Properties

Label 1088.4.a.n.1.1
Level $1088$
Weight $4$
Character 1088.1
Self dual yes
Analytic conductor $64.194$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1088,4,Mod(1,1088)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1088, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1088.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1088.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1940780862\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1088.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.46410 q^{3} +12.9282 q^{5} -28.3923 q^{7} +2.85641 q^{9} +55.0333 q^{11} +0.430781 q^{13} -70.6410 q^{15} +17.0000 q^{17} -147.636 q^{19} +155.138 q^{21} +108.603 q^{23} +42.1384 q^{25} +131.923 q^{27} +107.933 q^{29} -70.1718 q^{31} -300.708 q^{33} -367.061 q^{35} +381.769 q^{37} -2.35383 q^{39} -16.1436 q^{41} -382.354 q^{43} +36.9282 q^{45} -455.846 q^{47} +463.123 q^{49} -92.8897 q^{51} -21.0052 q^{53} +711.482 q^{55} +806.697 q^{57} +9.91274 q^{59} +679.759 q^{61} -81.1000 q^{63} +5.56922 q^{65} -708.574 q^{67} -593.415 q^{69} +85.0793 q^{71} -37.5795 q^{73} -230.249 q^{75} -1562.52 q^{77} +685.290 q^{79} -797.964 q^{81} +1294.89 q^{83} +219.779 q^{85} -589.759 q^{87} -1572.08 q^{89} -12.2309 q^{91} +383.426 q^{93} -1908.67 q^{95} -175.990 q^{97} +157.198 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 12 q^{5} - 36 q^{7} - 22 q^{9} + 20 q^{11} + 84 q^{13} - 72 q^{15} + 34 q^{17} - 32 q^{19} + 144 q^{21} + 44 q^{23} - 82 q^{25} + 56 q^{27} + 396 q^{29} + 116 q^{31} - 352 q^{33} - 360 q^{35}+ \cdots + 1028 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.46410 −1.05157 −0.525783 0.850618i \(-0.676228\pi\)
−0.525783 + 0.850618i \(0.676228\pi\)
\(4\) 0 0
\(5\) 12.9282 1.15633 0.578167 0.815919i \(-0.303768\pi\)
0.578167 + 0.815919i \(0.303768\pi\)
\(6\) 0 0
\(7\) −28.3923 −1.53304 −0.766520 0.642220i \(-0.778013\pi\)
−0.766520 + 0.642220i \(0.778013\pi\)
\(8\) 0 0
\(9\) 2.85641 0.105793
\(10\) 0 0
\(11\) 55.0333 1.50847 0.754235 0.656605i \(-0.228008\pi\)
0.754235 + 0.656605i \(0.228008\pi\)
\(12\) 0 0
\(13\) 0.430781 0.00919054 0.00459527 0.999989i \(-0.498537\pi\)
0.00459527 + 0.999989i \(0.498537\pi\)
\(14\) 0 0
\(15\) −70.6410 −1.21596
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −147.636 −1.78263 −0.891316 0.453384i \(-0.850217\pi\)
−0.891316 + 0.453384i \(0.850217\pi\)
\(20\) 0 0
\(21\) 155.138 1.61209
\(22\) 0 0
\(23\) 108.603 0.984574 0.492287 0.870433i \(-0.336161\pi\)
0.492287 + 0.870433i \(0.336161\pi\)
\(24\) 0 0
\(25\) 42.1384 0.337108
\(26\) 0 0
\(27\) 131.923 0.940319
\(28\) 0 0
\(29\) 107.933 0.691128 0.345564 0.938395i \(-0.387688\pi\)
0.345564 + 0.938395i \(0.387688\pi\)
\(30\) 0 0
\(31\) −70.1718 −0.406555 −0.203278 0.979121i \(-0.565159\pi\)
−0.203278 + 0.979121i \(0.565159\pi\)
\(32\) 0 0
\(33\) −300.708 −1.58626
\(34\) 0 0
\(35\) −367.061 −1.77271
\(36\) 0 0
\(37\) 381.769 1.69628 0.848141 0.529770i \(-0.177722\pi\)
0.848141 + 0.529770i \(0.177722\pi\)
\(38\) 0 0
\(39\) −2.35383 −0.00966447
\(40\) 0 0
\(41\) −16.1436 −0.0614928 −0.0307464 0.999527i \(-0.509788\pi\)
−0.0307464 + 0.999527i \(0.509788\pi\)
\(42\) 0 0
\(43\) −382.354 −1.35601 −0.678005 0.735057i \(-0.737155\pi\)
−0.678005 + 0.735057i \(0.737155\pi\)
\(44\) 0 0
\(45\) 36.9282 0.122332
\(46\) 0 0
\(47\) −455.846 −1.41472 −0.707362 0.706852i \(-0.750115\pi\)
−0.707362 + 0.706852i \(0.750115\pi\)
\(48\) 0 0
\(49\) 463.123 1.35021
\(50\) 0 0
\(51\) −92.8897 −0.255042
\(52\) 0 0
\(53\) −21.0052 −0.0544392 −0.0272196 0.999629i \(-0.508665\pi\)
−0.0272196 + 0.999629i \(0.508665\pi\)
\(54\) 0 0
\(55\) 711.482 1.74429
\(56\) 0 0
\(57\) 806.697 1.87456
\(58\) 0 0
\(59\) 9.91274 0.0218734 0.0109367 0.999940i \(-0.496519\pi\)
0.0109367 + 0.999940i \(0.496519\pi\)
\(60\) 0 0
\(61\) 679.759 1.42679 0.713395 0.700762i \(-0.247157\pi\)
0.713395 + 0.700762i \(0.247157\pi\)
\(62\) 0 0
\(63\) −81.1000 −0.162185
\(64\) 0 0
\(65\) 5.56922 0.0106273
\(66\) 0 0
\(67\) −708.574 −1.29203 −0.646016 0.763324i \(-0.723566\pi\)
−0.646016 + 0.763324i \(0.723566\pi\)
\(68\) 0 0
\(69\) −593.415 −1.03535
\(70\) 0 0
\(71\) 85.0793 0.142212 0.0711061 0.997469i \(-0.477347\pi\)
