Properties

Label 1089.6.a.c.1.1
Level $1089$
Weight $6$
Character 1089.1
Self dual yes
Analytic conductor $174.658$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,6,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.657979776\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -16.0000 q^{4} +19.0000 q^{5} -10.0000 q^{7} +192.000 q^{8} -76.0000 q^{10} +1148.00 q^{13} +40.0000 q^{14} -256.000 q^{16} +686.000 q^{17} +384.000 q^{19} -304.000 q^{20} -3709.00 q^{23} -2764.00 q^{25} -4592.00 q^{26} +160.000 q^{28} -5424.00 q^{29} -6443.00 q^{31} -5120.00 q^{32} -2744.00 q^{34} -190.000 q^{35} +12063.0 q^{37} -1536.00 q^{38} +3648.00 q^{40} -1528.00 q^{41} +4026.00 q^{43} +14836.0 q^{46} -7168.00 q^{47} -16707.0 q^{49} +11056.0 q^{50} -18368.0 q^{52} +29862.0 q^{53} -1920.00 q^{56} +21696.0 q^{58} +6461.00 q^{59} +16980.0 q^{61} +25772.0 q^{62} +28672.0 q^{64} +21812.0 q^{65} +29999.0 q^{67} -10976.0 q^{68} +760.000 q^{70} -31023.0 q^{71} -1924.00 q^{73} -48252.0 q^{74} -6144.00 q^{76} -65138.0 q^{79} -4864.00 q^{80} +6112.00 q^{82} -102714. q^{83} +13034.0 q^{85} -16104.0 q^{86} -17415.0 q^{89} -11480.0 q^{91} +59344.0 q^{92} +28672.0 q^{94} +7296.00 q^{95} +66905.0 q^{97} +66828.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 19.0000 0.339882 0.169941 0.985454i \(-0.445642\pi\)
0.169941 + 0.985454i \(0.445642\pi\)
\(6\) 0 0
\(7\) −10.0000 −0.0771356 −0.0385678 0.999256i \(-0.512280\pi\)
−0.0385678 + 0.999256i \(0.512280\pi\)
\(8\) 192.000 1.06066
\(9\) 0 0
\(10\) −76.0000 −0.240333
\(11\) 0 0
\(12\) 0 0
\(13\) 1148.00 1.88401 0.942006 0.335597i \(-0.108938\pi\)
0.942006 + 0.335597i \(0.108938\pi\)
\(14\) 40.0000 0.0545431
\(15\) 0 0
\(16\) −256.000 −0.250000
\(17\) 686.000 0.575707 0.287854 0.957674i \(-0.407058\pi\)
0.287854 + 0.957674i \(0.407058\pi\)
\(18\) 0 0
\(19\) 384.000 0.244032 0.122016 0.992528i \(-0.461064\pi\)
0.122016 + 0.992528i \(0.461064\pi\)
\(20\) −304.000 −0.169941
\(21\) 0 0
\(22\) 0 0
\(23\) −3709.00 −1.46197 −0.730983 0.682396i \(-0.760938\pi\)
−0.730983 + 0.682396i \(0.760938\pi\)
\(24\) 0 0
\(25\) −2764.00 −0.884480
\(26\) −4592.00 −1.33220
\(27\) 0 0
\(28\) 160.000 0.0385678
\(29\) −5424.00 −1.19764 −0.598818 0.800885i \(-0.704363\pi\)
−0.598818 + 0.800885i \(0.704363\pi\)
\(30\) 0 0
\(31\) −6443.00 −1.20416 −0.602080 0.798436i \(-0.705661\pi\)
−0.602080 + 0.798436i \(0.705661\pi\)
\(32\) −5120.00 −0.883883
\(33\) 0 0
\(34\) −2744.00 −0.407087
\(35\) −190.000 −0.0262170
\(36\) 0 0
\(37\) 12063.0 1.44861 0.724304 0.689481i \(-0.242161\pi\)
0.724304 + 0.689481i \(0.242161\pi\)
\(38\) −1536.00 −0.172557
\(39\) 0 0
\(40\) 3648.00 0.360500
\(41\) −1528.00 −0.141959 −0.0709796 0.997478i \(-0.522613\pi\)
−0.0709796 + 0.997478i \(0.522613\pi\)
\(42\) 0 0
\(43\) 4026.00 0.332049 0.166025 0.986122i \(-0.446907\pi\)
0.166025 + 0.986122i \(0.446907\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 14836.0 1.03377
\(47\) −7168.00 −0.473318 −0.236659 0.971593i \(-0.576052\pi\)
−0.236659 + 0.971593i \(0.576052\pi\)
\(48\) 0 0
\(49\) −16707.0 −0.994050
\(50\) 11056.0 0.625422
\(51\) 0 0
\(52\) −18368.0 −0.942006
\(53\) 29862.0 1.46026 0.730128 0.683310i \(-0.239460\pi\)
0.730128 + 0.683310i \(0.239460\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1920.00 −0.0818147
\(57\) 0 0
\(58\) 21696.0 0.846856
\(59\) 6461.00 0.241640 0.120820 0.992674i \(-0.461448\pi\)
0.120820 + 0.992674i \(0.461448\pi\)
\(60\) 0 0
\(61\) 16980.0 0.584269 0.292135 0.956377i \(-0.405634\pi\)
0.292135 + 0.956377i \(0.405634\pi\)
\(62\) 25772.0 0.851469
\(63\) 0 0
\(64\) 28672.0 0.875000
\(65\) 21812.0 0.640342
\(66\) 0 0
\(67\) 29999.0 0.816432 0.408216 0.912885i \(-0.366151\pi\)
0.408216 + 0.912885i \(0.366151\pi\)
\(68\) −10976.0 −0.287854
\(69\) 0 0
\(70\) 760.000 0.0185382
\(71\) −31023.0 −0.730362 −0.365181 0.930937i \(-0.618993\pi\)
−0.365181 + 0.930937i \(0.618993\pi\)
\(72\) 0 0
