Properties

Label 1224.4.a.d.1.2
Level $1224$
Weight $4$
Character 1224.1
Self dual yes
Analytic conductor $72.218$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,4,Mod(1,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2183378470\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.9282 q^{5} -28.3923 q^{7} +55.0333 q^{11} -0.430781 q^{13} -17.0000 q^{17} +147.636 q^{19} -108.603 q^{23} +42.1384 q^{25} +107.933 q^{29} -70.1718 q^{31} -367.061 q^{35} -381.769 q^{37} +16.1436 q^{41} +382.354 q^{43} +455.846 q^{47} +463.123 q^{49} -21.0052 q^{53} +711.482 q^{55} +9.91274 q^{59} -679.759 q^{61} -5.56922 q^{65} +708.574 q^{67} -85.0793 q^{71} -37.5795 q^{73} -1562.52 q^{77} +685.290 q^{79} +1294.89 q^{83} -219.779 q^{85} +1572.08 q^{89} +12.2309 q^{91} +1908.67 q^{95} -175.990 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{5} - 36 q^{7} + 20 q^{11} - 84 q^{13} - 34 q^{17} + 32 q^{19} - 44 q^{23} - 82 q^{25} + 396 q^{29} + 116 q^{31} - 360 q^{35} - 140 q^{37} + 60 q^{41} + 640 q^{43} + 496 q^{47} + 178 q^{49} - 236 q^{53}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 12.9282 1.15633 0.578167 0.815919i \(-0.303768\pi\)
0.578167 + 0.815919i \(0.303768\pi\)
\(6\) 0 0
\(7\) −28.3923 −1.53304 −0.766520 0.642220i \(-0.778013\pi\)
−0.766520 + 0.642220i \(0.778013\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.0333 1.50847 0.754235 0.656605i \(-0.228008\pi\)
0.754235 + 0.656605i \(0.228008\pi\)
\(12\) 0 0
\(13\) −0.430781 −0.00919054 −0.00459527 0.999989i \(-0.501463\pi\)
−0.00459527 + 0.999989i \(0.501463\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) 147.636 1.78263 0.891316 0.453384i \(-0.149783\pi\)
0.891316 + 0.453384i \(0.149783\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −108.603 −0.984574 −0.492287 0.870433i \(-0.663839\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(24\) 0 0
\(25\) 42.1384 0.337108
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 107.933 0.691128 0.345564 0.938395i \(-0.387688\pi\)
0.345564 + 0.938395i \(0.387688\pi\)
\(30\) 0 0
\(31\) −70.1718 −0.406555 −0.203278 0.979121i \(-0.565159\pi\)
−0.203278 + 0.979121i \(0.565159\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −367.061 −1.77271
\(36\) 0 0
\(37\) −381.769 −1.69628 −0.848141 0.529770i \(-0.822278\pi\)
−0.848141 + 0.529770i \(0.822278\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 16.1436 0.0614928 0.0307464 0.999527i \(-0.490212\pi\)
0.0307464 + 0.999527i \(0.490212\pi\)
\(42\) 0 0
\(43\) 382.354 1.35601 0.678005 0.735057i \(-0.262845\pi\)
0.678005 + 0.735057i \(0.262845\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 455.846 1.41472 0.707362 0.706852i \(-0.249885\pi\)
0.707362 + 0.706852i \(0.249885\pi\)
\(48\) 0 0
\(49\) 463.123 1.35021
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −21.0052 −0.0544392 −0.0272196 0.999629i \(-0.508665\pi\)
−0.0272196 + 0.999629i \(0.508665\pi\)
\(54\) 0 0
\(55\) 711.482 1.74429
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.91274 0.0218734 0.0109367 0.999940i \(-0.496519\pi\)
0.0109367 + 0.999940i \(0.496519\pi\)
\(60\) 0 0
\(61\) −679.759 −1.42679 −0.713395 0.700762i \(-0.752843\pi\)
−0.713395 + 0.700762i \(0.752843\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.56922 −0.0106273
\(66\) 0 0
\(67\) 708.574 1.29203 0.646016 0.763324i \(-0.276434\pi\)
0.646016 + 0.763324i \(0.276434\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −85.0793 −0.142212 −0.0711061 0.997469i \(-0.522653\pi\)
−0.0711061 + 0.997469i \(0.522653\pi\)
\(72\) 0 0
\(73\) −37.5795 −0.0602514 −0.0301257 0.999546i \(-0.509591\pi\)
−0.0301257 + 0.999546i \(0.509591\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1562.52 −2.31255
\(78\) 0 0
\(79\) 685.290 0.975963 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1294.89 1.71244 0.856219 0.516613i \(-0.172808\pi\)
0.856219 + 0.516613i \(0.172808\pi\)
\(84\) 0 0
\(85\) −219.779 −0.280452