0.0711061 + 0.997469i \(0.477347\pi\)
\(72\) 0 0
\(73\) −37.5795 −0.0602514 −0.0301257 0.999546i \(-0.509591\pi\)
−0.0301257 + 0.999546i \(0.509591\pi\)
\(74\) 0 0
\(75\) −230.249 −0.354491
\(76\) 0 0
\(77\) −1562.52 −2.31255
\(78\) 0 0
\(79\) 685.290 0.975963 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(80\) 0 0
\(81\) −797.964 −1.09460
\(82\) 0 0
\(83\) 1294.89 1.71244 0.856219 0.516613i \(-0.172808\pi\)
0.856219 + 0.516613i \(0.172808\pi\)
\(84\) 0 0
\(85\) 219.779 0.280452
\(86\) 0 0
\(87\) −589.759 −0.726768
\(88\) 0 0
\(89\) −1572.08 −1.87236 −0.936182 0.351517i \(-0.885666\pi\)
−0.936182 + 0.351517i \(0.885666\pi\)
\(90\) 0 0
\(91\) −12.2309 −0.0140895
\(92\) 0 0
\(93\) 383.426 0.427520
\(94\) 0 0
\(95\) −1908.67 −2.06132
\(96\) 0 0
\(97\) −175.990 −0.184217 −0.0921085 0.995749i \(-0.529361\pi\)
−0.0921085 + 0.995749i \(0.529361\pi\)
\(98\) 0 0
\(99\) 157.198 0.159585
\(100\) 0 0
\(101\) −381.538 −0.375886 −0.187943 0.982180i \(-0.560182\pi\)
−0.187943 + 0.982180i \(0.560182\pi\)
\(102\) 0 0
\(103\) 724.246 0.692836 0.346418 0.938080i \(-0.387398\pi\)
0.346418 + 0.938080i \(0.387398\pi\)
\(104\) 0 0
\(105\) 2005.66 1.86412
\(106\) 0 0
\(107\) −1132.23 −1.02296 −0.511482 0.859294i \(-0.670903\pi\)
−0.511482 + 0.859294i \(0.670903\pi\)
\(108\) 0 0
\(109\) −555.913 −0.488503 −0.244251 0.969712i \(-0.578542\pi\)
−0.244251 + 0.969712i \(0.578542\pi\)
\(110\) 0 0
\(111\) −2086.03 −1.78375
\(112\) 0 0
\(113\) −1156.28 −0.962596 −0.481298 0.876557i \(-0.659835\pi\)
−0.481298 + 0.876557i \(0.659835\pi\)
\(114\) 0 0
\(115\) 1404.04 1.13850
\(116\) 0 0
\(117\) 1.23048 0.000972293 0
\(118\) 0 0
\(119\) −482.669 −0.371817
\(120\) 0 0
\(121\) 1697.67 1.27548
\(122\) 0 0
\(123\) 88.2102 0.0646638
\(124\) 0 0
\(125\) −1071.25 −0.766525
\(126\) 0 0
\(127\) −2071.22 −1.44717 −0.723585 0.690235i \(-0.757507\pi\)
−0.723585 + 0.690235i \(0.757507\pi\)
\(128\) 0 0
\(129\) 2089.22 1.42593
\(130\) 0 0
\(131\) 498.690 0.332601 0.166300 0.986075i \(-0.446818\pi\)
0.166300 + 0.986075i \(0.446818\pi\)
\(132\) 0 0
\(133\) 4191.72 2.73285
\(134\) 0 0
\(135\) 1705.53 1.08732
\(136\) 0 0
\(137\) −1500.66 −0.935837 −0.467919 0.883772i \(-0.654996\pi\)
−0.467919 + 0.883772i \(0.654996\pi\)
\(138\) 0 0
\(139\) 272.043 0.166003 0.0830015 0.996549i \(-0.473549\pi\)
0.0830015 + 0.996549i \(0.473549\pi\)
\(140\) 0 0
\(141\) 2490.79 1.48768
\(142\) 0 0
\(143\) 23.7073 0.0138637
\(144\) 0 0
\(145\) 1395.38 0.799175
\(146\) 0 0
\(147\) −2530.55 −1.41984
\(148\) 0 0
\(149\) 122.349 0.0672700 0.0336350 0.999434i \(-0.489292\pi\)
0.0336350 + 0.999434i \(0.489292\pi\)
\(150\) 0 0
\(151\) −703.944 −0.379378 −0.189689 0.981844i \(-0.560748\pi\)
−0.189689 + 0.981844i \(0.560748\pi\)
\(152\) 0 0
\(153\) 48.5589 0.0256585
\(154\) 0 0
\(155\) −907.195 −0.470114
\(156\) 0 0
\(157\) −1785.67 −0.907720 −0.453860 0.891073i \(-0.649953\pi\)
−0.453860 + 0.891073i \(0.649953\pi\)
\(158\) 0 0
\(159\) 114.774 0.0572465
\(160\) 0 0
\(161\) −3083.48 −1.50939
\(162\) 0 0
\(163\) −3588.11 −1.72418 −0.862092 0.506751i \(-0.830846\pi\)
−0.862092 + 0.506751i \(0.830846\pi\)
\(164\) 0 0
\(165\) −3887.61 −1.83424
\(166\) 0 0
\(167\) −1659.15 −0.768794 −0.384397 0.923168i \(-0.625591\pi\)
−0.384397 + 0.923168i \(0.625591\pi\)
\(168\) 0 0
\(169\) −2196.81 −0.999916
\(170\) 0 0
\(171\) −421.708 −0.188590
\(172\) 0 0
\(173\) 142.148 0.0624702 0.0312351 0.999512i \(-0.490056\pi\)
0.0312351 + 0.999512i \(0.490056\pi\)
\(174\) 0 0
\(175\) −1196.41 −0.516799
\(176\) 0 0
\(177\) −54.1642 −0.0230013
\(178\) 0 0
\(179\) −387.749 −0.161909 −0.0809544 0.996718i \(-0.525797\pi\)
−0.0809544 + 0.996718i \(0.525797\pi\)
\(180\) 0 0
\(181\) −3683.64 −1.51272 −0.756360 0.654155i \(-0.773024\pi\)
−0.756360 + 0.654155i \(0.773024\pi\)
\(182\) 0 0
\(183\) −3714.27 −1.50037
\(184\) 0 0
\(185\) 4935.59 1.96147
\(186\) 0 0
\(187\) 935.566 0.365858
\(188\) 0 0
\(189\) −3745.60 −1.44155
\(190\) 0 0
\(191\) −1308.05 −0.495535 −0.247768 0.968819i \(-0.579697\pi\)
−0.247768 + 0.968819i \(0.579697\pi\)
\(192\) 0 0
\(193\) −3585.28 −1.33717 −0.668586 0.743635i \(-0.733100\pi\)
−0.668586 + 0.743635i \(0.733100\pi\)
\(194\) 0 0
\(195\) −30.4308 −0.0111754
\(196\) 0 0