\(73\) −1924.00 −0.0422569 −0.0211285 0.999777i \(-0.506726\pi\)
−0.0211285 + 0.999777i \(0.506726\pi\)
\(74\) −48252.0 −1.02432
\(75\) 0 0
\(76\) −6144.00 −0.122016
\(77\) 0 0
\(78\) 0 0
\(79\) −65138.0 −1.17427 −0.587133 0.809490i \(-0.699744\pi\)
−0.587133 + 0.809490i \(0.699744\pi\)
\(80\) −4864.00 −0.0849706
\(81\) 0 0
\(82\) 6112.00 0.100380
\(83\) −102714. −1.63657 −0.818285 0.574813i \(-0.805075\pi\)
−0.818285 + 0.574813i \(0.805075\pi\)
\(84\) 0 0
\(85\) 13034.0 0.195673
\(86\) −16104.0 −0.234794
\(87\) 0 0
\(88\) 0 0
\(89\) −17415.0 −0.233050 −0.116525 0.993188i \(-0.537175\pi\)
−0.116525 + 0.993188i \(0.537175\pi\)
\(90\) 0 0
\(91\) −11480.0 −0.145324
\(92\) 59344.0 0.730983
\(93\) 0 0
\(94\) 28672.0 0.334687
\(95\) 7296.00 0.0829422
\(96\) 0 0
\(97\) 66905.0 0.721987 0.360993 0.932568i \(-0.382438\pi\)
0.360993 + 0.932568i \(0.382438\pi\)
\(98\) 66828.0 0.702900
\(99\) 0 0
\(100\) 44224.0 0.442240
\(101\) 96730.0 0.943534 0.471767 0.881723i \(-0.343616\pi\)
0.471767 + 0.881723i \(0.343616\pi\)
\(102\) 0 0
\(103\) −95704.0 −0.888868 −0.444434 0.895812i \(-0.646595\pi\)
−0.444434 + 0.895812i \(0.646595\pi\)
\(104\) 220416. 1.99830
\(105\) 0 0
\(106\) −119448. −1.03256
\(107\) −32658.0 −0.275759 −0.137880 0.990449i \(-0.544029\pi\)
−0.137880 + 0.990449i \(0.544029\pi\)
\(108\) 0 0
\(109\) 185438. 1.49497 0.747485 0.664279i \(-0.231261\pi\)
0.747485 + 0.664279i \(0.231261\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2560.00 0.0192839
\(113\) −72849.0 −0.536695 −0.268347 0.963322i \(-0.586478\pi\)
−0.268347 + 0.963322i \(0.586478\pi\)
\(114\) 0 0
\(115\) −70471.0 −0.496896
\(116\) 86784.0 0.598818
\(117\) 0 0
\(118\) −25844.0 −0.170866
\(119\) −6860.00 −0.0444075
\(120\) 0 0
\(121\) 0 0
\(122\) −67920.0 −0.413141
\(123\) 0 0
\(124\) 103088. 0.602080
\(125\) −111891. −0.640501
\(126\) 0 0
\(127\) 78184.0 0.430139 0.215069 0.976599i \(-0.431002\pi\)
0.215069 + 0.976599i \(0.431002\pi\)
\(128\) 49152.0 0.265165
\(129\) 0 0
\(130\) −87248.0 −0.452790
\(131\) −462.000 −0.00235214 −0.00117607 0.999999i \(-0.500374\pi\)
−0.00117607 + 0.999999i \(0.500374\pi\)
\(132\) 0 0
\(133\) −3840.00 −0.0188236
\(134\) −119996. −0.577304
\(135\) 0 0
\(136\) 131712. 0.610630
\(137\) −296233. −1.34844 −0.674221 0.738530i \(-0.735520\pi\)
−0.674221 + 0.738530i \(0.735520\pi\)
\(138\) 0 0
\(139\) 399818. 1.75519 0.877597 0.479398i \(-0.159145\pi\)
0.877597 + 0.479398i \(0.159145\pi\)
\(140\) 3040.00 0.0131085
\(141\) 0 0
\(142\) 124092. 0.516444
\(143\) 0 0
\(144\) 0 0
\(145\) −103056. −0.407055
\(146\) 7696.00 0.0298802
\(147\) 0 0
\(148\) −193008. −0.724304
\(149\) 72670.0 0.268157 0.134079 0.990971i \(-0.457193\pi\)
0.134079 + 0.990971i \(0.457193\pi\)
\(150\) 0 0
\(151\) 303082. 1.08173 0.540864 0.841110i \(-0.318098\pi\)
0.540864 + 0.841110i \(0.318098\pi\)
\(152\) 73728.0 0.258835
\(153\) 0 0
\(154\) 0 0
\(155\) −122417. −0.409272
\(156\) 0 0
\(157\) −532987. −1.72571 −0.862854 0.505453i \(-0.831326\pi\)
−0.862854 + 0.505453i \(0.831326\pi\)
\(158\) 260552. 0.830332
\(159\) 0 0
\(160\) −97280.0 −0.300416
\(161\) 37090.0 0.112770
\(162\) 0 0
\(163\) 282076. 0.831567 0.415783 0.909464i \(-0.363507\pi\)
0.415783 + 0.909464i \(0.363507\pi\)
\(164\) 24448.0 0.0709796
\(165\) 0 0
\(166\) 410856. 1.15723
\(167\) −573588. −1.59151 −0.795754 0.605620i \(-0.792925\pi\)
−0.795754 + 0.605620i \(0.792925\pi\)
\(168\) 0 0
\(169\) 946611. 2.54950
\(170\) −52136.0 −0.138362
\(171\) 0 0
\(172\) −64416.0 −0.166025
\(173\) −386286. −0.981282 −0.490641 0.871362i \(-0.663237\pi\)
−0.490641 + 0.871362i \(0.663237\pi\)
\(174\) 0 0
\(175\) 27640.0 0.0682249
\(176\) 0 0
\(177\) 0 0
\(178\) 69660.0 0.164791
\(179\) −545079. −1.27153 −0.635765 0.771882i \(-0.719315\pi\)
−0.635765 + 0.771882i \(0.719315\pi\)
\(180\) 0 0
\(181\) −279485. −0.634106 −0.317053 0.948408i \(-0.602693\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(182\) 45920.0 0.102760
