Properties

Label 42.3.g.a.19.1
Level $42$
Weight $3$
Character 42.19
Analytic conductor $1.144$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,3,Mod(19,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 42.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14441711031\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 42.19
Dual form 42.3.g.a.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(7.24264 + 4.18154i) q^{5} +2.44949i q^{6} +(-6.74264 + 1.88064i) q^{7} +2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 1.22474i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(7.24264 + 4.18154i) q^{5} +2.44949i q^{6} +(-6.74264 + 1.88064i) q^{7} +2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +(-10.2426 + 5.91359i) q^{10} +(-3.00000 - 5.19615i) q^{11} +(-3.00000 - 1.73205i) q^{12} -17.8639i q^{13} +(2.46447 - 9.58783i) q^{14} +14.4853 q^{15} +(-2.00000 + 3.46410i) q^{16} +(-16.2426 + 9.37769i) q^{17} +(2.12132 + 3.67423i) q^{18} +(-14.7426 - 8.51167i) q^{19} -16.7262i q^{20} +(-8.48528 + 8.66025i) q^{21} +8.48528 q^{22} +(-6.72792 + 11.6531i) q^{23} +(4.24264 - 2.44949i) q^{24} +(22.4706 + 38.9202i) q^{25} +(21.8787 + 12.6317i) q^{26} -5.19615i q^{27} +(10.0000 + 9.79796i) q^{28} +33.9411 q^{29} +(-10.2426 + 17.7408i) q^{30} +(12.7721 - 7.37396i) q^{31} +(-2.82843 - 4.89898i) q^{32} +(-9.00000 - 5.19615i) q^{33} -26.5241i q^{34} +(-56.6985 - 14.5738i) q^{35} -6.00000 q^{36} +(-2.98528 + 5.17066i) q^{37} +(20.8492 - 12.0373i) q^{38} +(-15.4706 - 26.7958i) q^{39} +(20.4853 + 11.8272i) q^{40} +35.2354i q^{41} +(-4.60660 - 16.5160i) q^{42} +15.4853 q^{43} +(-6.00000 + 10.3923i) q^{44} +(21.7279 - 12.5446i) q^{45} +(-9.51472 - 16.4800i) q^{46} +(-28.7574 - 16.6031i) q^{47} +6.92820i q^{48} +(41.9264 - 25.3609i) q^{49} -63.5563 q^{50} +(-16.2426 + 28.1331i) q^{51} +(-30.9411 + 17.8639i) q^{52} +(17.2721 + 29.9161i) q^{53} +(6.36396 + 3.67423i) q^{54} -50.1785i q^{55} +(-19.0711 + 5.31925i) q^{56} -29.4853 q^{57} +(-24.0000 + 41.5692i) q^{58} +(23.6985 - 13.6823i) q^{59} +(-14.4853 - 25.0892i) q^{60} +(-34.9706 - 20.1903i) q^{61} +20.8567i q^{62} +(-5.22792 + 20.3389i) q^{63} +8.00000 q^{64} +(74.6985 - 129.382i) q^{65} +(12.7279 - 7.34847i) q^{66} +(57.1985 + 99.0707i) q^{67} +(32.4853 + 18.7554i) q^{68} +23.3062i q^{69} +(57.9411 - 59.1359i) q^{70} +18.6030 q^{71} +(4.24264 - 7.34847i) q^{72} +(-101.353 + 58.5161i) q^{73} +(-4.22183 - 7.31242i) q^{74} +(67.4117 + 38.9202i) q^{75} +34.0467i q^{76} +(30.0000 + 29.3939i) q^{77} +43.7574 q^{78} +(44.1690 - 76.5030i) q^{79} +(-28.9706 + 16.7262i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-43.1543 - 24.9152i) q^{82} +75.7601i q^{83} +(23.4853 + 6.03668i) q^{84} -156.853 q^{85} +(-10.9497 + 18.9655i) q^{86} +(50.9117 - 29.3939i) q^{87} +(-8.48528 - 14.6969i) q^{88} +(-18.0000 - 10.3923i) q^{89} +35.4815i q^{90} +(33.5955 + 120.450i) q^{91} +26.9117 q^{92} +(12.7721 - 22.1219i) q^{93} +(40.6690 - 23.4803i) q^{94} +(-71.1838 - 123.294i) q^{95} +(-8.48528 - 4.89898i) q^{96} +30.5826i q^{97} +(1.41421 + 69.2820i) q^{98} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{3} - 4 q^{4} + 12 q^{5} - 10 q^{7} + 6 q^{9} - 24 q^{10} - 12 q^{11} - 12 q^{12} + 24 q^{14} + 24 q^{15} - 8 q^{16} - 48 q^{17} - 42 q^{19} + 24 q^{23} + 22 q^{25} + 96 q^{26} + 40 q^{28} - 24 q^{30} + 102 q^{31} - 36 q^{33} - 108 q^{35} - 24 q^{36} + 22 q^{37} + 24 q^{38} + 6 q^{39} + 48 q^{40} + 24 q^{42} + 28 q^{43} - 24 q^{44} + 36 q^{45} - 72 q^{46} - 132 q^{47} - 2 q^{49} - 192 q^{50} - 48 q^{51} + 12 q^{52} + 120 q^{53} - 48 q^{56} - 84 q^{57} - 96 q^{58} - 24 q^{59} - 24 q^{60} - 72 q^{61} + 30 q^{63} + 32 q^{64} + 180 q^{65} + 110 q^{67} + 96 q^{68} + 96 q^{70} + 312 q^{71} - 66 q^{73} - 48 q^{74} + 66 q^{75} + 120 q^{77} + 192 q^{78} - 10 q^{79} - 48 q^{80} - 18 q^{81} + 48 q^{82} + 60 q^{84} - 288 q^{85} - 24 q^{86} - 72 q^{89} - 222 q^{91} - 96 q^{92} + 102 q^{93} - 24 q^{94} - 132 q^{95} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 7.24264 + 4.18154i 1.44853 + 0.836308i 0.998394 0.0566528i \(-0.0180428\pi\)
0.450134 + 0.892961i \(0.351376\pi\)
\(6\) 2.44949i 0.408248i
\(7\) −6.74264 + 1.88064i −0.963234 + 0.268662i
\(8\) 2.82843 0.353553
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) −10.2426 + 5.91359i −1.02426 + 0.591359i
\(11\) −3.00000 5.19615i −0.272727 0.472377i 0.696832 0.717234i \(-0.254592\pi\)
−0.969559 + 0.244857i \(0.921259\pi\)
\(12\) −3.00000 1.73205i −0.250000 0.144338i
\(13\) 17.8639i 1.37414i −0.726590 0.687072i \(-0.758896\pi\)
0.726590 0.687072i \(-0.241104\pi\)
\(14\) 2.46447 9.58783i 0.176033 0.684845i
\(15\) 14.4853 0.965685
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −16.2426 + 9.37769i −0.955449 + 0.551629i −0.894770 0.446528i \(-0.852660\pi\)
−0.0606799 + 0.998157i \(0.519327\pi\)
\(18\) 2.12132 + 3.67423i 0.117851 + 0.204124i
\(19\) −14.7426 8.51167i −0.775928 0.447983i 0.0590569 0.998255i \(-0.481191\pi\)
−0.834985 + 0.550272i \(0.814524\pi\)
\(20\) 16.7262i 0.836308i
\(21\) −8.48528 + 8.66025i −0.404061 + 0.412393i
\(22\) 8.48528 0.385695
\(23\) −6.72792 + 11.6531i −0.292518 + 0.506657i −0.974405 0.224802i \(-0.927827\pi\)
0.681886 + 0.731458i \(0.261160\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 22.4706 + 38.9202i 0.898823 + 1.55681i
\(26\) 21.8787 + 12.6317i 0.841488 + 0.485833i
\(27\) 5.19615i 0.192450i
\(28\) 10.0000 + 9.79796i 0.357143 + 0.349927i
\(29\) 33.9411 1.17038 0.585192 0.810895i \(-0.301019\pi\)
0.585192 + 0.810895i \(0.301019\pi\)
\(30\) −10.2426 + 17.7408i −0.341421 + 0.591359i
\(31\) 12.7721 7.37396i 0.412003 0.237870i −0.279647 0.960103i \(-0.590218\pi\)
0.691650 + 0.722233i \(0.256884\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) −9.00000 5.19615i −0.272727 0.157459i
\(34\) 26.5241i 0.780121i
\(35\) −56.6985 14.5738i −1.61996 0.416396i
\(36\) −6.00000 −0.166667
\(37\) −2.98528 + 5.17066i −0.0806833 + 0.139748i −0.903544 0.428496i \(-0.859044\pi\)
0.822860 + 0.568244i \(0.192377\pi\)
\(38\) 20.8492 12.0373i 0.548664 0.316771i
\(39\) −15.4706 26.7958i −0.396681 0.687072i
\(40\) 20.4853 + 11.8272i 0.512132 + 0.295680i
\(41\) 35.2354i 0.859399i 0.902972 + 0.429700i \(0.141381\pi\)
−0.902972 + 0.429700i \(0.858619\pi\)
\(42\) −4.60660 16.5160i −0.109681 0.393239i
\(43\) 15.4853 0.360123 0.180061 0.983655i \(-0.442370\pi\)
0.180061 + 0.983655i \(0.442370\pi\)
\(44\) −6.00000 + 10.3923i −0.136364 + 0.236189i
\(45\) 21.7279 12.5446i 0.482843 0.278769i
\(46\) −9.51472 16.4800i −0.206842 0.358260i
\(47\) −28.7574 16.6031i −0.611859 0.353257i 0.161834 0.986818i \(-0.448259\pi\)
−0.773693 + 0.633561i \(0.781592\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 41.9264 25.3609i 0.855641 0.517570i
\(50\) −63.5563 −1.27113
\(51\) −16.2426 + 28.1331i −0.318483 + 0.551629i
\(52\) −30.9411 + 17.8639i −0.595022 + 0.343536i
\(53\) 17.2721 + 29.9161i 0.325888 + 0.564455i 0.981692 0.190477i \(-0.0610033\pi\)
−0.655803 + 0.754932i \(0.727670\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 50.1785i 0.912336i
\(56\) −19.0711 + 5.31925i −0.340555 + 0.0949865i
\(57\) −29.4853 −0.517286
\(58\) −24.0000 + 41.5692i −0.413793 + 0.716711i
\(59\) 23.6985 13.6823i 0.401669 0.231904i −0.285535 0.958368i \(-0.592171\pi\)
0.687204 + 0.726465i \(0.258838\pi\)
\(60\) −14.4853 25.0892i −0.241421 0.418154i
\(61\) −34.9706 20.1903i −0.573288 0.330988i 0.185174 0.982706i \(-0.440715\pi\)