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1572.08 1.87236 0.936182 0.351517i \(-0.114334\pi\)
0.936182 + 0.351517i \(0.114334\pi\)
\(90\) 0 0
\(91\) 12.2309 0.0140895
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1908.67 2.06132
\(96\) 0 0
\(97\) −175.990 −0.184217 −0.0921085 0.995749i \(-0.529361\pi\)
−0.0921085 + 0.995749i \(0.529361\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −381.538 −0.375886 −0.187943 0.982180i \(-0.560182\pi\)
−0.187943 + 0.982180i \(0.560182\pi\)
\(102\) 0 0
\(103\) 724.246 0.692836 0.346418 0.938080i \(-0.387398\pi\)
0.346418 + 0.938080i \(0.387398\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1132.23 −1.02296 −0.511482 0.859294i \(-0.670903\pi\)
−0.511482 + 0.859294i \(0.670903\pi\)
\(108\) 0 0
\(109\) 555.913 0.488503 0.244251 0.969712i \(-0.421458\pi\)
0.244251 + 0.969712i \(0.421458\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1156.28 0.962596 0.481298 0.876557i \(-0.340165\pi\)
0.481298 + 0.876557i \(0.340165\pi\)
\(114\) 0 0
\(115\) −1404.04 −1.13850
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 482.669 0.371817
\(120\) 0 0
\(121\) 1697.67 1.27548
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1071.25 −0.766525
\(126\) 0 0
\(127\) −2071.22 −1.44717 −0.723585 0.690235i \(-0.757507\pi\)
−0.723585 + 0.690235i \(0.757507\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 498.690 0.332601 0.166300 0.986075i \(-0.446818\pi\)
0.166300 + 0.986075i \(0.446818\pi\)
\(132\) 0 0
\(133\) −4191.72 −2.73285
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1500.66 0.935837 0.467919 0.883772i \(-0.345004\pi\)
0.467919 + 0.883772i \(0.345004\pi\)
\(138\) 0 0
\(139\) −272.043 −0.166003 −0.0830015 0.996549i \(-0.526451\pi\)
−0.0830015 + 0.996549i \(0.526451\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −23.7073 −0.0138637
\(144\) 0 0
\(145\) 1395.38 0.799175
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 122.349 0.0672700 0.0336350 0.999434i \(-0.489292\pi\)
0.0336350 + 0.999434i \(0.489292\pi\)
\(150\) 0 0
\(151\) −703.944 −0.379378 −0.189689 0.981844i \(-0.560748\pi\)
−0.189689 + 0.981844i \(0.560748\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −907.195 −0.470114
\(156\) 0 0
\(157\) 1785.67 0.907720 0.453860 0.891073i \(-0.350047\pi\)
0.453860 + 0.891073i \(0.350047\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3083.48 1.50939
\(162\) 0 0
\(163\) 3588.11 1.72418 0.862092 0.506751i \(-0.169154\pi\)
0.862092 + 0.506751i \(0.169154\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1659.15 0.768794 0.384397 0.923168i \(-0.374409\pi\)
0.384397 + 0.923168i \(0.374409\pi\)
\(168\) 0 0
\(169\) −2196.81 −0.999916
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 142.148 0.0624702 0.0312351 0.999512i \(-0.490056\pi\)
0.0312351 + 0.999512i \(0.490056\pi\)
\(174\) 0 0
\(175\) −1196.41 −0.516799
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −387.749 −0.161909 −0.0809544 0.996718i \(-0.525797\pi\)
−0.0809544 + 0.996718i \(0.525797\pi\)
\(180\) 0 0
\(181\) 3683.64 1.51272 0.756360 0.654155i \(-0.226976\pi\)
0.756360 + 0.654155i \(0.226976\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4935.59 −1.96147
\(186\) 0 0
\(187\) −935.566 −0.365858
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1308.05 0.495535 0.247768 0.968819i \(-0.420303\pi\)
0.247768 + 0.968819i \(0.420303\pi\)
\(192\) 0 0
\(193\) −3585.28 −1.33717 −0.668586 0.743635i \(-0.733100\pi\)
−0.668586 + 0.743635i \(0.733100\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1434.13 0.518667 0.259333 0.965788i \(-0.416497\pi\)
0.259333 + 0.965788i \(0.416497\pi\)
\(198\) 0 0
\(199\) 1018.55 0.362828 0.181414 0.983407i \(-0.441933\pi\)
0.181414 + 0.983407i \(0.441933\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3064.48 −1.05953
\(204\) 0 0
\(205\) 208.708 0.0711062
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8124.89 2.68905
\(210\) 0 0