\(183\) 0 0
\(184\) −712128. −1.55065
\(185\) 229197. 0.492356
\(186\) 0 0
\(187\) 0 0
\(188\) 114688. 0.236659
\(189\) 0 0
\(190\) −29184.0 −0.0586490
\(191\) 444437. 0.881509 0.440755 0.897628i \(-0.354711\pi\)
0.440755 + 0.897628i \(0.354711\pi\)
\(192\) 0 0
\(193\) 18476.0 0.0357038 0.0178519 0.999841i \(-0.494317\pi\)
0.0178519 + 0.999841i \(0.494317\pi\)
\(194\) −267620. −0.510522
\(195\) 0 0
\(196\) 267312. 0.497025
\(197\) 270182. 0.496010 0.248005 0.968759i \(-0.420225\pi\)
0.248005 + 0.968759i \(0.420225\pi\)
\(198\) 0 0
\(199\) 43320.0 0.0775453 0.0387727 0.999248i \(-0.487655\pi\)
0.0387727 + 0.999248i \(0.487655\pi\)
\(200\) −530688. −0.938133
\(201\) 0 0
\(202\) −386920. −0.667180
\(203\) 54240.0 0.0923803
\(204\) 0 0
\(205\) −29032.0 −0.0482494
\(206\) 382816. 0.628524
\(207\) 0 0
\(208\) −293888. −0.471003
\(209\) 0 0
\(210\) 0 0
\(211\) −1.02968e6 −1.59220 −0.796100 0.605165i \(-0.793107\pi\)
−0.796100 + 0.605165i \(0.793107\pi\)
\(212\) −477792. −0.730128
\(213\) 0 0
\(214\) 130632. 0.194991
\(215\) 76494.0 0.112858
\(216\) 0 0
\(217\) 64430.0 0.0928835
\(218\) −741752. −1.05710
\(219\) 0 0
\(220\) 0 0
\(221\) 787528. 1.08464
\(222\) 0 0
\(223\) 461281. 0.621160 0.310580 0.950547i \(-0.399477\pi\)
0.310580 + 0.950547i \(0.399477\pi\)
\(224\) 51200.0 0.0681789
\(225\) 0 0
\(226\) 291396. 0.379501
\(227\) −855570. −1.10202 −0.551012 0.834497i \(-0.685758\pi\)
−0.551012 + 0.834497i \(0.685758\pi\)
\(228\) 0 0
\(229\) −665805. −0.838993 −0.419497 0.907757i \(-0.637793\pi\)
−0.419497 + 0.907757i \(0.637793\pi\)
\(230\) 281884. 0.351359
\(231\) 0 0
\(232\) −1.04141e6 −1.27028
\(233\) 1.20934e6 1.45934 0.729671 0.683798i \(-0.239673\pi\)
0.729671 + 0.683798i \(0.239673\pi\)
\(234\) 0 0
\(235\) −136192. −0.160873
\(236\) −103376. −0.120820
\(237\) 0 0
\(238\) 27440.0 0.0314009
\(239\) −571482. −0.647154 −0.323577 0.946202i \(-0.604886\pi\)
−0.323577 + 0.946202i \(0.604886\pi\)
\(240\) 0 0
\(241\) 267080. 0.296209 0.148105 0.988972i \(-0.452683\pi\)
0.148105 + 0.988972i \(0.452683\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −271680. −0.292135
\(245\) −317433. −0.337860
\(246\) 0 0
\(247\) 440832. 0.459760
\(248\) −1.23706e6 −1.27720
\(249\) 0 0
\(250\) 447564. 0.452903
\(251\) −1.38737e6 −1.38998 −0.694988 0.719022i \(-0.744590\pi\)
−0.694988 + 0.719022i \(0.744590\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −312736. −0.304154
\(255\) 0 0
\(256\) −1.11411e6 −1.06250
\(257\) 885922. 0.836686 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(258\) 0 0
\(259\) −120630. −0.111739
\(260\) −348992. −0.320171
\(261\) 0 0
\(262\) 1848.00 0.00166322
\(263\) 1.44687e6 1.28986 0.644928 0.764243i \(-0.276887\pi\)
0.644928 + 0.764243i \(0.276887\pi\)
\(264\) 0 0
\(265\) 567378. 0.496315
\(266\) 15360.0 0.0133103
\(267\) 0 0
\(268\) −479984. −0.408216
\(269\) 353878. 0.298176 0.149088 0.988824i \(-0.452366\pi\)
0.149088 + 0.988824i \(0.452366\pi\)
\(270\) 0 0
\(271\) −525260. −0.434461 −0.217231 0.976120i \(-0.569702\pi\)
−0.217231 + 0.976120i \(0.569702\pi\)
\(272\) −175616. −0.143927
\(273\) 0 0
\(274\) 1.18493e6 0.953492
\(275\) 0 0
\(276\) 0 0
\(277\) 595610. 0.466404 0.233202 0.972428i \(-0.425080\pi\)
0.233202 + 0.972428i \(0.425080\pi\)
\(278\) −1.59927e6 −1.24111
\(279\) 0 0
\(280\) −36480.0 −0.0278074
\(281\) 732318. 0.553266 0.276633 0.960976i \(-0.410781\pi\)
0.276633 + 0.960976i \(0.410781\pi\)
\(282\) 0 0
\(283\) −2.23380e6 −1.65798 −0.828989 0.559264i \(-0.811084\pi\)
−0.828989 + 0.559264i \(0.811084\pi\)
\(284\) 496368. 0.365181
\(285\) 0 0
\(286\) 0 0
\(287\) 15280.0 0.0109501
\(288\) 0 0
\(289\) −949261. −0.668561
\(290\) 412224. 0.287831
\(291\) 0 0
\(292\) 30784.0 0.0211285
\(293\) −1.53108e6 −1.04191 −0.520953 0.853585i \(-0.674423\pi\)
−0.520953 + 0.853585i \(0.674423\pi\)
\(294\) 0 0
\(295\) 122759. 0.0821293
\(296\) 2.31610e6 1.53648
\(297\) 0 0
\(298\) −290680. −0.189616