−0.758461 + 0.651718i \(0.774049\pi\)
\(62\) 20.8567i 0.336399i
\(63\) −5.22792 + 20.3389i −0.0829829 + 0.322839i
\(64\) 8.00000 0.125000
\(65\) 74.6985 129.382i 1.14921 1.99049i
\(66\) 12.7279 7.34847i 0.192847 0.111340i
\(67\) 57.1985 + 99.0707i 0.853709 + 1.47867i 0.877838 + 0.478958i \(0.158985\pi\)
−0.0241291 + 0.999709i \(0.507681\pi\)
\(68\) 32.4853 + 18.7554i 0.477725 + 0.275814i
\(69\) 23.3062i 0.337771i
\(70\) 57.9411 59.1359i 0.827730 0.844799i
\(71\) 18.6030 0.262015 0.131007 0.991381i \(-0.458179\pi\)
0.131007 + 0.991381i \(0.458179\pi\)
\(72\) 4.24264 7.34847i 0.0589256 0.102062i
\(73\) −101.353 + 58.5161i −1.38839 + 0.801590i −0.993134 0.116979i \(-0.962679\pi\)
−0.395260 + 0.918569i \(0.629346\pi\)
\(74\) −4.22183 7.31242i −0.0570517 0.0988164i
\(75\) 67.4117 + 38.9202i 0.898823 + 0.518935i
\(76\) 34.0467i 0.447983i
\(77\) 30.0000 + 29.3939i 0.389610 + 0.381739i
\(78\) 43.7574 0.560992
\(79\) 44.1690 76.5030i 0.559102 0.968393i −0.438470 0.898746i \(-0.644479\pi\)
0.997572 0.0696469i \(-0.0221873\pi\)
\(80\) −28.9706 + 16.7262i −0.362132 + 0.209077i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −43.1543 24.9152i −0.526272 0.303843i
\(83\) 75.7601i 0.912772i 0.889782 + 0.456386i \(0.150856\pi\)
−0.889782 + 0.456386i \(0.849144\pi\)
\(84\) 23.4853 + 6.03668i 0.279587 + 0.0718653i
\(85\) −156.853 −1.84533
\(86\) −10.9497 + 18.9655i −0.127323 + 0.220529i
\(87\) 50.9117 29.3939i 0.585192 0.337861i
\(88\) −8.48528 14.6969i −0.0964237 0.167011i
\(89\) −18.0000 10.3923i −0.202247 0.116767i 0.395456 0.918485i \(-0.370587\pi\)
−0.597703 + 0.801717i \(0.703920\pi\)
\(90\) 35.4815i 0.394239i
\(91\) 33.5955 + 120.450i 0.369181 + 1.32362i
\(92\) 26.9117 0.292518
\(93\) 12.7721 22.1219i 0.137334 0.237870i
\(94\) 40.6690 23.4803i 0.432649 0.249790i
\(95\) −71.1838 123.294i −0.749303 1.29783i
\(96\) −8.48528 4.89898i −0.0883883 0.0510310i
\(97\) 30.5826i 0.315284i 0.987496 + 0.157642i \(0.0503892\pi\)
−0.987496 + 0.157642i \(0.949611\pi\)
\(98\) 1.41421 + 69.2820i 0.0144308 + 0.706960i
\(99\) −18.0000 −0.181818
\(100\) 44.9411 77.8403i 0.449411 0.778403i
\(101\) 110.823 63.9839i 1.09726 0.633504i 0.161761 0.986830i \(-0.448283\pi\)
0.935500 + 0.353326i \(0.114949\pi\)
\(102\) −22.9706 39.7862i −0.225202 0.390061i
\(103\) −70.1102 40.4781i −0.680681 0.392992i 0.119430 0.992843i \(-0.461893\pi\)
−0.800112 + 0.599851i \(0.795226\pi\)
\(104\) 50.5266i 0.485833i
\(105\) −97.6690 + 27.2416i −0.930181 + 0.259443i
\(106\) −48.8528 −0.460876
\(107\) −84.7279 + 146.753i −0.791850 + 1.37152i 0.132971 + 0.991120i \(0.457548\pi\)
−0.924820 + 0.380404i \(0.875785\pi\)
\(108\) −9.00000 + 5.19615i −0.0833333 + 0.0481125i
\(109\) −89.4706 154.968i −0.820831 1.42172i −0.905064 0.425275i \(-0.860177\pi\)
0.0842335 0.996446i \(-0.473156\pi\)
\(110\) 61.4558 + 35.4815i 0.558689 + 0.322560i
\(111\) 10.3413i 0.0931650i
\(112\) 6.97056 27.1185i 0.0622372 0.242129i
\(113\) −17.3970 −0.153955 −0.0769777 0.997033i \(-0.524527\pi\)
−0.0769777 + 0.997033i \(0.524527\pi\)
\(114\) 20.8492 36.1119i 0.182888 0.316771i
\(115\) −97.4558 + 56.2662i −0.847442 + 0.489271i
\(116\) −33.9411 58.7878i −0.292596 0.506791i
\(117\) −46.4117 26.7958i −0.396681 0.229024i
\(118\) 38.6995i 0.327962i
\(119\) 91.8823 93.7769i 0.772120 0.788041i
\(120\) 40.9706 0.341421
\(121\) 42.5000 73.6122i 0.351240 0.608365i
\(122\) 49.4558 28.5533i 0.405376 0.234044i
\(123\) 30.5147 + 52.8530i 0.248087 + 0.429700i
\(124\) −25.5442 14.7479i −0.206001 0.118935i
\(125\) 166.769i 1.33415i
\(126\) −21.2132 20.7846i −0.168359 0.164957i
\(127\) 167.426 1.31832 0.659159 0.752004i \(-0.270912\pi\)
0.659159 + 0.752004i \(0.270912\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 23.2279 13.4106i 0.180061 0.103959i
\(130\) 105.640 + 182.973i 0.812612 + 1.40749i
\(131\) −1.54416 0.891519i −0.0117874 0.00680549i 0.494095 0.869408i \(-0.335500\pi\)
−0.505882 + 0.862603i \(0.668833\pi\)
\(132\) 20.7846i 0.157459i
\(133\) 115.412 + 29.6656i 0.867757 + 0.223049i
\(134\) −161.782 −1.20733
\(135\) 21.7279 37.6339i 0.160948 0.278769i
\(136\) −45.9411 + 26.5241i −0.337802 + 0.195030i
\(137\) −50.4853 87.4431i −0.368506 0.638271i 0.620826 0.783948i \(-0.286797\pi\)
−0.989332 + 0.145677i \(0.953464\pi\)
\(138\) −28.5442 16.4800i −0.206842 0.119420i
\(139\) 140.542i 1.01110i −0.862799 0.505548i \(-0.831290\pi\)
0.862799 0.505548i \(-0.168710\pi\)
\(140\) 31.4558 + 112.779i 0.224685 + 0.805561i
\(141\) −57.5147 −0.407906
\(142\) −13.1543 + 22.7840i −0.0926361 + 0.160450i
\(143\) −92.8234 + 53.5916i −0.649115 + 0.374766i
\(144\) 6.00000 + 10.3923i 0.0416667 + 0.0721688i
\(145\) 245.823 + 141.926i 1.69533 + 0.978801i
\(146\) 165.508i 1.13362i
\(147\) 40.9264 74.3507i 0.278411 0.505787i
\(148\) 11.9411 0.0806833
\(149\) −91.4558 + 158.406i −0.613798 + 1.06313i 0.376797 + 0.926296i \(0.377026\pi\)
−0.990594 + 0.136833i \(0.956308\pi\)
\(150\) −95.3345 + 55.0414i −0.635563 + 0.366943i
\(151\) 144.397 + 250.103i 0.956271 + 1.65631i 0.731432 + 0.681915i \(0.238852\pi\)
0.224840 + 0.974396i \(0.427814\pi\)
\(152\) −41.6985 24.0746i −0.274332 0.158386i
\(153\) 56.2662i 0.367753i
\(154\) −57.2132 + 15.9577i −0.371514 + 0.103622i
\(155\) 123.338 0.795730
\(156\) −30.9411 + 53.5916i −0.198341 + 0.343536i
\(157\) 162.000 93.5307i 1.03185 0.595737i 0.114334 0.993442i \(-0.463527\pi\)
0.917513 + 0.397705i \(0.130193\pi\)
\(158\) 62.4645 + 108.192i 0.395345 + 0.684757i
\(159\) 51.8162 + 29.9161i 0.325888 + 0.188152i
\(160\) 47.3087i 0.295680i
\(161\) 23.4487 91.2255i 0.145644 0.566618i
\(162\) 12.7279 0.0785674
\(163\) −8.02944 + 13.9074i −0.0492604 + 0.0853214i −0.889604 0.456732i \(-0.849020\pi\)
0.840344 + 0.542054i \(0.182353\pi\)
\(164\) 61.0294 35.2354i 0.372131 0.214850i
\(165\) −43.4558 75.2677i −0.263369 0.456168i
\(166\) −92.7868 53.5705i −0.558957 0.322714i
\(167\) 176.117i 1.05459i −0.849681 0.527297i \(-0.823206\pi\)
0.849681 0.527297i \(-0.176794\pi\)
\(168\) −24.0000 + 24.4949i −0.142857 + 0.145803i
\(169\) −150.118 −0.888271
\(170\) 110.912 192.105i 0.652422 1.13003i
\(171\) −44.2279 + 25.5350i −0.258643 + 0.149328i
\(172\) −15.4853 26.8213i −0.0900307 0.155938i
\(173\) −200.184 115.576i −1.15713 0.668070i −0.206517 0.978443i \(-0.566213\pi\)
−0.950615 + 0.310373i \(0.899546\pi\)
\(174\) 83.1384i 0.477807i
\(175\) −224.706 220.166i −1.28403 1.25809i
\(176\) 24.0000 0.136364
\(177\) 23.6985 41.0470i 0.133890 0.231904i
\(178\) 25.4558 14.6969i 0.143010 0.0825671i
\(179\) 42.6396 + 73.8540i 0.238210 + 0.412592i 0.960201 0.279311i \(-0.0901060\pi\)
−0.721991 + 0.691903i \(0.756773\pi\)
\(180\) −43.4558 25.0892i −0.241421 0.139385i
\(181\) 5.58655i 0.0308649i −0.999881 0.0154325i \(-0.995087\pi\)
0.999881 0.0154325i \(-0.00491250\pi\)
\(182\) −171.276 44.0249i −0.941075 0.241895i
\(183\) −69.9411 −0.382192
\(184\) −19.0294 + 32.9600i −0.103421 + 0.179130i
\(185\) −43.2426 + 24.9662i −0.233744 + 0.134952i
\(186\) 18.0624 + 31.2851i 0.0971099 + 0.168199i
\(187\) 97.4558 + 56.2662i 0.521154 + 0.300889i
\(188\) 66.4123i 0.353257i
\(189\) 9.77208 + 35.0358i 0.0517041 + 0.185375i
\(190\) 201.338 1.05967
\(191\) −92.6985 + 160.558i −0.485332 + 0.840620i −0.999858 0.0168547i \(-0.994635\pi\)
0.514526 + 0.857475i \(0.327968\pi\)
\(192\) 12.0000 6.92820i 0.0625000 0.0360844i
\(193\) −113.897 197.275i −0.590140 1.02215i −0.994213 0.107425i \(-0.965739\pi\)
0.404073 0.914727i \(-0.367594\pi\)