\(197\) 1434.13 0.518667 0.259333 0.965788i \(-0.416497\pi\)
0.259333 + 0.965788i \(0.416497\pi\)
\(198\) 0 0
\(199\) 1018.55 0.362828 0.181414 0.983407i \(-0.441933\pi\)
0.181414 + 0.983407i \(0.441933\pi\)
\(200\) 0 0
\(201\) 3871.72 1.35866
\(202\) 0 0
\(203\) −3064.48 −1.05953
\(204\) 0 0
\(205\) −208.708 −0.0711062
\(206\) 0 0
\(207\) 310.213 0.104161
\(208\) 0 0
\(209\) −8124.89 −2.68905
\(210\) 0 0
\(211\) −2888.47 −0.942421 −0.471210 0.882021i \(-0.656183\pi\)
−0.471210 + 0.882021i \(0.656183\pi\)
\(212\) 0 0
\(213\) −464.882 −0.149546
\(214\) 0 0
\(215\) −4943.15 −1.56800
\(216\) 0 0
\(217\) 1992.34 0.623266
\(218\) 0 0
\(219\) 205.338 0.0633584
\(220\) 0 0
\(221\) 7.32327 0.00222903
\(222\) 0 0
\(223\) 3641.74 1.09358 0.546791 0.837269i \(-0.315849\pi\)
0.546791 + 0.837269i \(0.315849\pi\)
\(224\) 0 0
\(225\) 120.365 0.0356636
\(226\) 0 0
\(227\) −5221.59 −1.52674 −0.763368 0.645963i \(-0.776456\pi\)
−0.763368 + 0.645963i \(0.776456\pi\)
\(228\) 0 0
\(229\) −4186.66 −1.20813 −0.604065 0.796935i \(-0.706453\pi\)
−0.604065 + 0.796935i \(0.706453\pi\)
\(230\) 0 0
\(231\) 8537.78 2.43180
\(232\) 0 0
\(233\) −3420.08 −0.961618 −0.480809 0.876825i \(-0.659657\pi\)
−0.480809 + 0.876825i \(0.659657\pi\)
\(234\) 0 0
\(235\) −5893.27 −1.63589
\(236\) 0 0
\(237\) −3744.49 −1.02629
\(238\) 0 0
\(239\) −2456.35 −0.664803 −0.332402 0.943138i \(-0.607859\pi\)
−0.332402 + 0.943138i \(0.607859\pi\)
\(240\) 0 0
\(241\) 2967.19 0.793085 0.396542 0.918016i \(-0.370210\pi\)
0.396542 + 0.918016i \(0.370210\pi\)
\(242\) 0 0
\(243\) 798.234 0.210727
\(244\) 0 0
\(245\) 5987.35 1.56130
\(246\) 0 0
\(247\) −63.5987 −0.0163833
\(248\) 0 0
\(249\) −7075.39 −1.80074
\(250\) 0 0
\(251\) 5652.07 1.42134 0.710668 0.703527i \(-0.248393\pi\)
0.710668 + 0.703527i \(0.248393\pi\)
\(252\) 0 0
\(253\) 5976.76 1.48520
\(254\) 0 0
\(255\) −1200.90 −0.294914
\(256\) 0 0
\(257\) −1480.86 −0.359430 −0.179715 0.983719i \(-0.557518\pi\)
−0.179715 + 0.983719i \(0.557518\pi\)
\(258\) 0 0
\(259\) −10839.3 −2.60047
\(260\) 0 0
\(261\) 308.302 0.0731164
\(262\) 0 0
\(263\) −1460.73 −0.342482 −0.171241 0.985229i \(-0.554778\pi\)
−0.171241 + 0.985229i \(0.554778\pi\)
\(264\) 0 0
\(265\) −271.559 −0.0629499
\(266\) 0 0
\(267\) 8590.01 1.96892
\(268\) 0 0
\(269\) 6260.73 1.41905 0.709523 0.704682i \(-0.248910\pi\)
0.709523 + 0.704682i \(0.248910\pi\)
\(270\) 0 0
\(271\) −269.538 −0.0604179 −0.0302089 0.999544i \(-0.509617\pi\)
−0.0302089 + 0.999544i \(0.509617\pi\)
\(272\) 0 0
\(273\) 66.8306 0.0148160
\(274\) 0 0
\(275\) 2319.02 0.508517
\(276\) 0 0
\(277\) 5097.56 1.10571 0.552857 0.833276i \(-0.313537\pi\)
0.552857 + 0.833276i \(0.313537\pi\)
\(278\) 0 0
\(279\) −200.439 −0.0430107
\(280\) 0 0
\(281\) −1516.13 −0.321868 −0.160934 0.986965i \(-0.551451\pi\)
−0.160934 + 0.986965i \(0.551451\pi\)
\(282\) 0 0
\(283\) 7668.88 1.61084 0.805420 0.592705i \(-0.201940\pi\)
0.805420 + 0.592705i \(0.201940\pi\)
\(284\) 0 0
\(285\) 10429.1 2.16761
\(286\) 0 0
\(287\) 458.354 0.0942710
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 961.626 0.193716
\(292\) 0 0
\(293\) −2580.58 −0.514537 −0.257269 0.966340i \(-0.582822\pi\)
−0.257269 + 0.966340i \(0.582822\pi\)
\(294\) 0 0
\(295\) 128.154 0.0252929
\(296\) 0 0
\(297\) 7260.16 1.41844
\(298\) 0 0
\(299\) 46.7839 0.00904877
\(300\) 0 0
\(301\) 10855.9 2.07882
\(302\) 0 0
\(303\) 2084.76 0.395269
\(304\) 0 0
\(305\) 8788.06 1.64985
\(306\) 0 0
\(307\) 583.507 0.108477 0.0542386 0.998528i \(-0.482727\pi\)
0.0542386 + 0.998528i \(0.482727\pi\)
\(308\) 0 0
\(309\) −3957.35 −0.728563
\(310\) 0 0
\(311\) −154.973 −0.0282563 −0.0141282 0.999900i \(-0.504497\pi\)
−0.0141282 + 0.999900i \(0.504497\pi\)
\(312\) 0 0
\(313\) −5835.86 −1.05387 −0.526936 0.849905i \(-0.676659\pi\)
−0.526936 + 0.849905i \(0.676659\pi\)
\(314\) 0 0
\(315\) −1048.48 −0.187540
\(316\) 0 0
\(317\) −10586.1 −1.87563 −0.937817 0.347130i \(-0.887156\pi\)
−0.937817 + 0.347130i \(0.887156\pi\)
\(318\) 0 0
\(319\) 5939.93 1.04255
\(320\) 0 0
\(321\) 6186.64 1.07571
\(322\) 0 0
\(323\) −2509.81 −0.432352
\(324\) 0 0
\(325\) 18.1524 0.00309820
\(326\) 0 0
\(327\) 3037.56 0.513693
\(328\) 0 0
\(329\) 12942.5 2.16883