\(299\) −4.25793e6 −2.75436
\(300\) 0 0
\(301\) −40260.0 −0.0256128
\(302\) −1.21233e6 −0.764897
\(303\) 0 0
\(304\) −98304.0 −0.0610081
\(305\) 322620. 0.198583
\(306\) 0 0
\(307\) 1.14268e6 0.691956 0.345978 0.938243i \(-0.387547\pi\)
0.345978 + 0.938243i \(0.387547\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 489668. 0.289399
\(311\) −586956. −0.344116 −0.172058 0.985087i \(-0.555042\pi\)
−0.172058 + 0.985087i \(0.555042\pi\)
\(312\) 0 0
\(313\) −233857. −0.134924 −0.0674621 0.997722i \(-0.521490\pi\)
−0.0674621 + 0.997722i \(0.521490\pi\)
\(314\) 2.13195e6 1.22026
\(315\) 0 0
\(316\) 1.04221e6 0.587133
\(317\) 935503. 0.522874 0.261437 0.965221i \(-0.415804\pi\)
0.261437 + 0.965221i \(0.415804\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 544768. 0.297397
\(321\) 0 0
\(322\) −148360. −0.0797402
\(323\) 263424. 0.140491
\(324\) 0 0
\(325\) −3.17307e6 −1.66637
\(326\) −1.12830e6 −0.588007
\(327\) 0 0
\(328\) −293376. −0.150571
\(329\) 71680.0 0.0365097
\(330\) 0 0
\(331\) −1.05823e6 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(332\) 1.64342e6 0.818285
\(333\) 0 0
\(334\) 2.29435e6 1.12537
\(335\) 569981. 0.277491
\(336\) 0 0
\(337\) −506186. −0.242793 −0.121396 0.992604i \(-0.538737\pi\)
−0.121396 + 0.992604i \(0.538737\pi\)
\(338\) −3.78644e6 −1.80277
\(339\) 0 0
\(340\) −208544. −0.0978364
\(341\) 0 0
\(342\) 0 0
\(343\) 335140. 0.153812
\(344\) 772992. 0.352192
\(345\) 0 0
\(346\) 1.54514e6 0.693871
\(347\) 467636. 0.208490 0.104245 0.994552i \(-0.466757\pi\)
0.104245 + 0.994552i \(0.466757\pi\)
\(348\) 0 0
\(349\) −304470. −0.133808 −0.0669038 0.997759i \(-0.521312\pi\)
−0.0669038 + 0.997759i \(0.521312\pi\)
\(350\) −110560. −0.0482423
\(351\) 0 0
\(352\) 0 0
\(353\) −2.51868e6 −1.07581 −0.537906 0.843005i \(-0.680785\pi\)
−0.537906 + 0.843005i \(0.680785\pi\)
\(354\) 0 0
\(355\) −589437. −0.248237
\(356\) 278640. 0.116525
\(357\) 0 0
\(358\) 2.18032e6 0.899108
\(359\) −3.01841e6 −1.23607 −0.618034 0.786151i \(-0.712071\pi\)
−0.618034 + 0.786151i \(0.712071\pi\)
\(360\) 0 0
\(361\) −2.32864e6 −0.940448
\(362\) 1.11794e6 0.448381
\(363\) 0 0
\(364\) 183680. 0.0726622
\(365\) −36556.0 −0.0143624
\(366\) 0 0
\(367\) 994429. 0.385397 0.192699 0.981258i \(-0.438276\pi\)
0.192699 + 0.981258i \(0.438276\pi\)
\(368\) 949504. 0.365491
\(369\) 0 0
\(370\) −916788. −0.348149
\(371\) −298620. −0.112638
\(372\) 0 0
\(373\) −1.72896e6 −0.643446 −0.321723 0.946834i \(-0.604262\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.37626e6 −0.502030
\(377\) −6.22675e6 −2.25636
\(378\) 0 0
\(379\) 454765. 0.162626 0.0813128 0.996689i \(-0.474089\pi\)
0.0813128 + 0.996689i \(0.474089\pi\)
\(380\) −116736. −0.0414711
\(381\) 0 0
\(382\) −1.77775e6 −0.623321
\(383\) −2.27557e6 −0.792673 −0.396336 0.918105i \(-0.629719\pi\)
−0.396336 + 0.918105i \(0.629719\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −73904.0 −0.0252464
\(387\) 0 0
\(388\) −1.07048e6 −0.360993
\(389\) −389781. −0.130601 −0.0653005 0.997866i \(-0.520801\pi\)
−0.0653005 + 0.997866i \(0.520801\pi\)
\(390\) 0 0
\(391\) −2.54437e6 −0.841665
\(392\) −3.20774e6 −1.05435
\(393\) 0 0
\(394\) −1.08073e6 −0.350732
\(395\) −1.23762e6 −0.399112
\(396\) 0 0
\(397\) −1.61933e6 −0.515655 −0.257827 0.966191i \(-0.583007\pi\)
−0.257827 + 0.966191i \(0.583007\pi\)
\(398\) −173280. −0.0548328
\(399\) 0 0
\(400\) 707584. 0.221120
\(401\) 5.54368e6 1.72162 0.860810 0.508927i \(-0.169958\pi\)
0.860810 + 0.508927i \(0.169958\pi\)
\(402\) 0 0
\(403\) −7.39656e6 −2.26865
\(404\) −1.54768e6 −0.471767
\(405\) 0 0
\(406\) −216960. −0.0653228
\(407\) 0 0
\(408\) 0 0
\(409\) 2.70493e6 0.799553 0.399776 0.916613i \(-0.369088\pi\)
0.399776 + 0.916613i \(0.369088\pi\)
\(410\) 116128. 0.0341175
\(411\) 0 0
\(412\) 1.53126e6 0.444434
\(413\) −64610.0 −0.0186391
\(414\) 0 0
\(415\) −1.95157e6 −0.556241
\(416\) −5.87776e6 −1.66525
\(417\) 0 0
\(418\) 0 0