\(194\) −37.4558 21.6251i −0.193071 0.111470i
\(195\) 258.763i 1.32699i
\(196\) −85.8528 47.2577i −0.438025 0.241111i
\(197\) 123.161 0.625185 0.312593 0.949887i \(-0.398803\pi\)
0.312593 + 0.949887i \(0.398803\pi\)
\(198\) 12.7279 22.0454i 0.0642824 0.111340i
\(199\) 5.39697 3.11594i 0.0271205 0.0156580i −0.486378 0.873748i \(-0.661682\pi\)
0.513499 + 0.858090i \(0.328349\pi\)
\(200\) 63.5563 + 110.083i 0.317782 + 0.550414i
\(201\) 171.595 + 99.0707i 0.853709 + 0.492889i
\(202\) 180.974i 0.895910i
\(203\) −228.853 + 63.8309i −1.12735 + 0.314438i
\(204\) 64.9706 0.318483
\(205\) −147.338 + 255.197i −0.718722 + 1.24486i
\(206\) 99.1508 57.2447i 0.481314 0.277887i
\(207\) 20.1838 + 34.9593i 0.0975061 + 0.168886i
\(208\) 61.8823 + 35.7277i 0.297511 + 0.171768i
\(209\) 102.140i 0.488708i
\(210\) 35.6985 138.882i 0.169993 0.661345i
\(211\) −124.912 −0.591999 −0.295999 0.955188i \(-0.595653\pi\)
−0.295999 + 0.955188i \(0.595653\pi\)
\(212\) 34.5442 59.8322i 0.162944 0.282228i
\(213\) 27.9045 16.1107i 0.131007 0.0756371i
\(214\) −119.823 207.540i −0.559922 0.969814i
\(215\) 112.154 + 64.7523i 0.521648 + 0.301174i
\(216\) 14.6969i 0.0680414i
\(217\) −72.2498 + 73.7396i −0.332948 + 0.339814i
\(218\) 253.061 1.16083
\(219\) −101.353 + 175.548i −0.462798 + 0.801590i
\(220\) −86.9117 + 50.1785i −0.395053 + 0.228084i
\(221\) 167.522 + 290.156i 0.758017 + 1.31292i
\(222\) −12.6655 7.31242i −0.0570517 0.0329388i
\(223\) 228.631i 1.02525i −0.858613 0.512625i \(-0.828673\pi\)
0.858613 0.512625i \(-0.171327\pi\)
\(224\) 28.2843 + 27.7128i 0.126269 + 0.123718i
\(225\) 134.823 0.599215
\(226\) 12.3015 21.3068i 0.0544315 0.0942781i
\(227\) −146.823 + 84.7685i −0.646799 + 0.373430i −0.787229 0.616661i \(-0.788485\pi\)
0.140430 + 0.990091i \(0.455152\pi\)
\(228\) 29.4853 + 51.0700i 0.129321 + 0.223991i
\(229\) 30.0442 + 17.3460i 0.131197 + 0.0757467i 0.564162 0.825664i \(-0.309199\pi\)
−0.432965 + 0.901411i \(0.642533\pi\)
\(230\) 159.145i 0.691934i
\(231\) 70.4558 + 18.1101i 0.305004 + 0.0783985i
\(232\) 96.0000 0.413793
\(233\) 127.243 220.391i 0.546106 0.945883i −0.452431 0.891800i \(-0.649443\pi\)
0.998536 0.0540833i \(-0.0172237\pi\)
\(234\) 65.6360 37.8950i 0.280496 0.161944i
\(235\) −138.853 240.500i −0.590863 1.02340i
\(236\) −47.3970 27.3647i −0.200835 0.115952i
\(237\) 153.006i 0.645595i
\(238\) 49.8823 + 178.843i 0.209589 + 0.751440i
\(239\) 197.147 0.824884 0.412442 0.910984i \(-0.364676\pi\)
0.412442 + 0.910984i \(0.364676\pi\)
\(240\) −28.9706 + 50.1785i −0.120711 + 0.209077i
\(241\) 76.6173 44.2350i 0.317914 0.183548i −0.332548 0.943086i \(-0.607908\pi\)
0.650462 + 0.759538i \(0.274575\pi\)
\(242\) 60.1041 + 104.103i 0.248364 + 0.430179i
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 80.7611i 0.330988i
\(245\) 409.706 8.36308i 1.67227 0.0341350i
\(246\) −86.3087 −0.350848
\(247\) −152.051 + 263.361i −0.615592 + 1.06624i
\(248\) 36.1249 20.8567i 0.145665 0.0840997i
\(249\) 65.6102 + 113.640i 0.263495 + 0.456386i
\(250\) −204.250 117.924i −0.816999 0.471695i
\(251\) 215.903i 0.860172i −0.902788 0.430086i \(-0.858483\pi\)
0.902788 0.430086i \(-0.141517\pi\)
\(252\) 40.4558 11.2838i 0.160539 0.0447771i
\(253\) 80.7351 0.319111
\(254\) −118.388 + 205.055i −0.466096 + 0.807302i
\(255\) −235.279 + 135.839i −0.922664 + 0.532700i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −3.72792 2.15232i −0.0145055 0.00837477i 0.492730 0.870182i \(-0.335999\pi\)
−0.507235 + 0.861808i \(0.669332\pi\)
\(258\) 37.9310i 0.147020i
\(259\) 10.4045 40.4781i 0.0401720 0.156286i
\(260\) −298.794 −1.14921
\(261\) 50.9117 88.1816i 0.195064 0.337861i
\(262\) 2.18377 1.26080i 0.00833499 0.00481221i
\(263\) −141.338 244.805i −0.537407 0.930817i −0.999043 0.0437468i \(-0.986071\pi\)
0.461635 0.887070i \(-0.347263\pi\)
\(264\) −25.4558 14.6969i −0.0964237 0.0556702i
\(265\) 288.896i 1.09017i
\(266\) −117.941 + 120.373i −0.443388 + 0.452531i
\(267\) −36.0000 −0.134831
\(268\) 114.397 198.141i 0.426854 0.739333i
\(269\) −330.765 + 190.967i −1.22961 + 0.709914i −0.966948 0.254974i \(-0.917933\pi\)
−0.262660 + 0.964888i \(0.584600\pi\)
\(270\) 30.7279 + 53.2223i 0.113807 + 0.197120i
\(271\) −73.0294 42.1636i −0.269481 0.155585i 0.359171 0.933272i \(-0.383060\pi\)
−0.628652 + 0.777687i \(0.716393\pi\)
\(272\) 75.0215i 0.275814i
\(273\) 154.706 + 151.580i 0.566687 + 0.555238i
\(274\) 142.794 0.521146
\(275\) 134.823 233.521i 0.490267 0.849167i
\(276\) 40.3675 23.3062i 0.146259 0.0844428i
\(277\) 68.5589 + 118.747i 0.247505 + 0.428691i 0.962833 0.270098i \(-0.0870560\pi\)
−0.715328 + 0.698789i \(0.753723\pi\)
\(278\) 172.128 + 99.3784i 0.619167 + 0.357476i
\(279\) 44.2438i 0.158580i
\(280\) −160.368 41.2211i −0.572741 0.147218i
\(281\) −325.103 −1.15695 −0.578474 0.815701i \(-0.696352\pi\)
−0.578474 + 0.815701i \(0.696352\pi\)
\(282\) 40.6690 70.4409i 0.144216 0.249790i
\(283\) 168.507 97.2876i 0.595432 0.343773i −0.171811 0.985130i \(-0.554962\pi\)
0.767242 + 0.641357i \(0.221628\pi\)
\(284\) −18.6030 32.2214i −0.0655036 0.113456i
\(285\) −213.551 123.294i −0.749303 0.432610i
\(286\) 151.580i 0.530000i
\(287\) −66.2649 237.579i −0.230888 0.827803i
\(288\) −16.9706 −0.0589256
\(289\) 31.3823 54.3557i 0.108589 0.188082i
\(290\) −347.647 + 200.714i −1.19878 + 0.692117i
\(291\) 26.4853 + 45.8739i 0.0910147 + 0.157642i
\(292\) 202.706 + 117.032i 0.694197 + 0.400795i
\(293\) 239.702i 0.818095i −0.912513 0.409048i \(-0.865861\pi\)
0.912513 0.409048i \(-0.134139\pi\)
\(294\) 62.1213 + 102.698i 0.211297 + 0.349314i
\(295\) 228.853 0.775772
\(296\) −8.44365 + 14.6248i −0.0285258 + 0.0494082i
\(297\) −27.0000 + 15.5885i −0.0909091 + 0.0524864i
\(298\) −129.338 224.020i −0.434020 0.751745i
\(299\) 208.169 + 120.187i 0.696219 + 0.401962i
\(300\) 155.681i 0.518935i
\(301\) −104.412 + 29.1222i −0.346883 + 0.0967515i
\(302\) −408.416 −1.35237
\(303\) 110.823 191.952i 0.365754 0.633504i
\(304\) 58.9706 34.0467i 0.193982 0.111996i
\(305\) −168.853 292.462i −0.553616 0.958891i
\(306\) −68.9117 39.7862i −0.225202 0.130020i
\(307\) 540.272i 1.75984i 0.475120 + 0.879921i \(0.342405\pi\)
−0.475120 + 0.879921i \(0.657595\pi\)
\(308\) 20.9117 81.3554i 0.0678951 0.264141i
\(309\) −140.220 −0.453788
\(310\) −87.2132 + 151.058i −0.281333 + 0.487283i
\(311\) 350.044 202.098i 1.12554 0.649832i 0.182732 0.983163i \(-0.441506\pi\)
0.942810 + 0.333330i \(0.108172\pi\)
\(312\) −43.7574 75.7900i −0.140248 0.242917i
\(313\) −113.706 65.6482i −0.363278 0.209739i 0.307240 0.951632i \(-0.400595\pi\)
−0.670518 + 0.741893i \(0.733928\pi\)
\(314\) 264.545i 0.842500i
\(315\) −122.912 + 125.446i −0.390196 + 0.398242i
\(316\) −176.676 −0.559102
\(317\) 46.9706 81.3554i 0.148172 0.256642i −0.782380 0.622802i \(-0.785994\pi\)
0.930552 + 0.366160i \(0.119328\pi\)
\(318\) −73.2792 + 42.3078i −0.230438 + 0.133043i
\(319\) −101.823 176.363i −0.319196 0.552863i
\(320\) 57.9411 + 33.4523i 0.181066 + 0.104539i
\(321\) 293.506i 0.914349i
\(322\) 95.1472 + 93.2248i 0.295488 + 0.289518i
\(323\) 319.279 0.988481
\(324\) −9.00000 + 15.5885i −0.0277778 + 0.0481125i
\(325\) 695.265 401.411i 2.13928 1.23511i
\(326\) −11.3553 19.6680i −0.0348323 0.0603314i
\(327\) −268.412 154.968i −0.820831 0.473907i
\(328\) 99.6607i 0.303843i
\(329\) 225.125 + 57.8664i 0.684270 + 0.175886i
\(330\) 122.912 0.372460
\(331\) 130.684 226.351i 0.394815 0.683840i −0.598263 0.801300i \(-0.704142\pi\)