\(330\) 0 0
\(331\) 7094.38 1.17807 0.589037 0.808106i \(-0.299507\pi\)
0.589037 + 0.808106i \(0.299507\pi\)
\(332\) 0 0
\(333\) 1090.49 0.179455
\(334\) 0 0
\(335\) −9160.59 −1.49402
\(336\) 0 0
\(337\) −1579.48 −0.255310 −0.127655 0.991819i \(-0.540745\pi\)
−0.127655 + 0.991819i \(0.540745\pi\)
\(338\) 0 0
\(339\) 6318.01 1.01223
\(340\) 0 0
\(341\) −3861.78 −0.613277
\(342\) 0 0
\(343\) −3410.57 −0.536890
\(344\) 0 0
\(345\) −7671.79 −1.19720
\(346\) 0 0
\(347\) 1717.38 0.265688 0.132844 0.991137i \(-0.457589\pi\)
0.132844 + 0.991137i \(0.457589\pi\)
\(348\) 0 0
\(349\) 6237.70 0.956724 0.478362 0.878163i \(-0.341231\pi\)
0.478362 + 0.878163i \(0.341231\pi\)
\(350\) 0 0
\(351\) 56.8299 0.00864204
\(352\) 0 0
\(353\) 9900.99 1.49285 0.746426 0.665469i \(-0.231768\pi\)
0.746426 + 0.665469i \(0.231768\pi\)
\(354\) 0 0
\(355\) 1099.92 0.164445
\(356\) 0 0
\(357\) 2637.35 0.390990
\(358\) 0 0
\(359\) −7524.52 −1.10621 −0.553104 0.833112i \(-0.686557\pi\)
−0.553104 + 0.833112i \(0.686557\pi\)
\(360\) 0 0
\(361\) 14937.3 2.17777
\(362\) 0 0
\(363\) −9276.22 −1.34125
\(364\) 0 0
\(365\) −485.836 −0.0696707
\(366\) 0 0
\(367\) 10169.2 1.44640 0.723199 0.690640i \(-0.242671\pi\)
0.723199 + 0.690640i \(0.242671\pi\)
\(368\) 0 0
\(369\) −46.1127 −0.00650550
\(370\) 0 0
\(371\) 596.385 0.0834576
\(372\) 0 0
\(373\) −14115.4 −1.95943 −0.979716 0.200393i \(-0.935778\pi\)
−0.979716 + 0.200393i \(0.935778\pi\)
\(374\) 0 0
\(375\) 5853.42 0.806052
\(376\) 0 0
\(377\) 46.4956 0.00635184
\(378\) 0 0
\(379\) 10480.9 1.42050 0.710249 0.703951i \(-0.248583\pi\)
0.710249 + 0.703951i \(0.248583\pi\)
\(380\) 0 0
\(381\) 11317.3 1.52180
\(382\) 0 0
\(383\) 9726.14 1.29760 0.648802 0.760957i \(-0.275270\pi\)
0.648802 + 0.760957i \(0.275270\pi\)
\(384\) 0 0
\(385\) −20200.6 −2.67407
\(386\) 0 0
\(387\) −1092.16 −0.143456
\(388\) 0 0
\(389\) −13217.9 −1.72282 −0.861409 0.507912i \(-0.830417\pi\)
−0.861409 + 0.507912i \(0.830417\pi\)
\(390\) 0 0
\(391\) 1846.24 0.238794
\(392\) 0 0
\(393\) −2724.89 −0.349752
\(394\) 0 0
\(395\) 8859.56 1.12854
\(396\) 0 0
\(397\) −5628.14 −0.711507 −0.355753 0.934580i \(-0.615776\pi\)
−0.355753 + 0.934580i \(0.615776\pi\)
\(398\) 0 0
\(399\) −22904.0 −2.87377
\(400\) 0 0
\(401\) 8890.10 1.10711 0.553554 0.832813i \(-0.313271\pi\)
0.553554 + 0.832813i \(0.313271\pi\)
\(402\) 0 0
\(403\) −30.2286 −0.00373647
\(404\) 0 0
\(405\) −10316.2 −1.26572
\(406\) 0 0
\(407\) 21010.0 2.55879
\(408\) 0 0
\(409\) 721.057 0.0871736 0.0435868 0.999050i \(-0.486121\pi\)
0.0435868 + 0.999050i \(0.486121\pi\)
\(410\) 0 0
\(411\) 8199.74 0.984095
\(412\) 0 0
\(413\) −281.446 −0.0335328
\(414\) 0 0
\(415\) 16740.6 1.98015
\(416\) 0 0
\(417\) −1486.47 −0.174563
\(418\) 0 0
\(419\) 16306.9 1.90129 0.950647 0.310275i \(-0.100421\pi\)
0.950647 + 0.310275i \(0.100421\pi\)
\(420\) 0 0
\(421\) 11568.8 1.33926 0.669628 0.742697i \(-0.266454\pi\)
0.669628 + 0.742697i \(0.266454\pi\)
\(422\) 0 0
\(423\) −1302.08 −0.149668
\(424\) 0 0
\(425\) 716.353 0.0817606
\(426\) 0 0
\(427\) −19299.9 −2.18733
\(428\) 0 0
\(429\) −129.539 −0.0145786
\(430\) 0 0
\(431\) −11733.2 −1.31129 −0.655647 0.755067i \(-0.727604\pi\)
−0.655647 + 0.755067i \(0.727604\pi\)
\(432\) 0 0
\(433\) −8900.96 −0.987882 −0.493941 0.869495i \(-0.664444\pi\)
−0.493941 + 0.869495i \(0.664444\pi\)
\(434\) 0 0
\(435\) −7624.52 −0.840386
\(436\) 0 0
\(437\) −16033.6 −1.75513
\(438\) 0 0
\(439\) −8857.07 −0.962927 −0.481464 0.876466i \(-0.659895\pi\)
−0.481464 + 0.876466i \(0.659895\pi\)
\(440\) 0 0
\(441\) 1322.87 0.142843
\(442\) 0 0
\(443\) −13328.1 −1.42943 −0.714716 0.699415i \(-0.753444\pi\)
−0.714716 + 0.699415i \(0.753444\pi\)
\(444\) 0 0
\(445\) −20324.2 −2.16508
\(446\) 0 0
\(447\) −668.528 −0.0707389
\(448\) 0 0
\(449\) −8432.61 −0.886323 −0.443162 0.896442i \(-0.646143\pi\)
−0.443162 + 0.896442i \(0.646143\pi\)
\(450\) 0 0
\(451\) −888.436 −0.0927601
\(452\) 0 0
\(453\) 3846.42 0.398942
\(454\) 0 0
\(455\) −158.123 −0.0162921
\(456\) 0 0
\(457\) 6628.94 0.678531 0.339266 0.940691i \(-0.389821\pi\)
0.339266 + 0.940691i \(0.389821\pi\)
\(458\) 0 0
\(459\) 2242.69 0.228061
\(460\) 0 0
\(461\) 7327.69 0.740314 0.370157 0.928969i \(-0.379304\pi\)