\(419\) −3.37337e6 −0.938705 −0.469353 0.883011i \(-0.655513\pi\)
−0.469353 + 0.883011i \(0.655513\pi\)
\(420\) 0 0
\(421\) −4.52551e6 −1.24441 −0.622204 0.782855i \(-0.713762\pi\)
−0.622204 + 0.782855i \(0.713762\pi\)
\(422\) 4.11874e6 1.12586
\(423\) 0 0
\(424\) 5.73350e6 1.54884
\(425\) −1.89610e6 −0.509202
\(426\) 0 0
\(427\) −169800. −0.0450680
\(428\) 522528. 0.137880
\(429\) 0 0
\(430\) −305976. −0.0798024
\(431\) −684534. −0.177501 −0.0887507 0.996054i \(-0.528287\pi\)
−0.0887507 + 0.996054i \(0.528287\pi\)
\(432\) 0 0
\(433\) −4.22591e6 −1.08318 −0.541589 0.840643i \(-0.682177\pi\)
−0.541589 + 0.840643i \(0.682177\pi\)
\(434\) −257720. −0.0656786
\(435\) 0 0
\(436\) −2.96701e6 −0.747485
\(437\) −1.42426e6 −0.356767
\(438\) 0 0
\(439\) 2.09185e6 0.518047 0.259023 0.965871i \(-0.416599\pi\)
0.259023 + 0.965871i \(0.416599\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.15011e6 −0.766956
\(443\) −1.56284e6 −0.378361 −0.189180 0.981942i \(-0.560583\pi\)
−0.189180 + 0.981942i \(0.560583\pi\)
\(444\) 0 0
\(445\) −330885. −0.0792095
\(446\) −1.84512e6 −0.439226
\(447\) 0 0
\(448\) −286720. −0.0674937
\(449\) 3.00449e6 0.703324 0.351662 0.936127i \(-0.385617\pi\)
0.351662 + 0.936127i \(0.385617\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.16558e6 0.268347
\(453\) 0 0
\(454\) 3.42228e6 0.779248
\(455\) −218120. −0.0493932
\(456\) 0 0
\(457\) 2.44552e6 0.547747 0.273874 0.961766i \(-0.411695\pi\)
0.273874 + 0.961766i \(0.411695\pi\)
\(458\) 2.66322e6 0.593258
\(459\) 0 0
\(460\) 1.12754e6 0.248448
\(461\) 7.79104e6 1.70743 0.853715 0.520741i \(-0.174344\pi\)
0.853715 + 0.520741i \(0.174344\pi\)
\(462\) 0 0
\(463\) −1.05196e6 −0.228059 −0.114029 0.993477i \(-0.536376\pi\)
−0.114029 + 0.993477i \(0.536376\pi\)
\(464\) 1.38854e6 0.299409
\(465\) 0 0
\(466\) −4.83734e6 −1.03191
\(467\) −3.97003e6 −0.842369 −0.421184 0.906975i \(-0.638385\pi\)
−0.421184 + 0.906975i \(0.638385\pi\)
\(468\) 0 0
\(469\) −299990. −0.0629759
\(470\) 544768. 0.113754
\(471\) 0 0
\(472\) 1.24051e6 0.256298
\(473\) 0 0
\(474\) 0 0
\(475\) −1.06138e6 −0.215842
\(476\) 109760. 0.0222038
\(477\) 0 0
\(478\) 2.28593e6 0.457607
\(479\) −8.53908e6 −1.70048 −0.850241 0.526393i \(-0.823544\pi\)
−0.850241 + 0.526393i \(0.823544\pi\)
\(480\) 0 0
\(481\) 1.38483e7 2.72919
\(482\) −1.06832e6 −0.209452
\(483\) 0 0
\(484\) 0 0
\(485\) 1.27120e6 0.245391
\(486\) 0 0
\(487\) −1.86487e6 −0.356308 −0.178154 0.984003i \(-0.557013\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(488\) 3.26016e6 0.619711
\(489\) 0 0
\(490\) 1.26973e6 0.238903
\(491\) 5.15727e6 0.965420 0.482710 0.875780i \(-0.339653\pi\)
0.482710 + 0.875780i \(0.339653\pi\)
\(492\) 0 0
\(493\) −3.72086e6 −0.689488
\(494\) −1.76333e6 −0.325099
\(495\) 0 0
\(496\) 1.64941e6 0.301040
\(497\) 310230. 0.0563369
\(498\) 0 0
\(499\) 4.53340e6 0.815029 0.407514 0.913199i \(-0.366396\pi\)
0.407514 + 0.913199i \(0.366396\pi\)
\(500\) 1.79026e6 0.320251
\(501\) 0 0
\(502\) 5.54947e6 0.982861
\(503\) 1.71163e6 0.301641 0.150821 0.988561i \(-0.451808\pi\)
0.150821 + 0.988561i \(0.451808\pi\)
\(504\) 0 0
\(505\) 1.83787e6 0.320691
\(506\) 0 0
\(507\) 0 0
\(508\) −1.25094e6 −0.215069
\(509\) −9.73822e6 −1.66604 −0.833019 0.553244i \(-0.813390\pi\)
−0.833019 + 0.553244i \(0.813390\pi\)
\(510\) 0 0
\(511\) 19240.0 0.00325951
\(512\) 2.88358e6 0.486136
\(513\) 0 0
\(514\) −3.54369e6 −0.591627
\(515\) −1.81838e6 −0.302110
\(516\) 0 0
\(517\) 0 0
\(518\) 482520. 0.0790116
\(519\) 0 0
\(520\) 4.18790e6 0.679185
\(521\) −4.30279e6 −0.694474 −0.347237 0.937777i \(-0.612880\pi\)
−0.347237 + 0.937777i \(0.612880\pi\)
\(522\) 0 0
\(523\) −2.62280e6 −0.419287 −0.209643 0.977778i \(-0.567230\pi\)
−0.209643 + 0.977778i \(0.567230\pi\)
\(524\) 7392.00 0.00117607
\(525\) 0 0
\(526\) −5.78750e6 −0.912066
\(527\) −4.41990e6 −0.693243
\(528\) 0 0
\(529\) 7.32034e6 1.13734
\(530\) −2.26951e6 −0.350948
\(531\) 0 0