0.993078 + 0.117460i \(0.0374754\pi\)
\(332\) 131.220 75.7601i 0.395242 0.228193i
\(333\) 8.95584 + 15.5120i 0.0268944 + 0.0465825i
\(334\) 215.698 + 124.534i 0.645804 + 0.372855i
\(335\) 956.711i 2.85585i
\(336\) −13.0294 46.7144i −0.0387781 0.139031i
\(337\) 136.265 0.404347 0.202173 0.979350i \(-0.435200\pi\)
0.202173 + 0.979350i \(0.435200\pi\)
\(338\) 106.149 183.856i 0.314051 0.543952i
\(339\) −26.0955 + 15.0662i −0.0769777 + 0.0444431i
\(340\) 156.853 + 271.677i 0.461332 + 0.799050i
\(341\) −76.6325 44.2438i −0.224729 0.129747i
\(342\) 72.2239i 0.211181i
\(343\) −235.000 + 249.848i −0.685131 + 0.728420i
\(344\) 43.7990 0.127323
\(345\) −97.4558 + 168.798i −0.282481 + 0.489271i
\(346\) 283.103 163.449i 0.818216 0.472397i
\(347\) 161.095 + 279.026i 0.464252 + 0.804108i 0.999167 0.0407975i \(-0.0129899\pi\)
−0.534915 + 0.844906i \(0.679657\pi\)
\(348\) −101.823 58.7878i −0.292596 0.168930i
\(349\) 346.495i 0.992821i 0.868088 + 0.496411i \(0.165349\pi\)
−0.868088 + 0.496411i \(0.834651\pi\)
\(350\) 428.538 119.526i 1.22439 0.341504i
\(351\) −92.8234 −0.264454
\(352\) −16.9706 + 29.3939i −0.0482118 + 0.0835053i
\(353\) −537.448 + 310.296i −1.52252 + 0.879025i −0.522869 + 0.852413i \(0.675138\pi\)
−0.999646 + 0.0266116i \(0.991528\pi\)
\(354\) 33.5147 + 58.0492i 0.0946743 + 0.163981i
\(355\) 134.735 + 77.7893i 0.379535 + 0.219125i
\(356\) 41.5692i 0.116767i
\(357\) 56.6102 220.238i 0.158572 0.616912i
\(358\) −120.603 −0.336880
\(359\) −10.1177 + 17.5245i −0.0281831 + 0.0488146i −0.879773 0.475394i \(-0.842305\pi\)
0.851590 + 0.524209i \(0.175639\pi\)
\(360\) 61.4558 35.4815i 0.170711 0.0985599i
\(361\) −35.6030 61.6663i −0.0986234 0.170821i
\(362\) 6.84210 + 3.95029i 0.0189008 + 0.0109124i
\(363\) 147.224i 0.405577i
\(364\) 175.029 178.639i 0.480850 0.490766i
\(365\) −978.749 −2.68151
\(366\) 49.4558 85.6600i 0.135125 0.234044i
\(367\) −269.831 + 155.787i −0.735234 + 0.424488i −0.820334 0.571885i \(-0.806212\pi\)
0.0850998 + 0.996372i \(0.472879\pi\)
\(368\) −26.9117 46.6124i −0.0731296 0.126664i
\(369\) 91.5442 + 52.8530i 0.248087 + 0.143233i
\(370\) 70.6149i 0.190851i
\(371\) −172.721 169.231i −0.465555 0.456149i
\(372\) −51.0883 −0.137334
\(373\) 340.691 590.094i 0.913380 1.58202i 0.104125 0.994564i \(-0.466796\pi\)
0.809255 0.587457i \(-0.199871\pi\)
\(374\) −137.823 + 79.5724i −0.368512 + 0.212760i
\(375\) 144.426 + 250.154i 0.385137 + 0.667077i
\(376\) −81.3381 46.9606i −0.216325 0.124895i
\(377\) 606.320i 1.60828i
\(378\) −49.8198 12.8057i −0.131798 0.0338776i
\(379\) −624.779 −1.64849 −0.824246 0.566231i \(-0.808401\pi\)
−0.824246 + 0.566231i \(0.808401\pi\)
\(380\) −142.368 + 246.588i −0.374651 + 0.648915i
\(381\) 251.140 144.996i 0.659159 0.380566i
\(382\) −131.095 227.064i −0.343182 0.594408i
\(383\) 119.772 + 69.1502i 0.312720 + 0.180549i 0.648143 0.761519i \(-0.275546\pi\)
−0.335423 + 0.942068i \(0.608879\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 94.3675 + 338.336i 0.245110 + 0.878794i
\(386\) 322.149 0.834584
\(387\) 23.2279 40.2319i 0.0600205 0.103959i
\(388\) 52.9706 30.5826i 0.136522 0.0788211i
\(389\) 281.787 + 488.069i 0.724388 + 1.25468i 0.959226 + 0.282642i \(0.0912107\pi\)
−0.234838 + 0.972035i \(0.575456\pi\)
\(390\) 316.919 + 182.973i 0.812612 + 0.469162i
\(391\) 252.370i 0.645446i
\(392\) 118.586 71.7315i 0.302515 0.182989i
\(393\) −3.08831 −0.00785830
\(394\) −87.0883 + 150.841i −0.221036 + 0.382846i
\(395\) 639.801 369.389i 1.61975 0.935163i
\(396\) 18.0000 + 31.1769i 0.0454545 + 0.0787296i
\(397\) −392.603 226.669i −0.988923 0.570955i −0.0839711 0.996468i \(-0.526760\pi\)
−0.904952 + 0.425513i \(0.860094\pi\)
\(398\) 8.81321i 0.0221438i
\(399\) 198.809 55.4511i 0.498267 0.138975i
\(400\) −179.765 −0.449411
\(401\) 137.875 238.807i 0.343828 0.595528i −0.641312 0.767280i \(-0.721610\pi\)
0.985140 + 0.171752i \(0.0549429\pi\)
\(402\) −242.673 + 140.107i −0.603663 + 0.348525i
\(403\) −131.727 228.159i −0.326867 0.566151i
\(404\) −221.647 127.968i −0.548631 0.316752i
\(405\) 75.2677i 0.185846i
\(406\) 83.6468 325.422i 0.206026 0.801531i
\(407\) 35.8234 0.0880181
\(408\) −45.9411 + 79.5724i −0.112601 + 0.195030i
\(409\) −377.441 + 217.916i −0.922839 + 0.532801i −0.884540 0.466465i \(-0.845527\pi\)
−0.0382993 + 0.999266i \(0.512194\pi\)
\(410\) −208.368 360.903i −0.508213 0.880252i
\(411\) −151.456 87.4431i −0.368506 0.212757i
\(412\) 161.913i 0.392992i
\(413\) −134.059 + 136.823i −0.324598 + 0.331291i
\(414\) −57.0883 −0.137894
\(415\) −316.794 + 548.703i −0.763359 + 1.32218i
\(416\) −87.5147 + 50.5266i −0.210372 + 0.121458i
\(417\) −121.713 210.813i −0.291878 0.505548i
\(418\) −125.095 72.2239i −0.299271 0.172784i
\(419\) 301.257i 0.718991i −0.933147 0.359496i \(-0.882949\pi\)
0.933147 0.359496i \(-0.117051\pi\)
\(420\) 144.853 + 141.926i 0.344888 + 0.337920i
\(421\) −203.794 −0.484071 −0.242036 0.970267i \(-0.577815\pi\)
−0.242036 + 0.970267i \(0.577815\pi\)
\(422\) 88.3259 152.985i 0.209303 0.362524i
\(423\) −86.2721 + 49.8092i −0.203953 + 0.117752i
\(424\) 48.8528 + 84.6156i 0.115219 + 0.199565i
\(425\) −729.963 421.444i −1.71756 0.991633i
\(426\) 45.5679i 0.106967i
\(427\) 273.765 + 70.3688i 0.641135 + 0.164798i
\(428\) 338.912 0.791850
\(429\) −92.8234 + 160.775i −0.216372 + 0.374766i
\(430\) −158.610 + 91.5736i −0.368861 + 0.212962i
\(431\) 197.860 + 342.703i 0.459072 + 0.795136i 0.998912 0.0466317i \(-0.0148487\pi\)
−0.539840 + 0.841767i \(0.681515\pi\)
\(432\) 18.0000 + 10.3923i 0.0416667 + 0.0240563i
\(433\) 44.2685i 0.102237i −0.998693 0.0511184i \(-0.983721\pi\)
0.998693 0.0511184i \(-0.0162786\pi\)
\(434\) −39.2239 140.629i −0.0903777 0.324031i
\(435\) 491.647 1.13022
\(436\) −178.941 + 309.935i −0.410415 + 0.710860i
\(437\) 198.375 114.532i 0.453947 0.262086i
\(438\) −143.335 248.263i −0.327248 0.566810i
\(439\) 344.558 + 198.931i 0.784871 + 0.453146i 0.838154 0.545434i \(-0.183635\pi\)
−0.0532827 + 0.998579i \(0.516968\pi\)
\(440\) 141.926i 0.322560i
\(441\) −3.00000 146.969i −0.00680272 0.333264i
\(442\) −473.823 −1.07200
\(443\) 59.2721 102.662i 0.133797 0.231743i −0.791340 0.611376i \(-0.790616\pi\)
0.925137 + 0.379633i \(0.123950\pi\)
\(444\) 17.9117 10.3413i 0.0403416 0.0232913i
\(445\) −86.9117 150.535i −0.195307 0.338282i
\(446\) 280.014 + 161.666i 0.627835 + 0.362481i
\(447\) 316.812i 0.708752i
\(448\) −53.9411 + 15.0451i −0.120404 + 0.0335828i
\(449\) 713.897 1.58997 0.794985 0.606629i \(-0.207479\pi\)
0.794985 + 0.606629i \(0.207479\pi\)
\(450\) −95.3345 + 165.124i −0.211854 + 0.366943i
\(451\) 183.088 105.706i 0.405961 0.234382i
\(452\) 17.3970 + 30.1324i 0.0384889 + 0.0666647i
\(453\) 433.191 + 250.103i 0.956271 + 0.552104i
\(454\) 239.762i 0.528109i
\(455\) −260.345 + 1012.85i −0.572187 + 2.22605i
\(456\) −83.3970 −0.182888
\(457\) 62.5883 108.406i 0.136955 0.237213i −0.789388 0.613895i \(-0.789602\pi\)
0.926342 + 0.376682i \(0.122935\pi\)
\(458\) −42.4889 + 24.5310i −0.0927704 + 0.0535610i
\(459\) 48.7279 + 84.3992i 0.106161 + 0.183876i
\(460\) 194.912 + 112.532i 0.423721 + 0.244635i
\(461\) 655.767i 1.42249i 0.702945 + 0.711244i \(0.251868\pi\)
−0.702945 + 0.711244i \(0.748132\pi\)
\(462\) −72.0000 + 73.4847i −0.155844 + 0.159058i
\(463\) 869.396 1.87775 0.938873 0.344265i \(-0.111872\pi\)
0.938873 + 0.344265i \(0.111872\pi\)
\(464\) −67.8823 + 117.576i −0.146298 + 0.253395i
\(465\) 185.007 106.814i 0.397865 0.229707i
\(466\) 179.948 + 311.680i 0.386155 + 0.668840i