0.370157 + 0.928969i \(0.379304\pi\)
\(462\) 0 0
\(463\) −8996.83 −0.903063 −0.451531 0.892255i \(-0.649122\pi\)
−0.451531 + 0.892255i \(0.649122\pi\)
\(464\) 0 0
\(465\) 4957.00 0.494356
\(466\) 0 0
\(467\) −12138.4 −1.20278 −0.601388 0.798957i \(-0.705386\pi\)
−0.601388 + 0.798957i \(0.705386\pi\)
\(468\) 0 0
\(469\) 20118.1 1.98074
\(470\) 0 0
\(471\) 9757.09 0.954529
\(472\) 0 0
\(473\) −21042.2 −2.04550
\(474\) 0 0
\(475\) −6221.14 −0.600938
\(476\) 0 0
\(477\) −59.9993 −0.00575928
\(478\) 0 0
\(479\) 1644.47 0.156864 0.0784320 0.996919i \(-0.475009\pi\)
0.0784320 + 0.996919i \(0.475009\pi\)
\(480\) 0 0
\(481\) 164.459 0.0155898
\(482\) 0 0
\(483\) 16848.4 1.58723
\(484\) 0 0
\(485\) −2275.23 −0.213016
\(486\) 0 0
\(487\) −1761.78 −0.163930 −0.0819648 0.996635i \(-0.526119\pi\)
−0.0819648 + 0.996635i \(0.526119\pi\)
\(488\) 0 0
\(489\) 19605.8 1.81310
\(490\) 0 0
\(491\) −2471.08 −0.227125 −0.113562 0.993531i \(-0.536226\pi\)
−0.113562 + 0.993531i \(0.536226\pi\)
\(492\) 0 0
\(493\) 1834.87 0.167623
\(494\) 0 0
\(495\) 2032.28 0.184534
\(496\) 0 0
\(497\) −2415.60 −0.218017
\(498\) 0 0
\(499\) 16582.5 1.48764 0.743821 0.668379i \(-0.233012\pi\)
0.743821 + 0.668379i \(0.233012\pi\)
\(500\) 0 0
\(501\) 9065.74 0.808438
\(502\) 0 0
\(503\) 19067.9 1.69025 0.845126 0.534566i \(-0.179525\pi\)
0.845126 + 0.534566i \(0.179525\pi\)
\(504\) 0 0
\(505\) −4932.60 −0.434650
\(506\) 0 0
\(507\) 12003.6 1.05148
\(508\) 0 0
\(509\) 9295.25 0.809439 0.404720 0.914441i \(-0.367369\pi\)
0.404720 + 0.914441i \(0.367369\pi\)
\(510\) 0 0
\(511\) 1066.97 0.0923678
\(512\) 0 0
\(513\) −19476.6 −1.67624
\(514\) 0 0
\(515\) 9363.20 0.801149
\(516\) 0 0
\(517\) −25086.7 −2.13407
\(518\) 0 0
\(519\) −776.713 −0.0656916
\(520\) 0 0
\(521\) 4907.38 0.412661 0.206330 0.978482i \(-0.433848\pi\)
0.206330 + 0.978482i \(0.433848\pi\)
\(522\) 0 0
\(523\) 11247.5 0.940381 0.470191 0.882565i \(-0.344185\pi\)
0.470191 + 0.882565i \(0.344185\pi\)
\(524\) 0 0
\(525\) 6537.29 0.543449
\(526\) 0 0
\(527\) −1192.92 −0.0986042
\(528\) 0 0
\(529\) −372.488 −0.0306146
\(530\) 0 0
\(531\) 28.3148 0.00231405
\(532\) 0 0
\(533\) −6.95435 −0.000565152 0
\(534\) 0 0
\(535\) −14637.7 −1.18289
\(536\) 0 0
\(537\) 2118.70 0.170258
\(538\) 0 0
\(539\) 25487.2 2.03676
\(540\) 0 0
\(541\) 3992.37 0.317274 0.158637 0.987337i \(-0.449290\pi\)
0.158637 + 0.987337i \(0.449290\pi\)
\(542\) 0 0
\(543\) 20127.8 1.59073
\(544\) 0 0
\(545\) −7186.95 −0.564872
\(546\) 0 0
\(547\) 3014.39 0.235624 0.117812 0.993036i \(-0.462412\pi\)
0.117812 + 0.993036i \(0.462412\pi\)
\(548\) 0 0
\(549\) 1941.67 0.150944
\(550\) 0 0
\(551\) −15934.8 −1.23203
\(552\) 0 0
\(553\) −19457.0 −1.49619
\(554\) 0 0
\(555\) −26968.6 −2.06262
\(556\) 0 0
\(557\) 16174.5 1.23041 0.615203 0.788369i \(-0.289074\pi\)
0.615203 + 0.788369i \(0.289074\pi\)
\(558\) 0 0
\(559\) −164.711 −0.0124625
\(560\) 0 0
\(561\) −5112.03 −0.384724
\(562\) 0 0
\(563\) 6626.51 0.496047 0.248023 0.968754i \(-0.420219\pi\)
0.248023 + 0.968754i \(0.420219\pi\)
\(564\) 0 0
\(565\) −14948.6 −1.11308
\(566\) 0 0
\(567\) 22656.0 1.67807
\(568\) 0 0
\(569\) 2651.54 0.195357 0.0976786 0.995218i \(-0.468858\pi\)
0.0976786 + 0.995218i \(0.468858\pi\)
\(570\) 0 0
\(571\) −7663.21 −0.561638 −0.280819 0.959761i \(-0.590606\pi\)
−0.280819 + 0.959761i \(0.590606\pi\)
\(572\) 0 0
\(573\) 7147.32 0.521088
\(574\) 0 0
\(575\) 4576.34 0.331907
\(576\) 0 0
\(577\) −22136.0 −1.59711 −0.798557 0.601919i \(-0.794403\pi\)
−0.798557 + 0.601919i \(0.794403\pi\)
\(578\) 0 0
\(579\) 19590.3 1.40613
\(580\) 0 0
\(581\) −36764.8 −2.62524
\(582\) 0 0
\(583\) −1155.98 −0.0821200
\(584\) 0 0
\(585\) 15.9080 0.00112430
\(586\) 0 0
\(587\) −24994.8 −1.75749 −0.878744 0.477294i \(-0.841618\pi\)
−0.878744 + 0.477294i \(0.841618\pi\)
\(588\) 0 0
\(589\) 10359.9 0.724738
\(590\) 0 0
\(591\) −7836.22 −0.545413
\(592\) 0 0
\(593\) 11985.7 0.830007 0.415004 0.909820i \(-0.363780\pi\)
0.415004 + 0.909820i \(0.363780\pi\)
\(594\) 0 0
\(595\) −6240.05 −0.429944
\(596\) 0 0
\(597\) −5565.44 −0.381538
\(598\) 0 0
\(599\) 2943.68 0.200794 0.100397 0.994947i \(-0.467989\pi\)
0.100397 + 0.994947i \(0.467989\pi\)
\(600\) 0 0