\(532\) 61440.0 0.00941179
\(533\) −1.75414e6 −0.267453
\(534\) 0 0
\(535\) −620502. −0.0937257
\(536\) 5.75981e6 0.865956
\(537\) 0 0
\(538\) −1.41551e6 −0.210842
\(539\) 0 0
\(540\) 0 0
\(541\) 2.49634e6 0.366700 0.183350 0.983048i \(-0.441306\pi\)
0.183350 + 0.983048i \(0.441306\pi\)
\(542\) 2.10104e6 0.307211
\(543\) 0 0
\(544\) −3.51232e6 −0.508858
\(545\) 3.52332e6 0.508114
\(546\) 0 0
\(547\) −1.14323e7 −1.63368 −0.816838 0.576868i \(-0.804275\pi\)
−0.816838 + 0.576868i \(0.804275\pi\)
\(548\) 4.73973e6 0.674221
\(549\) 0 0
\(550\) 0 0
\(551\) −2.08282e6 −0.292262
\(552\) 0 0
\(553\) 651380. 0.0905778
\(554\) −2.38244e6 −0.329798
\(555\) 0 0
\(556\) −6.39709e6 −0.877597
\(557\) −9.81529e6 −1.34049 −0.670247 0.742138i \(-0.733812\pi\)
−0.670247 + 0.742138i \(0.733812\pi\)
\(558\) 0 0
\(559\) 4.62185e6 0.625585
\(560\) 48640.0 0.00655426
\(561\) 0 0
\(562\) −2.92927e6 −0.391218
\(563\) −8.19192e6 −1.08922 −0.544609 0.838690i \(-0.683322\pi\)
−0.544609 + 0.838690i \(0.683322\pi\)
\(564\) 0 0
\(565\) −1.38413e6 −0.182413
\(566\) 8.93522e6 1.17237
\(567\) 0 0
\(568\) −5.95642e6 −0.774665
\(569\) −7.54286e6 −0.976687 −0.488344 0.872651i \(-0.662399\pi\)
−0.488344 + 0.872651i \(0.662399\pi\)
\(570\) 0 0
\(571\) 8.69400e6 1.11591 0.557956 0.829871i \(-0.311586\pi\)
0.557956 + 0.829871i \(0.311586\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −61120.0 −0.00774290
\(575\) 1.02517e7 1.29308
\(576\) 0 0
\(577\) 2.03379e6 0.254312 0.127156 0.991883i \(-0.459415\pi\)
0.127156 + 0.991883i \(0.459415\pi\)
\(578\) 3.79704e6 0.472744
\(579\) 0 0
\(580\) 1.64890e6 0.203528
\(581\) 1.02714e6 0.126238
\(582\) 0 0
\(583\) 0 0
\(584\) −369408. −0.0448202
\(585\) 0 0
\(586\) 6.12432e6 0.736739
\(587\) −3.51780e6 −0.421381 −0.210691 0.977553i \(-0.567571\pi\)
−0.210691 + 0.977553i \(0.567571\pi\)
\(588\) 0 0
\(589\) −2.47411e6 −0.293854
\(590\) −491036. −0.0580742
\(591\) 0 0
\(592\) −3.08813e6 −0.362152
\(593\) −8.34535e6 −0.974558 −0.487279 0.873246i \(-0.662011\pi\)
−0.487279 + 0.873246i \(0.662011\pi\)
\(594\) 0 0
\(595\) −130340. −0.0150933
\(596\) −1.16272e6 −0.134079
\(597\) 0 0
\(598\) 1.70317e7 1.94763
\(599\) −6.15022e6 −0.700364 −0.350182 0.936682i \(-0.613880\pi\)
−0.350182 + 0.936682i \(0.613880\pi\)
\(600\) 0 0
\(601\) 6.86232e6 0.774970 0.387485 0.921876i \(-0.373344\pi\)
0.387485 + 0.921876i \(0.373344\pi\)
\(602\) 161040. 0.0181110
\(603\) 0 0
\(604\) −4.84931e6 −0.540864
\(605\) 0 0
\(606\) 0 0
\(607\) 9.45536e6 1.04161 0.520807 0.853675i \(-0.325631\pi\)
0.520807 + 0.853675i \(0.325631\pi\)
\(608\) −1.96608e6 −0.215696
\(609\) 0 0
\(610\) −1.29048e6 −0.140419
\(611\) −8.22886e6 −0.891737
\(612\) 0 0
\(613\) 4.63658e6 0.498363 0.249182 0.968457i \(-0.419838\pi\)
0.249182 + 0.968457i \(0.419838\pi\)
\(614\) −4.57072e6 −0.489287
\(615\) 0 0
\(616\) 0 0
\(617\) −6.05704e6 −0.640542 −0.320271 0.947326i \(-0.603774\pi\)
−0.320271 + 0.947326i \(0.603774\pi\)
\(618\) 0 0
\(619\) −5.63994e6 −0.591626 −0.295813 0.955246i \(-0.595591\pi\)
−0.295813 + 0.955246i \(0.595591\pi\)
\(620\) 1.95867e6 0.204636
\(621\) 0 0
\(622\) 2.34782e6 0.243327
\(623\) 174150. 0.0179764
\(624\) 0 0
\(625\) 6.51157e6 0.666785
\(626\) 935428. 0.0954057
\(627\) 0 0
\(628\) 8.52779e6 0.862854
\(629\) 8.27522e6 0.833975
\(630\) 0 0
\(631\) 1.12616e6 0.112597 0.0562987 0.998414i \(-0.482070\pi\)
0.0562987 + 0.998414i \(0.482070\pi\)
\(632\) −1.25065e7 −1.24550
\(633\) 0 0
\(634\) −3.74201e6 −0.369728
\(635\) 1.48550e6 0.146197
\(636\) 0 0
\(637\) −1.91796e7 −1.87280
\(638\) 0 0
\(639\) 0 0
\(640\) 933888. 0.0901249
\(641\) 1.42020e7 1.36522 0.682611 0.730782i \(-0.260844\pi\)
0.682611 + 0.730782i \(0.260844\pi\)
\(642\) 0 0
\(643\) 1.60794e6 0.153371 0.0766853 0.997055i \(-0.475566\pi\)
0.0766853 + 0.997055i \(0.475566\pi\)
\(644\) −593440. −0.0563848
\(645\) 0 0
\(646\) −1.05370e6 −0.0993423
\(647\) −3.10236e6 −0.291361 −0.145680 0.989332i \(-0.546537\pi\)