\(467\) −231.551 133.686i −0.495827 0.286266i 0.231162 0.972915i \(-0.425747\pi\)
−0.726989 + 0.686649i \(0.759081\pi\)
\(468\) 107.183i 0.229024i
\(469\) −571.985 560.428i −1.21958 1.19494i
\(470\) 392.735 0.835607
\(471\) 162.000 280.592i 0.343949 0.595737i
\(472\) 67.0294 38.6995i 0.142012 0.0819904i
\(473\) −46.4558 80.4639i −0.0982153 0.170114i
\(474\) 187.393 + 108.192i 0.395345 + 0.228252i
\(475\) 765.048i 1.61063i
\(476\) −254.309 65.3678i −0.534262 0.137327i
\(477\) 103.632 0.217259
\(478\) −139.404 + 241.455i −0.291640 + 0.505136i
\(479\) 235.331 135.868i 0.491296 0.283650i −0.233816 0.972281i \(-0.575121\pi\)
0.725112 + 0.688631i \(0.241788\pi\)
\(480\) −40.9706 70.9631i −0.0853553 0.147840i
\(481\) 92.3680 + 53.3287i 0.192033 + 0.110870i
\(482\) 125.116i 0.259576i
\(483\) −43.8305 157.145i −0.0907464 0.325353i
\(484\) −170.000 −0.351240
\(485\) −127.882 + 221.499i −0.263675 + 0.456698i
\(486\) 19.0919 11.0227i 0.0392837 0.0226805i
\(487\) 280.757 + 486.285i 0.576503 + 0.998532i 0.995877 + 0.0907186i \(0.0289164\pi\)
−0.419374 + 0.907814i \(0.637750\pi\)
\(488\) −98.9117 57.1067i −0.202688 0.117022i
\(489\) 27.8148i 0.0568810i
\(490\) −279.463 + 507.698i −0.570333 + 1.03612i
\(491\) −406.441 −0.827781 −0.413891 0.910327i \(-0.635830\pi\)
−0.413891 + 0.910327i \(0.635830\pi\)
\(492\) 61.0294 105.706i 0.124044 0.214850i
\(493\) −551.294 + 318.289i −1.11824 + 0.645618i
\(494\) −215.033 372.448i −0.435289 0.753944i
\(495\) −130.368 75.2677i −0.263369 0.152056i
\(496\) 58.9917i 0.118935i
\(497\) −125.434 + 34.9856i −0.252381 + 0.0703935i
\(498\) −185.574 −0.372638
\(499\) 185.713 321.665i 0.372171 0.644619i −0.617728 0.786391i \(-0.711947\pi\)
0.989899 + 0.141773i \(0.0452802\pi\)
\(500\) 288.853 166.769i 0.577706 0.333538i
\(501\) −152.522 264.176i −0.304435 0.527297i
\(502\) 264.426 + 152.667i 0.526746 + 0.304117i
\(503\) 64.6292i 0.128488i 0.997934 + 0.0642438i \(0.0204635\pi\)
−0.997934 + 0.0642438i \(0.979536\pi\)
\(504\) −14.7868 + 57.5270i −0.0293389 + 0.114141i
\(505\) 1070.21 2.11922
\(506\) −57.0883 + 98.8799i −0.112823 + 0.195415i
\(507\) −225.177 + 130.006i −0.444135 + 0.256422i
\(508\) −167.426 289.991i −0.329580 0.570849i
\(509\) 871.889 + 503.385i 1.71294 + 0.988969i 0.930534 + 0.366205i \(0.119343\pi\)
0.782410 + 0.622764i \(0.213990\pi\)
\(510\) 384.209i 0.753352i
\(511\) 573.338 585.161i 1.12199 1.14513i
\(512\) 22.6274 0.0441942
\(513\) −44.2279 + 76.6050i −0.0862143 + 0.149328i
\(514\) 5.27208 3.04384i 0.0102570 0.00592186i
\(515\) −338.522 586.337i −0.657324 1.13852i
\(516\) −46.4558 26.8213i −0.0900307 0.0519793i
\(517\) 199.237i 0.385371i
\(518\) 42.2183 + 41.3653i 0.0815024 + 0.0798557i
\(519\) −400.368 −0.771421
\(520\) 211.279 365.946i 0.406306 0.703743i
\(521\) −322.294 + 186.077i −0.618607 + 0.357153i −0.776327 0.630331i \(-0.782919\pi\)
0.157719 + 0.987484i \(0.449586\pi\)
\(522\) 72.0000 + 124.708i 0.137931 + 0.238904i
\(523\) −551.904 318.642i −1.05527 0.609258i −0.131147 0.991363i \(-0.541866\pi\)
−0.924119 + 0.382105i \(0.875199\pi\)
\(524\) 3.56608i 0.00680549i
\(525\) −527.727 135.648i −1.00520 0.258377i
\(526\) 399.765 0.760009
\(527\) −138.302 + 239.545i −0.262432 + 0.454545i
\(528\) 36.0000 20.7846i 0.0681818 0.0393648i
\(529\) 173.970 + 301.325i 0.328866 + 0.569613i
\(530\) −353.823 204.280i −0.667591 0.385434i
\(531\) 82.0940i 0.154603i
\(532\) −64.0294 229.564i −0.120356 0.431512i
\(533\) 629.440 1.18094
\(534\) 25.4558 44.0908i 0.0476701 0.0825671i
\(535\) −1227.31 + 708.586i −2.29403 + 1.32446i
\(536\) 161.782 + 280.214i 0.301832 + 0.522788i
\(537\) 127.919 + 73.8540i 0.238210 + 0.137531i
\(538\) 540.136i 1.00397i
\(539\) −257.558 141.773i −0.477845 0.263030i
\(540\) −86.9117 −0.160948
\(541\) −110.412 + 191.239i −0.204088 + 0.353491i −0.949842 0.312731i \(-0.898756\pi\)
0.745754 + 0.666222i \(0.232090\pi\)
\(542\) 103.279 59.6283i 0.190552 0.110015i
\(543\) −4.83810 8.37983i −0.00890994 0.0154325i
\(544\) 91.8823 + 53.0482i 0.168901 + 0.0975152i
\(545\) 1496.50i 2.74587i
\(546\) −295.040 + 82.2917i −0.540367 + 0.150717i
\(547\) −160.676 −0.293741 −0.146870 0.989156i \(-0.546920\pi\)
−0.146870 + 0.989156i \(0.546920\pi\)
\(548\) −100.971 + 174.886i −0.184253 + 0.319135i
\(549\) −104.912 + 60.5708i −0.191096 + 0.110329i
\(550\) 190.669 + 330.248i 0.346671 + 0.600452i
\(551\) −500.382 288.896i −0.908134 0.524311i
\(552\) 65.9199i 0.119420i
\(553\) −153.942 + 598.898i −0.278375 + 1.08300i
\(554\) −193.914 −0.350025
\(555\) −43.2426 + 74.8985i −0.0779147 + 0.134952i
\(556\) −243.426 + 140.542i −0.437817 + 0.252774i
\(557\) 237.177 + 410.802i 0.425811 + 0.737526i 0.996496 0.0836431i \(-0.0266556\pi\)
−0.570685 + 0.821169i \(0.693322\pi\)
\(558\) 54.1873 + 31.2851i 0.0971099 + 0.0560664i
\(559\) 276.627i 0.494860i
\(560\) 163.882 167.262i 0.292647 0.298681i
\(561\) 194.912 0.347436
\(562\) 229.882 398.168i 0.409043 0.708484i
\(563\) −430.301 + 248.434i −0.764300 + 0.441269i −0.830837 0.556515i \(-0.812138\pi\)
0.0665378 + 0.997784i \(0.478805\pi\)
\(564\) 57.5147 + 99.6184i 0.101976 + 0.176628i
\(565\) −126.000 72.7461i −0.223009 0.128754i
\(566\) 275.171i 0.486168i
\(567\) 45.0000 + 44.0908i 0.0793651 + 0.0777616i
\(568\) 52.6173 0.0926361
\(569\) −392.647 + 680.084i −0.690065 + 1.19523i 0.281752 + 0.959487i \(0.409085\pi\)
−0.971816 + 0.235740i \(0.924249\pi\)
\(570\) 302.007 174.364i 0.529837 0.305902i
\(571\) 357.521 + 619.245i 0.626132 + 1.08449i 0.988321 + 0.152388i \(0.0486963\pi\)
−0.362189 + 0.932105i \(0.617970\pi\)
\(572\) 185.647 + 107.183i 0.324557 + 0.187383i
\(573\) 321.117i 0.560414i
\(574\) 337.831 + 86.8364i 0.588555 + 0.151283i
\(575\) −604.721 −1.05169
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 669.117 386.315i 1.15965 0.669524i 0.208429 0.978038i \(-0.433165\pi\)
0.951220 + 0.308514i \(0.0998317\pi\)
\(578\) 44.3812 + 76.8705i 0.0767841 + 0.132994i
\(579\) −341.691 197.275i −0.590140 0.340717i
\(580\) 567.705i 0.978801i
\(581\) −142.477 510.823i −0.245228 0.879214i
\(582\) −74.9117 −0.128714
\(583\) 103.632 179.497i 0.177757 0.307885i
\(584\) −286.669 + 165.508i −0.490872 + 0.283405i
\(585\) −224.095 388.145i −0.383069 0.663495i
\(586\) 293.574 + 169.495i 0.500979 + 0.289240i
\(587\) 436.477i 0.743572i −0.928318 0.371786i \(-0.878746\pi\)
0.928318 0.371786i \(-0.121254\pi\)
\(588\) −169.706 + 3.46410i −0.288615 + 0.00589133i
\(589\) −251.059 −0.426246
\(590\) −161.823 + 280.286i −0.274277 + 0.475062i
\(591\) 184.742 106.661i 0.312593 0.180475i
\(592\) −11.9411 20.6826i −0.0201708 0.0349369i
\(593\) 722.397 + 417.076i 1.21821 + 0.703332i 0.964534 0.263958i \(-0.0850279\pi\)
0.253673 + 0.967290i \(0.418361\pi\)
\(594\) 44.0908i 0.0742270i
\(595\) 1057.60 294.983i 1.77748 0.495770i
\(596\) 365.823 0.613798
\(597\) 5.39697 9.34783i 0.00904015 0.0156580i
\(598\) −294.396 + 169.970i −0.492301 + 0.284230i
\(599\) −436.794 756.549i −0.729205 1.26302i −0.957220 0.289363i \(-0.906557\pi\)
0.228014 0.973658i \(-0.426777\pi\)
\(600\) 190.669 + 110.083i 0.317782 + 0.183471i
\(601\) 198.982i 0.331085i 0.986203 + 0.165542i \(0.0529375\pi\)
−0.986203 + 0.165542i \(0.947063\pi\)
\(602\) 38.1630 148.470i 0.0633936 0.246628i
\(603\) 343.191 0.569139
\(604\) 288.794 500.206i 0.478136 0.828155i
\(605\) 615.624 355.431i 1.01756 0.587489i
\(606\) 156.728 + 271.461i 0.258627 + 0.447955i