\(211\) 2888.47 0.942421 0.471210 0.882021i \(-0.343817\pi\)
0.471210 + 0.882021i \(0.343817\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4943.15 1.56800
\(216\) 0 0
\(217\) 1992.34 0.623266
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.32327 0.00222903
\(222\) 0 0
\(223\) 3641.74 1.09358 0.546791 0.837269i \(-0.315849\pi\)
0.546791 + 0.837269i \(0.315849\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5221.59 −1.52674 −0.763368 0.645963i \(-0.776456\pi\)
−0.763368 + 0.645963i \(0.776456\pi\)
\(228\) 0 0
\(229\) 4186.66 1.20813 0.604065 0.796935i \(-0.293547\pi\)
0.604065 + 0.796935i \(0.293547\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3420.08 0.961618 0.480809 0.876825i \(-0.340343\pi\)
0.480809 + 0.876825i \(0.340343\pi\)
\(234\) 0 0
\(235\) 5893.27 1.63589
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2456.35 0.664803 0.332402 0.943138i \(-0.392141\pi\)
0.332402 + 0.943138i \(0.392141\pi\)
\(240\) 0 0
\(241\) 2967.19 0.793085 0.396542 0.918016i \(-0.370210\pi\)
0.396542 + 0.918016i \(0.370210\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5987.35 1.56130
\(246\) 0 0
\(247\) −63.5987 −0.0163833
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5652.07 1.42134 0.710668 0.703527i \(-0.248393\pi\)
0.710668 + 0.703527i \(0.248393\pi\)
\(252\) 0 0
\(253\) −5976.76 −1.48520
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1480.86 0.359430 0.179715 0.983719i \(-0.442482\pi\)
0.179715 + 0.983719i \(0.442482\pi\)
\(258\) 0 0
\(259\) 10839.3 2.60047
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1460.73 0.342482 0.171241 0.985229i \(-0.445222\pi\)
0.171241 + 0.985229i \(0.445222\pi\)
\(264\) 0 0
\(265\) −271.559 −0.0629499
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6260.73 1.41905 0.709523 0.704682i \(-0.248910\pi\)
0.709523 + 0.704682i \(0.248910\pi\)
\(270\) 0 0
\(271\) −269.538 −0.0604179 −0.0302089 0.999544i \(-0.509617\pi\)
−0.0302089 + 0.999544i \(0.509617\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2319.02 0.508517
\(276\) 0 0
\(277\) −5097.56 −1.10571 −0.552857 0.833276i \(-0.686463\pi\)
−0.552857 + 0.833276i \(0.686463\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1516.13 0.321868 0.160934 0.986965i \(-0.448549\pi\)
0.160934 + 0.986965i \(0.448549\pi\)
\(282\) 0 0
\(283\) −7668.88 −1.61084 −0.805420 0.592705i \(-0.798060\pi\)
−0.805420 + 0.592705i \(0.798060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −458.354 −0.0942710
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2580.58 −0.514537 −0.257269 0.966340i \(-0.582822\pi\)
−0.257269 + 0.966340i \(0.582822\pi\)
\(294\) 0 0
\(295\) 128.154 0.0252929
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 46.7839 0.00904877
\(300\) 0 0
\(301\) −10855.9 −2.07882
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8788.06 −1.64985
\(306\) 0 0
\(307\) −583.507 −0.108477 −0.0542386 0.998528i \(-0.517273\pi\)
−0.0542386 + 0.998528i \(0.517273\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 154.973 0.0282563 0.0141282 0.999900i \(-0.495503\pi\)
0.0141282 + 0.999900i \(0.495503\pi\)
\(312\) 0 0
\(313\) −5835.86 −1.05387 −0.526936 0.849905i \(-0.676659\pi\)
−0.526936 + 0.849905i \(0.676659\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10586.1 −1.87563 −0.937817 0.347130i \(-0.887156\pi\)
−0.937817 + 0.347130i \(0.887156\pi\)
\(318\) 0 0
\(319\) 5939.93 1.04255
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2509.81 −0.432352
\(324\) 0 0
\(325\) −18.1524 −0.00309820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12942.5 −2.16883
\(330\) 0 0
\(331\) −7094.38 −1.17807 −0.589037 0.808106i \(-0.700493\pi\)
−0.589037 + 0.808106i \(0.700493\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9160.59 1.49402
\(336\) 0 0
\(337\) −1579.48 −0.255310 −0.127655 0.991819i \(-0.540745\pi\)
−0.127655 + 0.991819i \(0.540745\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3861.78 −0.613277
\(342\) 0 0