−0.145680 + 0.989332i \(0.546537\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.26923e7 1.17830
\(651\) 0 0
\(652\) −4.51322e6 −0.415783
\(653\) −6.88852e6 −0.632183 −0.316091 0.948729i \(-0.602371\pi\)
−0.316091 + 0.948729i \(0.602371\pi\)
\(654\) 0 0
\(655\) −8778.00 −0.000799452 0
\(656\) 391168. 0.0354898
\(657\) 0 0
\(658\) −286720. −0.0258163
\(659\) −1.24134e7 −1.11347 −0.556735 0.830690i \(-0.687946\pi\)
−0.556735 + 0.830690i \(0.687946\pi\)
\(660\) 0 0
\(661\) −8.10994e6 −0.721961 −0.360980 0.932573i \(-0.617558\pi\)
−0.360980 + 0.932573i \(0.617558\pi\)
\(662\) 4.23292e6 0.375401
\(663\) 0 0
\(664\) −1.97211e7 −1.73584
\(665\) −72960.0 −0.00639780
\(666\) 0 0
\(667\) 2.01176e7 1.75090
\(668\) 9.17741e6 0.795754
\(669\) 0 0
\(670\) −2.27992e6 −0.196216
\(671\) 0 0
\(672\) 0 0
\(673\) −1.78063e7 −1.51543 −0.757717 0.652584i \(-0.773685\pi\)
−0.757717 + 0.652584i \(0.773685\pi\)
\(674\) 2.02474e6 0.171680
\(675\) 0 0
\(676\) −1.51458e7 −1.27475
\(677\) 1.55179e7 1.30125 0.650626 0.759398i \(-0.274507\pi\)
0.650626 + 0.759398i \(0.274507\pi\)
\(678\) 0 0
\(679\) −669050. −0.0556909
\(680\) 2.50253e6 0.207542
\(681\) 0 0
\(682\) 0 0
\(683\) 2.18106e6 0.178902 0.0894510 0.995991i \(-0.471489\pi\)
0.0894510 + 0.995991i \(0.471489\pi\)
\(684\) 0 0
\(685\) −5.62843e6 −0.458311
\(686\) −1.34056e6 −0.108762
\(687\) 0 0
\(688\) −1.03066e6 −0.0830123
\(689\) 3.42816e7 2.75114
\(690\) 0 0
\(691\) 2.29892e7 1.83159 0.915795 0.401647i \(-0.131562\pi\)
0.915795 + 0.401647i \(0.131562\pi\)
\(692\) 6.18058e6 0.490641
\(693\) 0 0
\(694\) −1.87054e6 −0.147424
\(695\) 7.59654e6 0.596560
\(696\) 0 0
\(697\) −1.04821e6 −0.0817270
\(698\) 1.21788e6 0.0946163
\(699\) 0 0
\(700\) −442240. −0.0341125
\(701\) 2.34092e6 0.179925 0.0899626 0.995945i \(-0.471325\pi\)
0.0899626 + 0.995945i \(0.471325\pi\)
\(702\) 0 0
\(703\) 4.63219e6 0.353507
\(704\) 0 0
\(705\) 0 0
\(706\) 1.00747e7 0.760715
\(707\) −967300. −0.0727801
\(708\) 0 0
\(709\) −1.92694e7 −1.43964 −0.719820 0.694161i \(-0.755775\pi\)
−0.719820 + 0.694161i \(0.755775\pi\)
\(710\) 2.35775e6 0.175530
\(711\) 0 0
\(712\) −3.34368e6 −0.247186
\(713\) 2.38971e7 1.76044
\(714\) 0 0
\(715\) 0 0
\(716\) 8.72126e6 0.635765
\(717\) 0 0
\(718\) 1.20736e7 0.874032
\(719\) 2.14665e7 1.54860 0.774300 0.632819i \(-0.218102\pi\)
0.774300 + 0.632819i \(0.218102\pi\)
\(720\) 0 0
\(721\) 957040. 0.0685633
\(722\) 9.31457e6 0.664997
\(723\) 0 0
\(724\) 4.47176e6 0.317053
\(725\) 1.49919e7 1.05928
\(726\) 0 0
\(727\) −1.67705e7 −1.17682 −0.588411 0.808562i \(-0.700246\pi\)
−0.588411 + 0.808562i \(0.700246\pi\)
\(728\) −2.20416e6 −0.154140
\(729\) 0 0
\(730\) 146224. 0.0101557
\(731\) 2.76184e6 0.191163
\(732\) 0 0
\(733\) 1.75373e7 1.20560 0.602798 0.797894i \(-0.294052\pi\)
0.602798 + 0.797894i \(0.294052\pi\)
\(734\) −3.97772e6 −0.272517
\(735\) 0 0
\(736\) 1.89901e7 1.29221
\(737\) 0 0
\(738\) 0 0
\(739\) −1.47387e7 −0.992766 −0.496383 0.868104i \(-0.665339\pi\)
−0.496383 + 0.868104i \(0.665339\pi\)
\(740\) −3.66715e6 −0.246178
\(741\) 0 0
\(742\) 1.19448e6 0.0796469
\(743\) −4.80946e6 −0.319613 −0.159806 0.987148i \(-0.551087\pi\)
−0.159806 + 0.987148i \(0.551087\pi\)
\(744\) 0 0
\(745\) 1.38073e6 0.0911419
\(746\) 6.91583e6 0.454985
\(747\) 0 0
\(748\) 0 0
\(749\) 326580. 0.0212709
\(750\) 0 0
\(751\) 8.29317e6 0.536563 0.268282 0.963341i \(-0.413544\pi\)
0.268282 + 0.963341i \(0.413544\pi\)
\(752\) 1.83501e6 0.118330
\(753\) 0 0
\(754\) 2.49070e7 1.59549
\(755\) 5.75856e6 0.367660
\(756\) 0 0
\(757\) −352294. −0.0223442 −0.0111721 0.999938i \(-0.503556\pi\)
−0.0111721 + 0.999938i \(0.503556\pi\)
\(758\) −1.81906e6 −0.114994
\(759\) 0 0
\(760\) 1.40083e6 0.0879735
\(761\) 1.68985e7 1.05776 0.528878 0.848698i \(-0.322613\pi\)
0.528878 + 0.848698i \(0.322613\pi\)
\(762\) 0 0
\(763\) −1.85438e6 −0.115315
\(764\) −7.11099e6 −0.440755
\(765\) 0 0
\(766\) 9.10229e6 0.560504
