612 0.512625i \(-0.828673\pi\)
0.858612 0.512625i \(-0.171327\pi\)
\(942\) −458.205 −0.486417
\(943\) − 474.122i − 0.502780i
\(944\) − 109.459i − 0.115952i
\(945\) 0 0
\(946\) 131.397 0.138897
\(947\) 1451.76 1.53301 0.766506 0.642237i \(-0.221993\pi\)
0.766506 + 0.642237i \(0.221993\pi\)
\(948\) 306.012i 0.322798i
\(949\) −2090.65 −2.20300
\(950\) 1081.94i 1.13889i
\(951\) 162.711i 0.171094i
\(952\) 0 0
\(953\) 1147.43 1.20401 0.602007 0.798491i \(-0.294368\pi\)
0.602007 + 0.798491i \(0.294368\pi\)
\(954\) 146.558 0.153625
\(955\) 1550.49i 1.62355i
\(956\) 394.294 0.412442
\(957\) − 352.727i − 0.368575i
\(958\) − 384.294i − 0.401142i
\(959\) 0 0
\(960\) 115.882 0.120711
\(961\) 743.499 0.773672
\(962\) 150.836i 0.156794i
\(963\) −508.368 −0.527900
\(964\) − 176.940i − 0.183548i
\(965\) 1905.06i 1.97415i
\(966\) 0 0
\(967\) 412.190 0.426257 0.213128 0.977024i \(-0.431635\pi\)
0.213128 + 0.977024i \(0.431635\pi\)
\(968\) −240.416 −0.248364
\(969\) − 553.008i − 0.570700i
\(970\) 361.706 0.372892
\(971\) 1004.12i 1.03411i 0.855952 + 0.517056i \(0.172972\pi\)
−0.855952 + 0.517056i \(0.827028\pi\)
\(972\) − 31.1769i − 0.0320750i
\(973\) 0 0
\(974\) −794.101 −0.815298
\(975\) −1390.53 −1.42618
\(976\) − 161.522i − 0.165494i
\(977\) −1588.23 −1.62562 −0.812812 0.582527i \(-0.802064\pi\)
−0.812812 + 0.582527i \(0.802064\pi\)
\(978\) − 39.3360i − 0.0402209i
\(979\) − 124.708i − 0.127383i
\(980\) 0 0
\(981\) −536.823 −0.547221
\(982\) −574.794 −0.585330
\(983\) − 833.533i − 0.847948i −0.905674 0.423974i \(-0.860635\pi\)
0.905674 0.423974i \(-0.139365\pi\)
\(984\) −172.617 −0.175424
\(985\) 1030.01i 1.04569i
\(986\) 900.259i 0.913041i
\(987\) 0 0
\(988\) 608.205 0.615592
\(989\) 208.368 0.210685
\(990\) − 212.889i − 0.215040i
\(991\) 66.8965 0.0675041 0.0337520 0.999430i \(-0.489254\pi\)
0.0337520 + 0.999430i \(0.489254\pi\)
\(992\) − 83.4269i − 0.0840997i
\(993\) 452.702i 0.455893i
\(994\) 0 0
\(995\) 52.1177 0.0523796
\(996\) −262.441 −0.263495
\(997\) − 1464.91i − 1.46931i −0.678439 0.734657i \(-0.737343\pi\)
0.678439 0.734657i \(-0.262657\pi\)
\(998\) −525.276 −0.526329
\(999\) 31.0240i 0.0310550i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.3.c.a.97.3 4
3.2 odd 2 882.3.c.b.685.1 4
4.3 odd 2 2352.3.f.e.97.4 4
7.2 even 3 42.3.g.a.31.1 yes 4
7.3 odd 6 42.3.g.a.19.1 4
7.4 even 3 294.3.g.a.19.1 4
7.5 odd 6 294.3.g.a.31.1 4
7.6 odd 2 inner 294.3.c.a.97.4 4
21.2 odd 6 126.3.n.a.73.2 4
21.5 even 6 882.3.n.e.325.2 4
21.11 odd 6 882.3.n.e.19.2 4
21.17 even 6 126.3.n.a.19.2 4
21.20 even 2 882.3.c.b.685.2 4
28.3 even 6 336.3.bh.e.145.2 4
28.23 odd 6 336.3.bh.e.241.2 4
28.27 even 2 2352.3.f.e.97.1 4
35.2 odd 12 1050.3.q.a.199.4 8
35.3 even 12 1050.3.q.a.649.4 8
35.9 even 6 1050.3.p.a.451.2 4
35.17 even 12 1050.3.q.a.649.1 8
35.23 odd 12 1050.3.q.a.199.1 8
35.24 odd 6 1050.3.p.a.901.2 4
84.23 even 6 1008.3.cg.h.577.1 4
84.59 odd 6 1008.3.cg.h.145.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.3.g.a.19.1 4 7.3 odd 6
42.3.g.a.31.1 yes 4 7.2 even 3
126.3.n.a.19.2 4 21.17 even 6
126.3.n.a.73.2 4 21.2 odd 6
294.3.c.a.97.3 4 1.1 even 1 trivial
294.3.c.a.97.4 4 7.6 odd 2 inner
294.3.g.a.19.1 4 7.4 even 3
294.3.g.a.31.1 4 7.5 odd 6
336.3.bh.e.145.2 4 28.3 even 6
336.3.bh.e.241.2 4 28.23 odd 6
882.3.c.b.685.1 4 3.2 odd 2
882.3.c.b.685.2 4 21.20 even 2
882.3.n.e.19.2 4 21.11 odd 6
882.3.n.e.325.2 4 21.5 even 6
1008.3.cg.h.145.1 4 84.59 odd 6
1008.3.cg.h.577.1 4 84.23 even 6
1050.3.p.a.451.2 4 35.9 even 6
1050.3.p.a.901.2 4 35.24 odd 6
1050.3.q.a.199.1 8 35.23 odd 12
1050.3.q.a.199.4 8 35.2 odd 12
1050.3.q.a.649.1 8 35.17 even 12
1050.3.q.a.649.4 8 35.3 even 12
2352.3.f.e.97.1 4 28.27 even 2
2352.3.f.e.97.4 4 4.3 odd 2