\(601\) −4398.52 −0.298535 −0.149267 0.988797i \(-0.547692\pi\)
−0.149267 + 0.988797i \(0.547692\pi\)
\(602\) 0 0
\(603\) −2023.98 −0.136688
\(604\) 0 0
\(605\) 21947.8 1.47488
\(606\) 0 0
\(607\) 19859.6 1.32797 0.663985 0.747746i \(-0.268864\pi\)
0.663985 + 0.747746i \(0.268864\pi\)
\(608\) 0 0
\(609\) 16744.6 1.11416
\(610\) 0 0
\(611\) −196.370 −0.0130021
\(612\) 0 0
\(613\) −5581.75 −0.367773 −0.183887 0.982947i \(-0.558868\pi\)
−0.183887 + 0.982947i \(0.558868\pi\)
\(614\) 0 0
\(615\) 1140.40 0.0747729
\(616\) 0 0
\(617\) −9888.18 −0.645192 −0.322596 0.946537i \(-0.604555\pi\)
−0.322596 + 0.946537i \(0.604555\pi\)
\(618\) 0 0
\(619\) −9547.62 −0.619953 −0.309977 0.950744i \(-0.600321\pi\)
−0.309977 + 0.950744i \(0.600321\pi\)
\(620\) 0 0
\(621\) 14327.2 0.925813
\(622\) 0 0
\(623\) 44635.0 2.87041
\(624\) 0 0
\(625\) −19116.7 −1.22347
\(626\) 0 0
\(627\) 44395.2 2.82771
\(628\) 0 0
\(629\) 6490.08 0.411409
\(630\) 0 0
\(631\) −198.776 −0.0125406 −0.00627032 0.999980i \(-0.501996\pi\)
−0.00627032 + 0.999980i \(0.501996\pi\)
\(632\) 0 0
\(633\) 15782.9 0.991019
\(634\) 0 0
\(635\) −26777.1 −1.67341
\(636\) 0 0
\(637\) 199.504 0.0124092
\(638\) 0 0
\(639\) 243.021 0.0150450
\(640\) 0 0
\(641\) 15596.6 0.961043 0.480522 0.876983i \(-0.340447\pi\)
0.480522 + 0.876983i \(0.340447\pi\)
\(642\) 0 0
\(643\) −18359.9 −1.12604 −0.563020 0.826443i \(-0.690361\pi\)
−0.563020 + 0.826443i \(0.690361\pi\)
\(644\) 0 0
\(645\) 27009.9 1.64886
\(646\) 0 0
\(647\) −23713.7 −1.44093 −0.720465 0.693491i \(-0.756072\pi\)
−0.720465 + 0.693491i \(0.756072\pi\)
\(648\) 0 0
\(649\) 545.531 0.0329953
\(650\) 0 0
\(651\) −10886.3 −0.655406
\(652\) 0 0
\(653\) −22829.6 −1.36814 −0.684068 0.729418i \(-0.739791\pi\)
−0.684068 + 0.729418i \(0.739791\pi\)
\(654\) 0 0
\(655\) 6447.16 0.384598
\(656\) 0 0
\(657\) −107.342 −0.00637416
\(658\) 0 0
\(659\) 16979.9 1.00371 0.501853 0.864953i \(-0.332652\pi\)
0.501853 + 0.864953i \(0.332652\pi\)
\(660\) 0 0
\(661\) 15036.2 0.884782 0.442391 0.896822i \(-0.354130\pi\)
0.442391 + 0.896822i \(0.354130\pi\)
\(662\) 0 0
\(663\) −40.0151 −0.00234398
\(664\) 0 0
\(665\) 54191.4 3.16008
\(666\) 0 0
\(667\) 11721.8 0.680467
\(668\) 0 0
\(669\) −19898.8 −1.14997
\(670\) 0 0
\(671\) 37409.4 2.15227
\(672\) 0 0
\(673\) −16935.7 −0.970022 −0.485011 0.874508i \(-0.661184\pi\)
−0.485011 + 0.874508i \(0.661184\pi\)
\(674\) 0 0
\(675\) 5559.03 0.316988
\(676\) 0 0
\(677\) −6514.79 −0.369843 −0.184921 0.982753i \(-0.559203\pi\)
−0.184921 + 0.982753i \(0.559203\pi\)
\(678\) 0 0
\(679\) 4996.75 0.282412
\(680\) 0 0
\(681\) 28531.3 1.60547
\(682\) 0 0
\(683\) 6261.11 0.350768 0.175384 0.984500i \(-0.443883\pi\)
0.175384 + 0.984500i \(0.443883\pi\)
\(684\) 0 0
\(685\) −19400.8 −1.08214
\(686\) 0 0
\(687\) 22876.3 1.27043
\(688\) 0 0
\(689\) −9.04861 −0.000500326 0
\(690\) 0 0
\(691\) −12775.3 −0.703320 −0.351660 0.936128i \(-0.614383\pi\)
−0.351660 + 0.936128i \(0.614383\pi\)
\(692\) 0 0
\(693\) −4463.20 −0.244651
\(694\) 0 0
\(695\) 3517.03 0.191955
\(696\) 0 0
\(697\) −274.441 −0.0149142
\(698\) 0 0
\(699\) 18687.7 1.01121
\(700\) 0 0
\(701\) 5939.18 0.320000 0.160000 0.987117i \(-0.448851\pi\)
0.160000 + 0.987117i \(0.448851\pi\)
\(702\) 0 0
\(703\) −56362.8 −3.02385
\(704\) 0 0
\(705\) 32201.4 1.72025
\(706\) 0 0
\(707\) 10832.8 0.576248
\(708\) 0 0
\(709\) 22029.4 1.16690 0.583450 0.812149i \(-0.301702\pi\)
0.583450 + 0.812149i \(0.301702\pi\)
\(710\) 0 0
\(711\) 1957.47 0.103250
\(712\) 0 0
\(713\) −7620.83 −0.400284
\(714\) 0 0
\(715\) 306.493 0.0160310
\(716\) 0 0
\(717\) 13421.7 0.699085
\(718\) 0 0
\(719\) 4477.22 0.232228 0.116114 0.993236i \(-0.462956\pi\)
0.116114 + 0.993236i \(0.462956\pi\)
\(720\) 0 0
\(721\) −20563.0 −1.06215
\(722\) 0 0
\(723\) −16213.0 −0.833982
\(724\) 0 0
\(725\) 4548.14 0.232985
\(726\) 0 0
\(727\) −7878.08 −0.401901 −0.200950 0.979601i \(-0.564403\pi\)
−0.200950 + 0.979601i \(0.564403\pi\)
\(728\) 0 0
\(729\) 17183.4 0.873007
\(730\) 0 0
\(731\) −6500.02 −0.328881
\(732\) 0 0
\(733\) −11332.8 −0.571060 −0.285530 0.958370i \(-0.592170\pi\)
−0.285530 + 0.958370i \(0.592170\pi\)
\(734\) 0 0
\(735\) −32715.5 −1.64181
\(736\) 0 0
\(737\) −38995.2 −1.94899