\(607\) 137.654 + 79.4748i 0.226778 + 0.130930i 0.609085 0.793105i \(-0.291537\pi\)
−0.382307 + 0.924035i \(0.624870\pi\)
\(608\) 96.2985i 0.158386i
\(609\) −288.000 + 293.939i −0.472906 + 0.482658i
\(610\) 477.588 0.782931
\(611\) −296.595 + 513.718i −0.485426 + 0.840782i
\(612\) 97.4558 56.2662i 0.159242 0.0919382i
\(613\) 357.368 + 618.979i 0.582981 + 1.00975i 0.995124 + 0.0986338i \(0.0314473\pi\)
−0.412143 + 0.911119i \(0.635219\pi\)
\(614\) −661.695 382.030i −1.07768 0.622198i
\(615\) 510.394i 0.829909i
\(616\) 84.8528 + 83.1384i 0.137748 + 0.134965i
\(617\) −639.381 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(618\) 99.1508 171.734i 0.160438 0.277887i
\(619\) 148.978 86.0126i 0.240676 0.138954i −0.374812 0.927101i \(-0.622293\pi\)
0.615487 + 0.788147i \(0.288959\pi\)
\(620\) −123.338 213.628i −0.198932 0.344561i
\(621\) 60.5513 + 34.9593i 0.0975061 + 0.0562952i
\(622\) 571.619i 0.919002i
\(623\) 140.912 + 36.2201i 0.226182 + 0.0581382i
\(624\) 123.765 0.198341
\(625\) −135.588 + 234.846i −0.216941 + 0.375753i
\(626\) 160.805 92.8406i 0.256876 0.148308i
\(627\) 88.4558 + 153.210i 0.141078 + 0.244354i
\(628\) −324.000 187.061i −0.515924 0.297869i
\(629\) 111.980i 0.178029i
\(630\) −66.7279 239.239i −0.105917 0.379745i
\(631\) −1141.06 −1.80833 −0.904166 0.427180i \(-0.859507\pi\)
−0.904166 + 0.427180i \(0.859507\pi\)
\(632\) 124.929 216.383i 0.197672 0.342379i
\(633\) −187.368 + 108.177i −0.295999 + 0.170895i
\(634\) 66.4264 + 115.054i 0.104774 + 0.181473i
\(635\) 1212.61 + 700.100i 1.90962 + 1.10252i
\(636\) 119.664i 0.188152i
\(637\) −453.044 748.968i −0.711215 1.17577i
\(638\) 288.000 0.451411
\(639\) 27.9045 48.3321i 0.0436691 0.0756371i
\(640\) −81.9411 + 47.3087i −0.128033 + 0.0739199i
\(641\) −114.551 198.409i −0.178707 0.309530i 0.762731 0.646716i \(-0.223858\pi\)
−0.941438 + 0.337186i \(0.890525\pi\)
\(642\) −359.470 207.540i −0.559922 0.323271i
\(643\) 707.670i 1.10058i 0.834975 + 0.550288i \(0.185482\pi\)
−0.834975 + 0.550288i \(0.814518\pi\)
\(644\) −181.456 + 50.6111i −0.281764 + 0.0785887i
\(645\) 224.309 0.347765
\(646\) −225.765 + 391.036i −0.349481 + 0.605318i
\(647\) 1021.37 589.687i 1.57862 0.911417i 0.583568 0.812064i \(-0.301656\pi\)
0.995052 0.0993530i \(-0.0316773\pi\)
\(648\) −12.7279 22.0454i −0.0196419 0.0340207i
\(649\) −142.191 82.0940i −0.219092 0.126493i
\(650\) 1135.36i 1.74671i
\(651\) −44.5143 + 173.180i −0.0683783 + 0.266021i
\(652\) 32.1177 0.0492604
\(653\) 77.3818 134.029i 0.118502 0.205252i −0.800672 0.599103i \(-0.795524\pi\)
0.919174 + 0.393851i \(0.128857\pi\)
\(654\) 379.591 219.157i 0.580415 0.335103i
\(655\) −7.45584 12.9139i −0.0113830 0.0197159i
\(656\) −122.059 70.4707i −0.186065 0.107425i
\(657\) 351.096i 0.534393i
\(658\) −230.059 + 234.803i −0.349634 + 0.356843i
\(659\) 591.308 0.897280 0.448640 0.893712i \(-0.351908\pi\)
0.448640 + 0.893712i \(0.351908\pi\)
\(660\) −86.9117 + 150.535i −0.131684 + 0.228084i
\(661\) 140.441 81.0837i 0.212468 0.122668i −0.389990 0.920819i \(-0.627522\pi\)
0.602458 + 0.798151i \(0.294188\pi\)
\(662\) 184.815 + 320.109i 0.279176 + 0.483548i
\(663\) 502.566 + 290.156i 0.758017 + 0.437642i
\(664\) 214.282i 0.322714i
\(665\) 711.838 + 697.456i 1.07043 + 1.04881i
\(666\) −25.3310 −0.0380345
\(667\) −228.353 + 395.519i −0.342359 + 0.592983i
\(668\) −305.044 + 176.117i −0.456652 + 0.263648i
\(669\) −198.000 342.946i −0.295964 0.512625i
\(670\) −1171.73 676.497i −1.74885 1.00970i
\(671\) 242.283i 0.361078i
\(672\) 66.4264 + 17.0743i 0.0988488 + 0.0254082i
\(673\) 42.3238 0.0628883 0.0314441 0.999506i \(-0.489989\pi\)
0.0314441 + 0.999506i \(0.489989\pi\)
\(674\) −96.3539 + 166.890i −0.142958 + 0.247611i
\(675\) 202.235 116.760i 0.299608 0.172978i
\(676\) 150.118 + 260.012i 0.222068 + 0.384632i
\(677\) 430.721 + 248.677i 0.636220 + 0.367322i 0.783157 0.621824i \(-0.213608\pi\)
−0.146937 + 0.989146i \(0.546941\pi\)
\(678\) 42.6137i 0.0628521i
\(679\) −57.5147 206.207i −0.0847050 0.303693i
\(680\) −443.647 −0.652422
\(681\) −146.823 + 254.306i −0.215600 + 0.373430i
\(682\) 108.375 62.5701i 0.158907 0.0917451i
\(683\) −608.080 1053.23i −0.890308 1.54206i −0.839506 0.543350i \(-0.817156\pi\)
−0.0508015 0.998709i \(-0.516178\pi\)
\(684\) 88.4558 + 51.0700i 0.129321 + 0.0746638i
\(685\) 844.425i 1.23274i
\(686\) −139.830 464.484i −0.203834 0.677091i
\(687\) 60.0883 0.0874648
\(688\) −30.9706 + 53.6426i −0.0450154 + 0.0779689i
\(689\) 534.418 308.546i 0.775642 0.447817i
\(690\) −137.823 238.717i −0.199744 0.345967i
\(691\) −932.182 538.196i −1.34903 0.778865i −0.360921 0.932596i \(-0.617538\pi\)
−0.988113 + 0.153731i \(0.950871\pi\)
\(692\) 462.305i 0.668070i
\(693\) 121.368 33.8515i 0.175134 0.0488477i
\(694\) −455.647 −0.656552
\(695\) 587.683 1017.90i 0.845588 1.46460i
\(696\) 144.000 83.1384i 0.206897 0.119452i
\(697\) −330.426 572.315i −0.474069 0.821112i
\(698\) −424.368 245.009i −0.607976 0.351015i
\(699\) 440.781i 0.630589i
\(700\) −156.632 + 609.367i −0.223761 + 0.870525i
\(701\) −695.897 −0.992720 −0.496360 0.868117i \(-0.665330\pi\)
−0.496360 + 0.868117i \(0.665330\pi\)
\(702\) 65.6360 113.685i 0.0934986 0.161944i
\(703\) 88.0219 50.8194i 0.125209 0.0722894i
\(704\) −24.0000 41.5692i −0.0340909 0.0590472i
\(705\) −416.558 240.500i −0.590863 0.341135i
\(706\) 877.649i 1.24313i
\(707\) −626.912 + 639.839i −0.886721 + 0.905006i
\(708\) −94.7939 −0.133890
\(709\) −127.412 + 220.684i −0.179707 + 0.311261i −0.941780 0.336229i \(-0.890848\pi\)
0.762073 + 0.647491i \(0.224182\pi\)
\(710\) −190.544 + 110.011i −0.268372 + 0.154945i
\(711\) −132.507 229.509i −0.186367 0.322798i
\(712\) −50.9117 29.3939i −0.0715052 0.0412835i
\(713\) 198.446i 0.278325i
\(714\) 229.706 + 225.065i 0.321717 + 0.315217i
\(715\) −896.382 −1.25368
\(716\) 85.2792 147.708i 0.119105 0.206296i
\(717\) 295.721 170.734i 0.412442 0.238123i
\(718\) −14.3087 24.7833i −0.0199285 0.0345172i
\(719\) −964.925 557.100i −1.34204 0.774826i −0.354931 0.934892i \(-0.615496\pi\)
−0.987106 + 0.160066i \(0.948829\pi\)
\(720\) 100.357i 0.139385i
\(721\) 548.852 + 141.078i 0.761238 + 0.195669i
\(722\) 100.701 0.139474
\(723\) 76.6173 132.705i 0.105971 0.183548i
\(724\) −9.67619 + 5.58655i −0.0133649 + 0.00771623i
\(725\) 762.676 + 1320.99i 1.05197 + 1.82206i
\(726\) 180.312 + 104.103i 0.248364 + 0.143393i
\(727\) 398.345i 0.547930i −0.961740 0.273965i \(-0.911665\pi\)
0.961740 0.273965i \(-0.0883353\pi\)
\(728\) 95.0223 + 340.683i 0.130525 + 0.467971i
\(729\) −27.0000 −0.0370370
\(730\) 692.080 1198.72i 0.948055 1.64208i
\(731\) −251.522 + 145.216i −0.344079 + 0.198654i
\(732\) 69.9411 + 121.142i 0.0955480 + 0.165494i
\(733\) 818.514 + 472.569i 1.11666 + 0.644706i 0.940547 0.339663i \(-0.110313\pi\)
0.176116 + 0.984369i \(0.443646\pi\)
\(734\) 440.632i 0.600316i
\(735\) 607.316 367.360i 0.826280 0.499810i
\(736\) 76.1177 0.103421
\(737\) 343.191 594.424i 0.465659 0.806546i
\(738\) −129.463 + 74.7455i −0.175424 + 0.101281i
\(739\) −96.3162 166.825i −0.130333 0.225744i 0.793472 0.608607i \(-0.208271\pi\)
−0.923805 + 0.382863i \(0.874938\pi\)
\(740\) 86.4853 + 49.9323i 0.116872 + 0.0674761i
\(741\) 526.721i 0.710825i
\(742\) 329.397 91.8744i 0.443931 0.123820i
\(743\) −911.616 −1.22694 −0.613470 0.789718i \(-0.710227\pi\)
−0.613470 + 0.789718i \(0.710227\pi\)
\(744\) 36.1249 62.5701i 0.0485550 0.0840997i
\(745\) −1324.76 + 764.853i −1.77821 + 1.02665i
\(746\) 481.810 + 834.519i 0.645858 + 1.11866i