\(343\) −3410.57 −0.536890
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1717.38 0.265688 0.132844 0.991137i \(-0.457589\pi\)
0.132844 + 0.991137i \(0.457589\pi\)
\(348\) 0 0
\(349\) −6237.70 −0.956724 −0.478362 0.878163i \(-0.658769\pi\)
−0.478362 + 0.878163i \(0.658769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9900.99 −1.49285 −0.746426 0.665469i \(-0.768232\pi\)
−0.746426 + 0.665469i \(0.768232\pi\)
\(354\) 0 0
\(355\) −1099.92 −0.164445
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7524.52 1.10621 0.553104 0.833112i \(-0.313443\pi\)
0.553104 + 0.833112i \(0.313443\pi\)
\(360\) 0 0
\(361\) 14937.3 2.17777
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −485.836 −0.0696707
\(366\) 0 0
\(367\) 10169.2 1.44640 0.723199 0.690640i \(-0.242671\pi\)
0.723199 + 0.690640i \(0.242671\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 596.385 0.0834576
\(372\) 0 0
\(373\) 14115.4 1.95943 0.979716 0.200393i \(-0.0642219\pi\)
0.979716 + 0.200393i \(0.0642219\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −46.4956 −0.00635184
\(378\) 0 0
\(379\) −10480.9 −1.42050 −0.710249 0.703951i \(-0.751417\pi\)
−0.710249 + 0.703951i \(0.751417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9726.14 −1.29760 −0.648802 0.760957i \(-0.724730\pi\)
−0.648802 + 0.760957i \(0.724730\pi\)
\(384\) 0 0
\(385\) −20200.6 −2.67407
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13217.9 −1.72282 −0.861409 0.507912i \(-0.830417\pi\)
−0.861409 + 0.507912i \(0.830417\pi\)
\(390\) 0 0
\(391\) 1846.24 0.238794
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8859.56 1.12854
\(396\) 0 0
\(397\) 5628.14 0.711507 0.355753 0.934580i \(-0.384224\pi\)
0.355753 + 0.934580i \(0.384224\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8890.10 −1.10711 −0.553554 0.832813i \(-0.686729\pi\)
−0.553554 + 0.832813i \(0.686729\pi\)
\(402\) 0 0
\(403\) 30.2286 0.00373647
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21010.0 −2.55879
\(408\) 0 0
\(409\) 721.057 0.0871736 0.0435868 0.999050i \(-0.486121\pi\)
0.0435868 + 0.999050i \(0.486121\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −281.446 −0.0335328
\(414\) 0 0
\(415\) 16740.6 1.98015
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16306.9 1.90129 0.950647 0.310275i \(-0.100421\pi\)
0.950647 + 0.310275i \(0.100421\pi\)
\(420\) 0 0
\(421\) −11568.8 −1.33926 −0.669628 0.742697i \(-0.733546\pi\)
−0.669628 + 0.742697i \(0.733546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −716.353 −0.0817606
\(426\) 0 0
\(427\) 19299.9 2.18733
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11733.2 1.31129 0.655647 0.755067i \(-0.272396\pi\)
0.655647 + 0.755067i \(0.272396\pi\)
\(432\) 0 0
\(433\) −8900.96 −0.987882 −0.493941 0.869495i \(-0.664444\pi\)
−0.493941 + 0.869495i \(0.664444\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16033.6 −1.75513
\(438\) 0 0
\(439\) −8857.07 −0.962927 −0.481464 0.876466i \(-0.659895\pi\)
−0.481464 + 0.876466i \(0.659895\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13328.1 −1.42943 −0.714716 0.699415i \(-0.753444\pi\)
−0.714716 + 0.699415i \(0.753444\pi\)
\(444\) 0 0
\(445\) 20324.2 2.16508
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8432.61 0.886323 0.443162 0.896442i \(-0.353857\pi\)
0.443162 + 0.896442i \(0.353857\pi\)
\(450\) 0 0
\(451\) 888.436 0.0927601
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 158.123 0.0162921
\(456\) 0 0
\(457\) 6628.94 0.678531 0.339266 0.940691i \(-0.389821\pi\)
0.339266 + 0.940691i \(0.389821\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7327.69 0.740314 0.370157 0.928969i \(-0.379304\pi\)
0.370157 + 0.928969i \(0.379304\pi\)
\(462\) 0 0
\(463\) −8996.83 −0.903063 −0.451531 0.892255i \(-0.649122\pi\)
−0.451531 + 0.892255i \(0.649122\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12138.4 −1.20278 −0.601388 0.798957i \(-0.705386\pi\)
−0.601388 + 0.798957i \(0.705386\pi\)