\(738\) 0 0
\(739\) −20027.3 −0.996908 −0.498454 0.866916i \(-0.666099\pi\)
−0.498454 + 0.866916i \(0.666099\pi\)
\(740\) 0 0
\(741\) 347.510 0.0172282
\(742\) 0 0
\(743\) −8839.83 −0.436477 −0.218238 0.975896i \(-0.570031\pi\)
−0.218238 + 0.975896i \(0.570031\pi\)
\(744\) 0 0
\(745\) 1581.75 0.0777865
\(746\) 0 0
\(747\) 3698.72 0.181164
\(748\) 0 0
\(749\) 32146.7 1.56824
\(750\) 0 0
\(751\) 1533.58 0.0745156 0.0372578 0.999306i \(-0.488138\pi\)
0.0372578 + 0.999306i \(0.488138\pi\)
\(752\) 0 0
\(753\) −30883.5 −1.49463
\(754\) 0 0
\(755\) −9100.73 −0.438688
\(756\) 0 0
\(757\) −16470.7 −0.790801 −0.395401 0.918509i \(-0.629394\pi\)
−0.395401 + 0.918509i \(0.629394\pi\)
\(758\) 0 0
\(759\) −32657.6 −1.56179
\(760\) 0 0
\(761\) −18629.7 −0.887418 −0.443709 0.896171i \(-0.646338\pi\)
−0.443709 + 0.896171i \(0.646338\pi\)
\(762\) 0 0
\(763\) 15783.6 0.748894
\(764\) 0 0
\(765\) 627.779 0.0296698
\(766\) 0 0
\(767\) 4.27022 0.000201028 0
\(768\) 0 0
\(769\) −6086.38 −0.285410 −0.142705 0.989765i \(-0.545580\pi\)
−0.142705 + 0.989765i \(0.545580\pi\)
\(770\) 0 0
\(771\) 8091.57 0.377965
\(772\) 0 0
\(773\) −7472.68 −0.347702 −0.173851 0.984772i \(-0.555621\pi\)
−0.173851 + 0.984772i \(0.555621\pi\)
\(774\) 0 0
\(775\) −2956.93 −0.137053
\(776\) 0 0
\(777\) 59227.1 2.73457
\(778\) 0 0
\(779\) 2383.37 0.109619
\(780\) 0 0
\(781\) 4682.20 0.214523
\(782\) 0 0
\(783\) 14238.9 0.649881
\(784\) 0 0
\(785\) −23085.5 −1.04963
\(786\) 0 0
\(787\) −28318.2 −1.28263 −0.641317 0.767276i \(-0.721612\pi\)
−0.641317 + 0.767276i \(0.721612\pi\)
\(788\) 0 0
\(789\) 7981.60 0.360142
\(790\) 0 0
\(791\) 32829.4 1.47570
\(792\) 0 0
\(793\) 292.827 0.0131130
\(794\) 0 0
\(795\) 1483.83 0.0661961
\(796\) 0 0
\(797\) −29551.4 −1.31338 −0.656691 0.754160i \(-0.728044\pi\)
−0.656691 + 0.754160i \(0.728044\pi\)
\(798\) 0 0
\(799\) −7749.38 −0.343121
\(800\) 0 0
\(801\) −4490.50 −0.198083
\(802\) 0 0
\(803\) −2068.13 −0.0908874
\(804\) 0 0
\(805\) −39863.8 −1.74536
\(806\) 0 0
\(807\) −34209.3 −1.49222
\(808\) 0 0
\(809\) 28511.0 1.23905 0.619527 0.784975i \(-0.287324\pi\)
0.619527 + 0.784975i \(0.287324\pi\)
\(810\) 0 0
\(811\) 29641.1 1.28340 0.641700 0.766955i \(-0.278229\pi\)
0.641700 + 0.766955i \(0.278229\pi\)
\(812\) 0 0
\(813\) 1472.78 0.0635334
\(814\) 0 0
\(815\) −46387.8 −1.99373
\(816\) 0 0
\(817\) 56449.1 2.41726
\(818\) 0 0
\(819\) −34.9363 −0.00149057
\(820\) 0 0
\(821\) −8825.39 −0.375162 −0.187581 0.982249i \(-0.560065\pi\)
−0.187581 + 0.982249i \(0.560065\pi\)
\(822\) 0 0
\(823\) −19790.8 −0.838233 −0.419116 0.907933i \(-0.637660\pi\)
−0.419116 + 0.907933i \(0.637660\pi\)
\(824\) 0 0
\(825\) −12671.4 −0.534739
\(826\) 0 0
\(827\) −38948.7 −1.63770 −0.818850 0.574008i \(-0.805388\pi\)
−0.818850 + 0.574008i \(0.805388\pi\)
\(828\) 0 0
\(829\) −34825.0 −1.45901 −0.729506 0.683974i \(-0.760250\pi\)
−0.729506 + 0.683974i \(0.760250\pi\)
\(830\) 0 0
\(831\) −27853.6 −1.16273
\(832\) 0 0
\(833\) 7873.09 0.327475
\(834\) 0 0
\(835\) −21449.8 −0.888982
\(836\) 0 0
\(837\) −9257.27 −0.382292
\(838\) 0 0
\(839\) −17082.9 −0.702941 −0.351470 0.936199i \(-0.614318\pi\)
−0.351470 + 0.936199i \(0.614318\pi\)
\(840\) 0 0
\(841\) −12739.4 −0.522342
\(842\) 0 0
\(843\) 8284.31 0.338466
\(844\) 0 0
\(845\) −28400.9 −1.15624
\(846\) 0 0
\(847\) −48200.7 −1.95537
\(848\) 0 0
\(849\) −41903.5 −1.69391
\(850\) 0 0
\(851\) 41461.1 1.67012
\(852\) 0 0
\(853\) 38982.3 1.56475 0.782373 0.622810i \(-0.214009\pi\)
0.782373 + 0.622810i \(0.214009\pi\)
\(854\) 0 0
\(855\) −5451.93 −0.218072
\(856\) 0 0
\(857\) −6648.98 −0.265023 −0.132512 0.991181i \(-0.542304\pi\)
−0.132512 + 0.991181i \(0.542304\pi\)
\(858\) 0 0
\(859\) 1644.93 0.0653368 0.0326684 0.999466i \(-0.489599\pi\)
0.0326684 + 0.999466i \(0.489599\pi\)
\(860\) 0 0
\(861\) −2504.49 −0.0991322
\(862\) 0 0
\(863\) 24272.3 0.957402 0.478701 0.877978i \(-0.341108\pi\)
0.478701 + 0.877978i \(0.341108\pi\)
\(864\) 0 0
\(865\) 1837.72 0.0722364
\(866\) 0 0
\(867\) −1579.13 −0.0618569
\(868\) 0 0
\(869\) 37713.8 1.47221
\(870\) 0 0
\(871\) −305.240 −0.0118745
\(872\) 0 0
\(873\) −502.698 −0.0194888
\(874\) 0 0
\(875\) 30415.3 1.17511
\(876\) 0 0