\(747\) 196.831 + 113.640i 0.263495 + 0.152129i
\(748\) 225.065i 0.300889i
\(749\) 295.301 1148.85i 0.394260 1.53384i
\(750\) −408.500 −0.544666
\(751\) 195.831 339.189i 0.260760 0.451650i −0.705684 0.708527i \(-0.749360\pi\)
0.966444 + 0.256877i \(0.0826935\pi\)
\(752\) 115.029 66.4123i 0.152965 0.0883142i
\(753\) −186.978 323.855i −0.248310 0.430086i
\(754\) 742.587 + 428.733i 0.984863 + 0.568611i
\(755\) 2415.21i 3.19895i
\(756\) 50.9117 51.9615i 0.0673435 0.0687322i
\(757\) −152.823 −0.201879 −0.100940 0.994893i \(-0.532185\pi\)
−0.100940 + 0.994893i \(0.532185\pi\)
\(758\) 441.785 765.195i 0.582830 1.00949i
\(759\) 121.103 69.9186i 0.159555 0.0921194i
\(760\) −201.338 348.728i −0.264919 0.458852i
\(761\) −109.331 63.1223i −0.143667 0.0829465i 0.426443 0.904514i \(-0.359766\pi\)
−0.570111 + 0.821568i \(0.693100\pi\)
\(762\) 410.109i 0.538201i
\(763\) 894.706 + 876.629i 1.17262 + 1.14892i
\(764\) 370.794 0.485332
\(765\) −235.279 + 407.516i −0.307555 + 0.532700i
\(766\) −169.383 + 97.7931i −0.221126 + 0.127667i
\(767\) −244.419 423.347i −0.318669 0.551951i
\(768\) −24.0000 13.8564i −0.0312500 0.0180422i
\(769\) 369.148i 0.480037i −0.970768 0.240018i \(-0.922847\pi\)
0.970768 0.240018i \(-0.0771535\pi\)
\(770\) −481.103 123.663i −0.624809 0.160602i
\(771\) −7.45584 −0.00967036
\(772\) −227.794 + 394.551i −0.295070 + 0.511076i
\(773\) −1215.65 + 701.853i −1.57263 + 0.907961i −0.576789 + 0.816893i \(0.695695\pi\)
−0.995845 + 0.0910674i \(0.970972\pi\)
\(774\) 32.8492 + 56.8966i 0.0424409 + 0.0735098i
\(775\) 573.992 + 331.394i 0.740634 + 0.427605i
\(776\) 86.5006i 0.111470i
\(777\) −19.4483 69.7278i −0.0250299 0.0897398i
\(778\) −797.013 −1.02444
\(779\) 299.912 519.462i 0.384996 0.666832i
\(780\) −448.191 + 258.763i −0.574604 + 0.331748i
\(781\) −55.8091 96.6642i −0.0714585 0.123770i
\(782\) 309.088 + 178.452i 0.395254 + 0.228200i
\(783\) 176.363i 0.225240i
\(784\) 4.00000 + 195.959i 0.00510204 + 0.249948i
\(785\) 1564.41 1.99288
\(786\) 2.18377 3.78239i 0.00277833 0.00481221i
\(787\) 196.161 113.253i 0.249251 0.143905i −0.370170 0.928964i \(-0.620701\pi\)
0.619421 + 0.785059i \(0.287367\pi\)
\(788\) −123.161 213.322i −0.156296 0.270713i
\(789\) −424.014 244.805i −0.537407 0.310272i
\(790\) 1044.79i 1.32252i
\(791\) 117.302 32.7174i 0.148295 0.0413621i
\(792\) −50.9117 −0.0642824
\(793\) −360.676 + 624.709i −0.454825 + 0.787780i
\(794\) 555.224 320.559i 0.699274 0.403726i
\(795\) 250.191 + 433.343i 0.314706 + 0.545086i
\(796\) −10.7939 6.23188i −0.0135602 0.00782900i
\(797\) 688.414i 0.863756i −0.901932 0.431878i \(-0.857851\pi\)
0.901932 0.431878i \(-0.142149\pi\)
\(798\) −72.6655 + 282.700i −0.0910595 + 0.354260i
\(799\) 622.794 0.779467
\(800\) 127.113 220.166i 0.158891 0.275207i
\(801\) −54.0000 + 31.1769i −0.0674157 + 0.0389225i
\(802\) 194.985 + 337.724i 0.243123 + 0.421102i
\(803\) 608.117 + 351.096i 0.757306 + 0.437231i
\(804\) 396.283i 0.492889i
\(805\) 551.294 562.662i 0.684837 0.698958i
\(806\) 372.582 0.462260
\(807\) −330.765 + 572.901i −0.409869 + 0.709914i
\(808\) 313.456 180.974i 0.387940 0.223977i
\(809\) −12.6396 21.8924i −0.0156237 0.0270611i 0.858108 0.513470i \(-0.171640\pi\)
−0.873732 + 0.486408i \(0.838307\pi\)
\(810\) 92.1838 + 53.2223i 0.113807 + 0.0657066i
\(811\) 1527.62i 1.88362i 0.336145 + 0.941810i \(0.390877\pi\)
−0.336145 + 0.941810i \(0.609123\pi\)
\(812\) 339.411 + 332.554i 0.417994 + 0.409549i
\(813\) −146.059 −0.179654
\(814\) −25.3310 + 43.8745i −0.0311191 + 0.0538999i
\(815\) −116.309 + 67.1508i −0.142710 + 0.0823937i
\(816\) −64.9706 112.532i −0.0796208 0.137907i
\(817\) −228.294 131.806i −0.279430 0.161329i
\(818\) 616.359i 0.753495i
\(819\) 363.331 + 93.3909i 0.443627 + 0.114030i
\(820\) 589.352 0.718722
\(821\) 58.3310 101.032i 0.0710487 0.123060i −0.828312 0.560266i \(-0.810699\pi\)
0.899361 + 0.437206i \(0.144032\pi\)
\(822\) 214.191 123.663i 0.260573 0.150442i
\(823\) −62.9554 109.042i −0.0764950 0.132493i 0.825240 0.564782i \(-0.191040\pi\)
−0.901735 + 0.432288i \(0.857706\pi\)
\(824\) −198.302 114.489i −0.240657 0.138943i
\(825\) 467.042i 0.566111i
\(826\) −72.7797 260.937i −0.0881110 0.315904i
\(827\) −1434.40 −1.73446 −0.867229 0.497910i \(-0.834101\pi\)
−0.867229 + 0.497910i \(0.834101\pi\)
\(828\) 40.3675 69.9186i 0.0487531 0.0844428i
\(829\) −32.3225 + 18.6614i −0.0389898 + 0.0225107i −0.519368 0.854551i \(-0.673833\pi\)
0.480378 + 0.877061i \(0.340499\pi\)
\(830\) −448.014 775.984i −0.539776 0.934920i
\(831\) 205.677 + 118.747i 0.247505 + 0.142897i
\(832\) 142.911i 0.171768i
\(833\) −443.169 + 805.101i −0.532015 + 0.966508i
\(834\) 344.257 0.412778
\(835\) 736.441 1275.55i 0.881965 1.52761i
\(836\) 176.912 102.140i 0.211617 0.122177i
\(837\) −38.3162 66.3657i −0.0457781 0.0792899i
\(838\) 368.963 + 213.021i 0.440290 + 0.254202i
\(839\) 3.07370i 0.00366353i 0.999998 + 0.00183177i \(0.000583069\pi\)
−0.999998 + 0.00183177i \(0.999417\pi\)
\(840\) −276.250 + 77.0508i −0.328869 + 0.0917271i
\(841\) 311.000 0.369798
\(842\) 144.104 249.596i 0.171145 0.296432i
\(843\) −487.654 + 281.547i −0.578474 + 0.333982i
\(844\) 124.912 + 216.353i 0.148000 + 0.256343i
\(845\) −1087.25 627.723i −1.28669 0.742868i
\(846\) 140.882i 0.166527i
\(847\) −148.124 + 576.267i −0.174881 + 0.680363i
\(848\) −138.177 −0.162944
\(849\) 168.507 291.863i 0.198477 0.343773i
\(850\) 1032.32 596.012i 1.21450 0.701191i
\(851\) −40.1695 69.5756i −0.0472027 0.0817574i
\(852\) −55.8091 32.2214i −0.0655036 0.0378185i
\(853\) 155.257i 0.182013i −0.995850 0.0910063i \(-0.970992\pi\)
0.995850 0.0910063i \(-0.0290083\pi\)
\(854\) −279.765 + 285.533i −0.327593 + 0.334348i
\(855\) −427.103 −0.499535
\(856\) −239.647 + 415.080i −0.279961 + 0.484907i
\(857\) −1388.98 + 801.931i −1.62075 + 0.935742i −0.634033 + 0.773306i \(0.718602\pi\)
−0.986719 + 0.162436i \(0.948065\pi\)
\(858\) −131.272 227.370i −0.152998 0.265000i
\(859\) 545.367 + 314.868i 0.634886 + 0.366551i 0.782642 0.622472i \(-0.213872\pi\)
−0.147756 + 0.989024i \(0.547205\pi\)
\(860\) 259.009i 0.301174i
\(861\) −305.147 298.982i −0.354410 0.347250i
\(862\) −559.632 −0.649226
\(863\) −514.706 + 891.496i −0.596414 + 1.03302i 0.396931 + 0.917848i \(0.370075\pi\)
−0.993346 + 0.115172i \(0.963258\pi\)
\(864\) −25.4558 + 14.6969i −0.0294628 + 0.0170103i
\(865\) −966.573 1674.15i −1.11743 1.93544i
\(866\) 54.2176 + 31.3026i 0.0626070 + 0.0361462i
\(867\) 108.711i 0.125388i
\(868\) 199.971 + 51.4007i 0.230381 + 0.0592174i
\(869\) −530.029 −0.609929
\(870\) −347.647 + 602.142i −0.399594 + 0.692117i
\(871\) 1769.79 1021.79i 2.03190 1.17312i
\(872\) −253.061 438.314i −0.290208 0.502654i
\(873\) 79.4558 + 45.8739i 0.0910147 + 0.0525474i
\(874\) 323.944i 0.370646i
\(875\) −313.632 1124.47i −0.358437 1.28510i
\(876\) 405.411 0.462798
\(877\) −324.220 + 561.566i −0.369693 + 0.640326i −0.989517 0.144414i \(-0.953870\pi\)
0.619825 + 0.784740i \(0.287204\pi\)
\(878\) −487.279 + 281.331i −0.554988 + 0.320422i
\(879\) −207.588 359.553i −0.236164 0.409048i
\(880\) 173.823 + 100.357i 0.197527 + 0.114042i
\(881\) 363.857i 0.413005i −0.978446 0.206502i \(-0.933792\pi\)
0.978446 0.206502i \(-0.0662082\pi\)
\(882\) 182.121 + 100.249i 0.206487 + 0.113661i
\(883\) 1536.16 1.73971 0.869853 0.493312i \(-0.164214\pi\)
0.869853 + 0.493312i \(0.164214\pi\)
\(884\) 335.044 580.313i 0.379009 0.656462i
\(885\) 343.279 198.192i 0.387886 0.223946i
\(886\) 83.8234 + 145.186i 0.0946088 + 0.163867i