\(468\) 0 0
\(469\) −20118.1 −1.98074
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21042.2 2.04550
\(474\) 0 0
\(475\) 6221.14 0.600938
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1644.47 −0.156864 −0.0784320 0.996919i \(-0.524991\pi\)
−0.0784320 + 0.996919i \(0.524991\pi\)
\(480\) 0 0
\(481\) 164.459 0.0155898
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2275.23 −0.213016
\(486\) 0 0
\(487\) −1761.78 −0.163930 −0.0819648 0.996635i \(-0.526119\pi\)
−0.0819648 + 0.996635i \(0.526119\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2471.08 −0.227125 −0.113562 0.993531i \(-0.536226\pi\)
−0.113562 + 0.993531i \(0.536226\pi\)
\(492\) 0 0
\(493\) −1834.87 −0.167623
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2415.60 0.218017
\(498\) 0 0
\(499\) −16582.5 −1.48764 −0.743821 0.668379i \(-0.766988\pi\)
−0.743821 + 0.668379i \(0.766988\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19067.9 −1.69025 −0.845126 0.534566i \(-0.820475\pi\)
−0.845126 + 0.534566i \(0.820475\pi\)
\(504\) 0 0
\(505\) −4932.60 −0.434650
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9295.25 0.809439 0.404720 0.914441i \(-0.367369\pi\)
0.404720 + 0.914441i \(0.367369\pi\)
\(510\) 0 0
\(511\) 1066.97 0.0923678
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9363.20 0.801149
\(516\) 0 0
\(517\) 25086.7 2.13407
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4907.38 −0.412661 −0.206330 0.978482i \(-0.566152\pi\)
−0.206330 + 0.978482i \(0.566152\pi\)
\(522\) 0 0
\(523\) −11247.5 −0.940381 −0.470191 0.882565i \(-0.655815\pi\)
−0.470191 + 0.882565i \(0.655815\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1192.92 0.0986042
\(528\) 0 0
\(529\) −372.488 −0.0306146
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.95435 −0.000565152 0
\(534\) 0 0
\(535\) −14637.7 −1.18289
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25487.2 2.03676
\(540\) 0 0
\(541\) −3992.37 −0.317274 −0.158637 0.987337i \(-0.550710\pi\)
−0.158637 + 0.987337i \(0.550710\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7186.95 0.564872
\(546\) 0 0
\(547\) −3014.39 −0.235624 −0.117812 0.993036i \(-0.537588\pi\)
−0.117812 + 0.993036i \(0.537588\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15934.8 1.23203
\(552\) 0 0
\(553\) −19457.0 −1.49619
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16174.5 1.23041 0.615203 0.788369i \(-0.289074\pi\)
0.615203 + 0.788369i \(0.289074\pi\)
\(558\) 0 0
\(559\) −164.711 −0.0124625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6626.51 0.496047 0.248023 0.968754i \(-0.420219\pi\)
0.248023 + 0.968754i \(0.420219\pi\)
\(564\) 0 0
\(565\) 14948.6 1.11308
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2651.54 −0.195357 −0.0976786 0.995218i \(-0.531142\pi\)
−0.0976786 + 0.995218i \(0.531142\pi\)
\(570\) 0 0
\(571\) 7663.21 0.561638 0.280819 0.959761i \(-0.409394\pi\)
0.280819 + 0.959761i \(0.409394\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4576.34 −0.331907
\(576\) 0 0
\(577\) −22136.0 −1.59711 −0.798557 0.601919i \(-0.794403\pi\)
−0.798557 + 0.601919i \(0.794403\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36764.8 −2.62524
\(582\) 0 0
\(583\) −1155.98 −0.0821200
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24994.8 −1.75749 −0.878744 0.477294i \(-0.841618\pi\)
−0.878744 + 0.477294i \(0.841618\pi\)
\(588\) 0 0
\(589\) −10359.9 −0.724738
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11985.7 −0.830007 −0.415004 0.909820i \(-0.636220\pi\)
−0.415004 + 0.909820i \(0.636220\pi\)
\(594\) 0 0
\(595\) 6240.05 0.429944
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2943.68 −0.200794 −0.100397 0.994947i \(-0.532011\pi\)
−0.100397 + 0.994947i \(0.532011\pi\)
\(600\) 0 0
\(601\) −4398.52 −0.298535 −0.149267 0.988797i \(-0.547692\pi\)
−0.149267 + 0.988797i \(0.547692\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 21947.8 1.47488
\(606\) 0 0