\(877\) 51065.8 1.96621 0.983107 0.183030i \(-0.0585904\pi\)
0.983107 + 0.183030i \(0.0585904\pi\)
\(878\) 0 0
\(879\) 14100.6 0.541070
\(880\) 0 0
\(881\) −10283.5 −0.393258 −0.196629 0.980478i \(-0.563000\pi\)
−0.196629 + 0.980478i \(0.563000\pi\)
\(882\) 0 0
\(883\) 5412.08 0.206264 0.103132 0.994668i \(-0.467114\pi\)
0.103132 + 0.994668i \(0.467114\pi\)
\(884\) 0 0
\(885\) −700.246 −0.0265972
\(886\) 0 0
\(887\) 11306.0 0.427981 0.213991 0.976836i \(-0.431354\pi\)
0.213991 + 0.976836i \(0.431354\pi\)
\(888\) 0 0
\(889\) 58806.6 2.21857
\(890\) 0 0
\(891\) −43914.6 −1.65117
\(892\) 0 0
\(893\) 67299.2 2.52193
\(894\) 0 0
\(895\) −5012.89 −0.187221
\(896\) 0 0
\(897\) −255.632 −0.00951538
\(898\) 0 0
\(899\) −7573.87 −0.280982
\(900\) 0 0
\(901\) −357.088 −0.0132035
\(902\) 0 0
\(903\) −59317.8 −2.18602
\(904\) 0 0
\(905\) −47622.8 −1.74921
\(906\) 0 0
\(907\) −13122.6 −0.480408 −0.240204 0.970722i \(-0.577214\pi\)
−0.240204 + 0.970722i \(0.577214\pi\)
\(908\) 0 0
\(909\) −1089.83 −0.0397660
\(910\) 0 0
\(911\) −24127.8 −0.877485 −0.438743 0.898613i \(-0.644576\pi\)
−0.438743 + 0.898613i \(0.644576\pi\)
\(912\) 0 0
\(913\) 71261.9 2.58316
\(914\) 0 0
\(915\) −48018.9 −1.73492
\(916\) 0 0
\(917\) −14159.0 −0.509891
\(918\) 0 0
\(919\) −10597.4 −0.380387 −0.190194 0.981747i \(-0.560912\pi\)
−0.190194 + 0.981747i \(0.560912\pi\)
\(920\) 0 0
\(921\) −3188.34 −0.114071
\(922\) 0 0
\(923\) 36.6505 0.00130701
\(924\) 0 0
\(925\) 16087.2 0.571830
\(926\) 0 0
\(927\) 2068.74 0.0732970
\(928\) 0 0
\(929\) 16159.9 0.570711 0.285356 0.958422i \(-0.407888\pi\)
0.285356 + 0.958422i \(0.407888\pi\)
\(930\) 0 0
\(931\) −68373.6 −2.40693
\(932\) 0 0
\(933\) 846.788 0.0297134
\(934\) 0 0
\(935\) 12095.2 0.423054
\(936\) 0 0
\(937\) 12857.2 0.448267 0.224134 0.974558i \(-0.428045\pi\)
0.224134 + 0.974558i \(0.428045\pi\)
\(938\) 0 0
\(939\) 31887.7 1.10822
\(940\) 0 0
\(941\) 31043.6 1.07544 0.537722 0.843122i \(-0.319285\pi\)
0.537722 + 0.843122i \(0.319285\pi\)
\(942\) 0 0
\(943\) −1753.24 −0.0605442
\(944\) 0 0
\(945\) −48423.9 −1.66691
\(946\) 0 0
\(947\) 39841.0 1.36712 0.683558 0.729896i \(-0.260432\pi\)
0.683558 + 0.729896i \(0.260432\pi\)
\(948\) 0 0
\(949\) −16.1885 −0.000553743 0
\(950\) 0 0
\(951\) 57843.7 1.97235
\(952\) 0 0
\(953\) −26601.9 −0.904217 −0.452109 0.891963i \(-0.649328\pi\)
−0.452109 + 0.891963i \(0.649328\pi\)
\(954\) 0 0
\(955\) −16910.7 −0.573004
\(956\) 0 0
\(957\) −32456.4 −1.09631
\(958\) 0 0
\(959\) 42607.1 1.43468
\(960\) 0 0
\(961\) −24866.9 −0.834713
\(962\) 0 0
\(963\) −3234.12 −0.108222
\(964\) 0 0
\(965\) −46351.2 −1.54622
\(966\) 0 0
\(967\) 15998.2 0.532024 0.266012 0.963970i \(-0.414294\pi\)
0.266012 + 0.963970i \(0.414294\pi\)
\(968\) 0 0
\(969\) 13713.9 0.454647
\(970\) 0 0
\(971\) 21950.4 0.725461 0.362731 0.931894i \(-0.381845\pi\)
0.362731 + 0.931894i \(0.381845\pi\)
\(972\) 0 0
\(973\) −7723.94 −0.254489
\(974\) 0 0
\(975\) −99.1867 −0.00325797
\(976\) 0 0
\(977\) −24955.7 −0.817198 −0.408599 0.912714i \(-0.633983\pi\)
−0.408599 + 0.912714i \(0.633983\pi\)
\(978\) 0 0
\(979\) −86516.9 −2.82440
\(980\) 0 0
\(981\) −1587.91 −0.0516801
\(982\) 0 0
\(983\) 35207.3 1.14236 0.571180 0.820825i \(-0.306486\pi\)
0.571180 + 0.820825i \(0.306486\pi\)
\(984\) 0 0
\(985\) 18540.7 0.599752
\(986\) 0 0
\(987\) −70719.3 −2.28067
\(988\) 0 0
\(989\) −41524.6 −1.33509
\(990\) 0 0
\(991\) 47633.5 1.52687 0.763435 0.645885i \(-0.223511\pi\)
0.763435 + 0.645885i \(0.223511\pi\)
\(992\) 0 0
\(993\) −38764.4 −1.23882
\(994\) 0 0
\(995\) 13168.0 0.419550
\(996\) 0 0
\(997\) −6114.40 −0.194228 −0.0971139 0.995273i \(-0.530961\pi\)
−0.0971139 + 0.995273i \(0.530961\pi\)
\(998\) 0 0
\(999\) 50364.1 1.59505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1088.4.a.n.1.1 2
4.3 odd 2 1088.4.a.p.1.2 2
8.3 odd 2 272.4.a.f.1.1 2
8.5 even 2 136.4.a.a.1.2 2
24.5 odd 2 1224.4.a.d.1.2 2
24.11 even 2 2448.4.a.z.1.2 2
136.101 even 2 2312.4.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.a.a.1.2 2 8.5 even 2
272.4.a.f.1.1 2 8.3 odd 2
1088.4.a.n.1.1 2 1.1 even 1 trivial
1088.4.a.p.1.2 2 4.3 odd 2
1224.4.a.d.1.2 2 24.5 odd 2
2312.4.a.b.1.1 2 136.101 even 2
2448.4.a.z.1.2 2 24.11 even 2