\(887\) 974.720 + 562.755i 1.09890 + 0.634447i 0.935931 0.352185i \(-0.114561\pi\)
0.162964 + 0.986632i \(0.447894\pi\)
\(888\) 29.2497i 0.0329388i
\(889\) −1128.90 + 314.868i −1.26985 + 0.354183i
\(890\) 245.823 0.276206
\(891\) −27.0000 + 46.7654i −0.0303030 + 0.0524864i
\(892\) −396.000 + 228.631i −0.443946 + 0.256312i
\(893\) 282.640 + 489.546i 0.316506 + 0.548204i
\(894\) −388.014 224.020i −0.434020 0.250582i
\(895\) 713.197i 0.796868i
\(896\) 19.7157 76.7026i 0.0220042 0.0856056i
\(897\) 416.339 0.464146
\(898\) −504.801 + 874.341i −0.562139 + 0.973654i
\(899\) 433.499 250.281i 0.482201 0.278399i
\(900\) −134.823 233.521i −0.149804 0.259468i
\(901\) −561.088 323.944i −0.622740 0.359539i
\(902\) 298.982i 0.331466i
\(903\) −131.397 + 134.106i −0.145512 + 0.148512i
\(904\) −49.2061 −0.0544315
\(905\) 23.3604 40.4614i 0.0258126 0.0447087i
\(906\) −612.624 + 353.699i −0.676186 + 0.390396i
\(907\) −117.448 203.426i −0.129491 0.224285i 0.793989 0.607933i \(-0.208001\pi\)
−0.923479 + 0.383648i \(0.874668\pi\)
\(908\) 293.647 + 169.537i 0.323400 + 0.186715i
\(909\) 383.903i 0.422336i
\(910\) −1056.40 1035.05i −1.16087 1.13742i
\(911\) 224.278 0.246189 0.123095 0.992395i \(-0.460718\pi\)
0.123095 + 0.992395i \(0.460718\pi\)
\(912\) 58.9706 102.140i 0.0646607 0.111996i
\(913\) 393.661 227.280i 0.431173 0.248938i
\(914\) 88.5132 + 153.309i 0.0968416 + 0.167735i
\(915\) −506.558 292.462i −0.553616 0.319630i
\(916\) 69.3840i 0.0757467i
\(917\) 12.0883 + 3.10719i 0.0131825 + 0.00338843i
\(918\) −137.823 −0.150134
\(919\) 466.081 807.276i 0.507161 0.878428i −0.492805 0.870140i \(-0.664028\pi\)
0.999966 0.00828836i \(-0.00263830\pi\)
\(920\) −275.647 + 159.145i −0.299616 + 0.172983i
\(921\) 467.889 + 810.407i 0.508023 + 0.879921i
\(922\) −803.147 463.697i −0.871092 0.502925i
\(923\) 332.322i 0.360046i
\(924\) −39.0883 140.143i −0.0423034 0.151670i
\(925\) −268.324 −0.290080
\(926\) −614.756 + 1064.79i −0.663883 + 1.14988i
\(927\) −210.331 + 121.434i −0.226894 + 0.130997i
\(928\) −96.0000 166.277i −0.103448 0.179178i
\(929\) −618.390 357.028i −0.665651 0.384314i 0.128776 0.991674i \(-0.458895\pi\)
−0.794427 + 0.607360i \(0.792229\pi\)
\(930\) 302.115i 0.324855i
\(931\) −833.970 + 17.0233i −0.895778 + 0.0182850i
\(932\) −508.971 −0.546106
\(933\) 350.044 606.294i 0.375181 0.649832i
\(934\) 327.463 189.061i 0.350603 0.202421i
\(935\) 470.558 + 815.031i 0.503271 + 0.871691i
\(936\) −131.272 75.7900i −0.140248 0.0809722i
\(937\) 1723.25i 1.83912i −0.392952 0.919559i \(-0.628546\pi\)
0.392952 0.919559i \(-0.371454\pi\)
\(938\) 1090.84 304.253i 1.16294 0.324363i
\(939\) −227.412 −0.242185
\(940\) −277.706 + 481.000i −0.295432 + 0.511702i
\(941\) 835.508 482.381i 0.887893 0.512625i 0.0146405 0.999893i \(-0.495340\pi\)
0.873253 + 0.487267i \(0.162006\pi\)
\(942\) 229.103 + 396.817i 0.243209 + 0.421250i
\(943\) −410.601 237.061i −0.435420 0.251390i
\(944\) 109.459i 0.115952i
\(945\) −75.7279 + 294.614i −0.0801354 + 0.311761i
\(946\) 131.397 0.138897
\(947\) −725.881 + 1257.26i −0.766506 + 1.32763i 0.172940 + 0.984932i \(0.444673\pi\)
−0.939447 + 0.342695i \(0.888660\pi\)
\(948\) −265.014 + 153.006i −0.279551 + 0.161399i
\(949\) 1045.32 + 1810.55i 1.10150 + 1.90785i
\(950\) 936.988 + 540.971i 0.986304 + 0.569443i
\(951\) 162.711i 0.171094i
\(952\) 259.882 265.241i 0.272986 0.278615i
\(953\) 1147.43 1.20401 0.602007 0.798491i \(-0.294368\pi\)
0.602007 + 0.798491i \(0.294368\pi\)
\(954\) −73.2792 + 126.923i −0.0768126 + 0.133043i
\(955\) −1342.76 + 775.245i −1.40604 + 0.811775i
\(956\) −197.147 341.469i −0.206221 0.357185i
\(957\) −305.470 176.363i −0.319196 0.184288i
\(958\) 384.294i 0.401142i
\(959\) 504.853 + 494.653i 0.526437 + 0.515801i
\(960\) 115.882 0.120711
\(961\) −371.749 + 643.889i −0.386836 + 0.670020i
\(962\) −130.628 + 75.4181i −0.135788 + 0.0783972i
\(963\) 254.184 + 440.259i 0.263950 + 0.457175i
\(964\) −153.235 88.4701i −0.158957 0.0917739i
\(965\) 1905.06i 1.97415i
\(966\) 223.456 + 57.4374i 0.231321 + 0.0594590i
\(967\) 412.190 0.426257 0.213128 0.977024i \(-0.431635\pi\)
0.213128 + 0.977024i \(0.431635\pi\)
\(968\) 120.208 208.207i 0.124182 0.215089i
\(969\) 478.919 276.504i 0.494240 0.285350i
\(970\) −180.853 313.246i −0.186446 0.322934i
\(971\) 869.595 + 502.061i 0.895566 + 0.517056i 0.875759 0.482748i \(-0.160361\pi\)
0.0198073 + 0.999804i \(0.493695\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 264.309 + 947.626i 0.271643 + 0.973922i
\(974\) −794.101 −0.815298
\(975\) 695.265 1204.23i 0.713092 1.23511i
\(976\) 139.882 80.7611i 0.143322 0.0827470i
\(977\) 794.117 + 1375.45i 0.812812 + 1.40783i 0.910889 + 0.412652i \(0.135397\pi\)
−0.0980772 + 0.995179i \(0.531269\pi\)
\(978\) −34.0660 19.6680i −0.0348323 0.0201105i
\(979\) 124.708i 0.127383i
\(980\) −424.191 701.268i −0.432848 0.715579i
\(981\) −536.823 −0.547221
\(982\) 287.397 497.786i 0.292665 0.506911i
\(983\) 721.861 416.767i 0.734345 0.423974i −0.0856648 0.996324i \(-0.527301\pi\)
0.820009 + 0.572350i \(0.193968\pi\)
\(984\) 86.3087 + 149.491i 0.0877121 + 0.151922i
\(985\) 892.014 + 515.005i 0.905598 + 0.522847i
\(986\) 900.259i 0.913041i
\(987\) 387.801 108.164i 0.392909 0.109589i
\(988\) 608.205 0.615592
\(989\) −104.184 + 180.452i −0.105343 + 0.182459i
\(990\) 184.368 106.445i 0.186230 0.107520i
\(991\) −33.4483 57.9341i −0.0337520 0.0584602i 0.848656 0.528945i \(-0.177412\pi\)
−0.882408 + 0.470485i \(0.844079\pi\)
\(992\) −72.2498 41.7134i −0.0728324 0.0420498i
\(993\) 452.702i 0.455893i
\(994\) 45.8465 178.363i 0.0461233 0.179439i
\(995\) 52.1177 0.0523796
\(996\) 131.220 227.280i 0.131747 0.228193i
\(997\) 1268.65 732.453i 1.27246 0.734657i 0.297012 0.954874i \(-0.404010\pi\)
0.975451 + 0.220217i \(0.0706765\pi\)
\(998\) 262.638 + 454.903i 0.263164 + 0.455814i
\(999\) 26.8675 + 15.5120i 0.0268944 + 0.0155275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.3.g.a.19.1 4
3.2 odd 2 126.3.n.a.19.2 4
4.3 odd 2 336.3.bh.e.145.2 4
5.2 odd 4 1050.3.q.a.649.1 8
5.3 odd 4 1050.3.q.a.649.4 8
5.4 even 2 1050.3.p.a.901.2 4
7.2 even 3 294.3.c.a.97.4 4
7.3 odd 6 inner 42.3.g.a.31.1 yes 4
7.4 even 3 294.3.g.a.31.1 4
7.5 odd 6 294.3.c.a.97.3 4
7.6 odd 2 294.3.g.a.19.1 4
12.11 even 2 1008.3.cg.h.145.1 4
21.2 odd 6 882.3.c.b.685.2 4
21.5 even 6 882.3.c.b.685.1 4
21.11 odd 6 882.3.n.e.325.2 4
21.17 even 6 126.3.n.a.73.2 4
21.20 even 2 882.3.n.e.19.2 4
28.3 even 6 336.3.bh.e.241.2 4
28.19 even 6 2352.3.f.e.97.4 4
28.23 odd 6 2352.3.f.e.97.1 4
35.3 even 12 1050.3.q.a.199.1 8
35.17 even 12 1050.3.q.a.199.4 8
35.24 odd 6 1050.3.p.a.451.2 4
84.59 odd 6 1008.3.cg.h.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.3.g.a.19.1 4 1.1 even 1 trivial
42.3.g.a.31.1 yes 4 7.3 odd 6 inner
126.3.n.a.19.2 4 3.2 odd 2
126.3.n.a.73.2 4 21.17 even 6
294.3.c.a.97.3 4 7.5 odd 6
294.3.c.a.97.4 4 7.2 even 3
294.3.g.a.19.1 4 7.6 odd 2
294.3.g.a.31.1 4 7.4 even 3
336.3.bh.e.145.2 4 4.3 odd 2
336.3.bh.e.241.2 4 28.3 even 6
882.3.c.b.685.1 4 21.5 even 6
882.3.c.b.685.2 4 21.2 odd 6
882.3.n.e.19.2 4 21.20 even 2
882.3.n.e.325.2 4 21.11 odd 6
1008.3.cg.h.145.1 4 12.11 even 2
1008.3.cg.h.577.1 4 84.59 odd 6
1050.3.p.a.451.2 4 35.24 odd 6
1050.3.p.a.901.2 4 5.4 even 2
1050.3.q.a.199.1 8 35.3 even 12
1050.3.q.a.199.4 8 35.17 even 12
1050.3.q.a.649.1 8 5.2 odd 4
1050.3.q.a.649.4 8 5.3 odd 4
2352.3.f.e.97.1 4 28.23 odd 6
2352.3.f.e.97.4 4 28.19 even 6