\(607\) 19859.6 1.32797 0.663985 0.747746i \(-0.268864\pi\)
0.663985 + 0.747746i \(0.268864\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −196.370 −0.0130021
\(612\) 0 0
\(613\) 5581.75 0.367773 0.183887 0.982947i \(-0.441132\pi\)
0.183887 + 0.982947i \(0.441132\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9888.18 0.645192 0.322596 0.946537i \(-0.395445\pi\)
0.322596 + 0.946537i \(0.395445\pi\)
\(618\) 0 0
\(619\) 9547.62 0.619953 0.309977 0.950744i \(-0.399679\pi\)
0.309977 + 0.950744i \(0.399679\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −44635.0 −2.87041
\(624\) 0 0
\(625\) −19116.7 −1.22347
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6490.08 0.411409
\(630\) 0 0
\(631\) −198.776 −0.0125406 −0.00627032 0.999980i \(-0.501996\pi\)
−0.00627032 + 0.999980i \(0.501996\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −26777.1 −1.67341
\(636\) 0 0
\(637\) −199.504 −0.0124092
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15596.6 −0.961043 −0.480522 0.876983i \(-0.659553\pi\)
−0.480522 + 0.876983i \(0.659553\pi\)
\(642\) 0 0
\(643\) 18359.9 1.12604 0.563020 0.826443i \(-0.309639\pi\)
0.563020 + 0.826443i \(0.309639\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23713.7 1.44093 0.720465 0.693491i \(-0.243928\pi\)
0.720465 + 0.693491i \(0.243928\pi\)
\(648\) 0 0
\(649\) 545.531 0.0329953
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22829.6 −1.36814 −0.684068 0.729418i \(-0.739791\pi\)
−0.684068 + 0.729418i \(0.739791\pi\)
\(654\) 0 0
\(655\) 6447.16 0.384598
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16979.9 1.00371 0.501853 0.864953i \(-0.332652\pi\)
0.501853 + 0.864953i \(0.332652\pi\)
\(660\) 0 0
\(661\) −15036.2 −0.884782 −0.442391 0.896822i \(-0.645870\pi\)
−0.442391 + 0.896822i \(0.645870\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −54191.4 −3.16008
\(666\) 0 0
\(667\) −11721.8 −0.680467
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −37409.4 −2.15227
\(672\) 0 0
\(673\) −16935.7 −0.970022 −0.485011 0.874508i \(-0.661184\pi\)
−0.485011 + 0.874508i \(0.661184\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6514.79 −0.369843 −0.184921 0.982753i \(-0.559203\pi\)
−0.184921 + 0.982753i \(0.559203\pi\)
\(678\) 0 0
\(679\) 4996.75 0.282412
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6261.11 0.350768 0.175384 0.984500i \(-0.443883\pi\)
0.175384 + 0.984500i \(0.443883\pi\)
\(684\) 0 0
\(685\) 19400.8 1.08214
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.04861 0.000500326 0
\(690\) 0 0
\(691\) 12775.3 0.703320 0.351660 0.936128i \(-0.385617\pi\)
0.351660 + 0.936128i \(0.385617\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3517.03 −0.191955
\(696\) 0 0
\(697\) −274.441 −0.0149142
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5939.18 0.320000 0.160000 0.987117i \(-0.448851\pi\)
0.160000 + 0.987117i \(0.448851\pi\)
\(702\) 0 0
\(703\) −56362.8 −3.02385
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10832.8 0.576248
\(708\) 0 0
\(709\) −22029.4 −1.16690 −0.583450 0.812149i \(-0.698298\pi\)
−0.583450 + 0.812149i \(0.698298\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7620.83 0.400284
\(714\) 0 0
\(715\) −306.493 −0.0160310
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4477.22 −0.232228 −0.116114 0.993236i \(-0.537044\pi\)
−0.116114 + 0.993236i \(0.537044\pi\)
\(720\) 0 0
\(721\) −20563.0 −1.06215
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4548.14 0.232985
\(726\) 0 0
\(727\) −7878.08 −0.401901 −0.200950 0.979601i \(-0.564403\pi\)
−0.200950 + 0.979601i \(0.564403\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6500.02 −0.328881
\(732\) 0 0
\(733\) 11332.8 0.571060 0.285530 0.958370i \(-0.407830\pi\)
0.285530 + 0.958370i \(0.407830\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38995.2 1.94899
\(738\) 0 0
\(739\) 20027.3 0.996908 0.498454 0.866916i \(-0.333901\pi\)
0.498454 + 0.866916i \(0.333901\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8839.83 0.436477 0.218238 0.975896i \(-0.429969\pi\)
0.218238 + 0.975896i \(0.429969\pi\)
\(744\) 0 0
\(745\) 1581.75 0.0777865
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 32146.7 1.56824
\(750\) 0 0
\(751\) 1533.58 0.0745156 0.0372578 0.999306i \(-0.488138\pi\)
0.0372578 + 0.999306i \(0.488138\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9100.73 −0.438688
\(756\) 0 0
\(757\) 16470.7 0.790801 0.395401 0.918509i \(-0.370606\pi\)
0.395401 + 0.918509i \(0.370606\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18629.7 0.887418 0.443709 0.896171i \(-0.353662\pi\)
0.443709 + 0.896171i \(0.353662\pi\)
\(762\) 0 0
\(763\) −15783.6 −0.748894
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.27022 −0.000201028 0
\(768\) 0 0
\(769\) −6086.38 −0.285410 −0.142705 0.989765i \(-0.545580\pi\)
−0.142705 + 0.989765i \(0.545580\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7472.68 −0.347702 −0.173851 0.984772i \(-0.555621\pi\)
−0.173851 + 0.984772i \(0.555621\pi\)
\(774\) 0 0
\(775\) −2956.93 −0.137053
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2383.37 0.109619
\(780\) 0 0
\(781\) −4682.20 −0.214523
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23085.5 1.04963
\(786\) 0 0
\(787\) 28318.2 1.28263 0.641317 0.767276i \(-0.278388\pi\)
0.641317 + 0.767276i \(0.278388\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −32829.4 −1.47570
\(792\) 0 0
\(793\) 292.827 0.0131130
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −29551.4 −1.31338 −0.656691 0.754160i \(-0.728044\pi\)
−0.656691 + 0.754160i \(0.728044\pi\)
\(798\) 0 0
\(799\) −7749.38 −0.343121
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2068.13 −0.0908874
\(804\) 0 0
\(805\) 39863.8 1.74536
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28511.0 −1.23905 −0.619527 0.784975i \(-0.712676\pi\)
−0.619527 + 0.784975i \(0.712676\pi\)
\(810\) 0 0
\(811\) −29641.1 −1.28340 −0.641700 0.766955i \(-0.721771\pi\)
−0.641700 + 0.766955i \(0.721771\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 46387.8 1.99373
\(816\) 0 0
\(817\) 56449.1 2.41726
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8825.39 −0.375162 −0.187581 0.982249i \(-0.560065\pi\)
−0.187581 + 0.982249i \(0.560065\pi\)
\(822\) 0 0
\(823\) −19790.8 −0.838233 −0.419116 0.907933i \(-0.637660\pi\)
−0.419116 + 0.907933i \(0.637660\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38948.7 −1.63770 −0.818850 0.574008i \(-0.805388\pi\)
−0.818850 + 0.574008i \(0.805388\pi\)
\(828\) 0 0
\(829\) 34825.0 1.45901 0.729506 0.683974i \(-0.239750\pi\)
0.729506 + 0.683974i \(0.239750\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7873.09 −0.327475
\(834\) 0 0
\(835\) 21449.8 0.888982
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17082.9 0.702941 0.351470 0.936199i \(-0.385682\pi\)
0.351470 + 0.936199i \(0.385682\pi\)
\(840\) 0 0
\(841\) −12739.4 −0.522342
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −28400.9 −1.15624
\(846\) 0 0
\(847\) −48200.7 −1.95537
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 41461.1 1.67012
\(852\) 0 0
\(853\) −38982.3 −1.56475 −0.782373 0.622810i \(-0.785991\pi\)
−0.782373 + 0.622810i \(0.785991\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6648.98 0.265023 0.132512 0.991181i \(-0.457696\pi\)
0.132512 + 0.991181i \(0.457696\pi\)
\(858\) 0 0
\(859\) −1644.93 −0.0653368 −0.0326684 0.999466i \(-0.510401\pi\)
−0.0326684 + 0.999466i \(0.510401\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24272.3 −0.957402 −0.478701 0.877978i \(-0.658892\pi\)
−0.478701 + 0.877978i \(0.658892\pi\)
\(864\) 0 0
\(865\) 1837.72 0.0722364
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 37713.8 1.47221
\(870\) 0 0
\(871\) −305.240 −0.0118745
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 30415.3 1.17511
\(876\) 0 0
\(877\) −51065.8 −1.96621 −0.983107 0.183030i \(-0.941410\pi\)
−0.983107 + 0.183030i \(0.941410\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10283.5 0.393258 0.196629 0.980478i \(-0.437000\pi\)
0.196629 + 0.980478i \(0.437000\pi\)
\(882\) 0 0
\(883\) −5412.08 −0.206264 −0.103132 0.994668i \(-0.532886\pi\)
−0.103132 + 0.994668i \(0.532886\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11306.0 −0.427981 −0.213991 0.976836i \(-0.568646\pi\)
−0.213991 + 0.976836i \(0.568646\pi\)
\(888\) 0 0
\(889\) 58806.6 2.21857
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 67299.2 2.52193
\(894\) 0 0
\(895\) −5012.89 −0.187221
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7573.87 −0.280982
\(900\) 0 0
\(901\) 357.088 0.0132035
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 47622.8 1.74921
\(906\) 0 0
\(907\) 13122.6 0.480408 0.240204 0.970722i \(-0.422786\pi\)
0.240204 + 0.970722i \(0.422786\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24127.8 0.877485 0.438743 0.898613i \(-0.355424\pi\)
0.438743 + 0.898613i \(0.355424\pi\)
\(912\) 0 0
\(913\) 71261.9 2.58316
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14159.0 −0.509891
\(918\) 0 0
\(919\) −10597.4 −0.380387 −0.190194 0.981747i \(-0.560912\pi\)
−0.190194 + 0.981747i \(0.560912\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 36.6505 0.00130701
\(924\) 0 0
\(925\) −16087.2 −0.571830
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16159.9 −0.570711 −0.285356 0.958422i \(-0.592112\pi\)
−0.285356 + 0.958422i \(0.592112\pi\)
\(930\) 0 0
\(931\) 68373.6 2.40693
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12095.2 −0.423054
\(936\) 0 0
\(937\) 12857.2 0.448267 0.224134 0.974558i \(-0.428045\pi\)
0.224134 + 0.974558i \(0.428045\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31043.6 1.07544 0.537722 0.843122i \(-0.319285\pi\)
0.537722 + 0.843122i \(0.319285\pi\)
\(942\) 0 0
\(943\) −1753.24 −0.0605442
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39841.0 1.36712 0.683558 0.729896i \(-0.260432\pi\)
0.683558 + 0.729896i \(0.260432\pi\)
\(948\) 0 0
\(949\) 16.1885 0.000553743 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26601.9 0.904217 0.452109 0.891963i \(-0.350672\pi\)
0.452109 + 0.891963i \(0.350672\pi\)
\(954\) 0 0
\(955\) 16910.7 0.573004
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −42607.1 −1.43468
\(960\) 0 0
\(961\) −24866.9 −0.834713
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −46351.2 −1.54622
\(966\) 0 0
\(967\) 15998.2 0.532024 0.266012 0.963970i \(-0.414294\pi\)
0.266012 + 0.963970i \(0.414294\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21950.4 0.725461 0.362731 0.931894i \(-0.381845\pi\)
0.362731 + 0.931894i \(0.381845\pi\)
\(972\) 0 0
\(973\) 7723.94 0.254489
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24955.7 0.817198 0.408599 0.912714i \(-0.366017\pi\)
0.408599 + 0.912714i \(0.366017\pi\)
\(978\) 0 0
\(979\) 86516.9 2.82440
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −35207.3 −1.14236 −0.571180 0.820825i \(-0.693514\pi\)
−0.571180 + 0.820825i \(0.693514\pi\)
\(984\) 0 0
\(985\) 18540.7 0.599752
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −41524.6 −1.33509
\(990\) 0 0
\(991\) 47633.5 1.52687 0.763435 0.645885i \(-0.223511\pi\)
0.763435 + 0.645885i \(0.223511\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13168.0 0.419550
\(996\) 0 0
\(997\) 6114.40 0.194228 0.0971139 0.995273i \(-0.469039\pi\)
0.0971139 + 0.995273i \(0.469039\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.4.a.d.1.2 2
3.2 odd 2 136.4.a.a.1.2 2
4.3 odd 2 2448.4.a.z.1.2 2
12.11 even 2 272.4.a.f.1.1 2
24.5 odd 2 1088.4.a.n.1.1 2
24.11 even 2 1088.4.a.p.1.2 2
51.50 odd 2 2312.4.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.a.a.1.2 2 3.2 odd 2
272.4.a.f.1.1 2 12.11 even 2
1088.4.a.n.1.1 2 24.5 odd 2
1088.4.a.p.1.2 2 24.11 even 2
1224.4.a.d.1.2 2 1.1 even 1 trivial
2312.4.a.b.1.1 2 51.50 odd 2
2448.4.a.z.1.2 2 4.3 odd 2