\(767\) 7.41723e6 0.455253
\(768\) 0 0
\(769\) 36652.0 0.00223502 0.00111751 0.999999i \(-0.499644\pi\)
0.00111751 + 0.999999i \(0.499644\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −295616. −0.0178519
\(773\) 3.17462e7 1.91093 0.955463 0.295113i \(-0.0953571\pi\)
0.955463 + 0.295113i \(0.0953571\pi\)
\(774\) 0 0
\(775\) 1.78085e7 1.06505
\(776\) 1.28458e7 0.765783
\(777\) 0 0
\(778\) 1.55912e6 0.0923489
\(779\) −586752. −0.0346426
\(780\) 0 0
\(781\) 0 0
\(782\) 1.01775e7 0.595147
\(783\) 0 0
\(784\) 4.27699e6 0.248513
\(785\) −1.01268e7 −0.586538
\(786\) 0 0
\(787\) −2.01985e7 −1.16247 −0.581236 0.813735i \(-0.697431\pi\)
−0.581236 + 0.813735i \(0.697431\pi\)
\(788\) −4.32291e6 −0.248005
\(789\) 0 0
\(790\) 4.95049e6 0.282215
\(791\) 728490. 0.0413983
\(792\) 0 0
\(793\) 1.94930e7 1.10077
\(794\) 6.47732e6 0.364623
\(795\) 0 0
\(796\) −693120. −0.0387727
\(797\) −1.55660e7 −0.868023 −0.434011 0.900907i \(-0.642902\pi\)
−0.434011 + 0.900907i \(0.642902\pi\)
\(798\) 0 0
\(799\) −4.91725e6 −0.272493
\(800\) 1.41517e7 0.781777
\(801\) 0 0
\(802\) −2.21747e7 −1.21737
\(803\) 0 0
\(804\) 0 0
\(805\) 704710. 0.0383284
\(806\) 2.95863e7 1.60418
\(807\) 0 0
\(808\) 1.85722e7 1.00077
\(809\) −2.91667e7 −1.56681 −0.783404 0.621513i \(-0.786518\pi\)
−0.783404 + 0.621513i \(0.786518\pi\)
\(810\) 0 0
\(811\) 1.65215e7 0.882057 0.441029 0.897493i \(-0.354614\pi\)
0.441029 + 0.897493i \(0.354614\pi\)
\(812\) −867840. −0.0461902
\(813\) 0 0
\(814\) 0 0
\(815\) 5.35944e6 0.282635
\(816\) 0 0
\(817\) 1.54598e6 0.0810307
\(818\) −1.08197e7 −0.565369
\(819\) 0 0
\(820\) 464512. 0.0241247
\(821\) 5.56614e6 0.288202 0.144101 0.989563i \(-0.453971\pi\)
0.144101 + 0.989563i \(0.453971\pi\)
\(822\) 0 0
\(823\) 1.18801e7 0.611391 0.305696 0.952129i \(-0.401111\pi\)
0.305696 + 0.952129i \(0.401111\pi\)
\(824\) −1.83752e7 −0.942786
\(825\) 0 0
\(826\) 258440. 0.0131798
\(827\) −1.32856e7 −0.675489 −0.337745 0.941238i \(-0.609664\pi\)
−0.337745 + 0.941238i \(0.609664\pi\)
\(828\) 0 0
\(829\) −653987. −0.0330509 −0.0165254 0.999863i \(-0.505260\pi\)
−0.0165254 + 0.999863i \(0.505260\pi\)
\(830\) 7.80626e6 0.393322
\(831\) 0 0
\(832\) 3.29155e7 1.64851
\(833\) −1.14610e7 −0.572282
\(834\) 0 0
\(835\) −1.08982e7 −0.540926
\(836\) 0 0
\(837\) 0 0
\(838\) 1.34935e7 0.663765
\(839\) −2.47747e7 −1.21508 −0.607538 0.794290i \(-0.707843\pi\)
−0.607538 + 0.794290i \(0.707843\pi\)
\(840\) 0 0
\(841\) 8.90863e6 0.434331
\(842\) 1.81021e7 0.879929
\(843\) 0 0
\(844\) 1.64749e7 0.796100
\(845\) 1.79856e7 0.866530
\(846\) 0 0
\(847\) 0 0
\(848\) −7.64467e6 −0.365064
\(849\) 0 0
\(850\) 7.58442e6 0.360060
\(851\) −4.47417e7 −2.11782
\(852\) 0 0
\(853\) −2.71291e7 −1.27662 −0.638311 0.769779i \(-0.720367\pi\)
−0.638311 + 0.769779i \(0.720367\pi\)
\(854\) 679200. 0.0318679
\(855\) 0 0
\(856\) −6.27034e6 −0.292487
\(857\) −2.84232e7 −1.32197 −0.660984 0.750400i \(-0.729861\pi\)
−0.660984 + 0.750400i \(0.729861\pi\)
\(858\) 0 0
\(859\) 2.65922e7 1.22962 0.614810 0.788675i \(-0.289233\pi\)
0.614810 + 0.788675i \(0.289233\pi\)
\(860\) −1.22390e6 −0.0564289
\(861\) 0 0
\(862\) 2.73814e6 0.125512
\(863\) 2.22500e7 1.01696 0.508479 0.861074i \(-0.330208\pi\)
0.508479 + 0.861074i \(0.330208\pi\)
\(864\) 0 0
\(865\) −7.33943e6 −0.333520
\(866\) 1.69036e7 0.765923
\(867\) 0 0
\(868\) −1.03088e6 −0.0464418
\(869\) 0 0
\(870\) 0 0
\(871\) 3.44389e7 1.53817
\(872\) 3.56041e7 1.58566
\(873\) 0 0
\(874\) 5.69702e6 0.252272
\(875\) 1.11891e6 0.0494055
\(876\) 0 0
\(877\) −2.83428e7 −1.24435 −0.622176 0.782877i \(-0.713751\pi\)
−0.622176 + 0.782877i \(0.713751\pi\)
\(878\) −8.36739e6 −0.366314
\(879\) 0 0
\(880\) 0 0
\(881\) −3.66445e7 −1.59063 −0.795315 0.606196i \(-0.792695\pi\)
−0.795315 + 0.606196i \(0.792695\pi\)
\(882\) 0 0
\(883\) 1.68772e7 0.728447 0.364223 0.931312i \(-0.381334\pi\)
0.364223 + 0.931312i \(0.381334\pi\)
\(884\) −1.26004e7 −0.542320
\(885\) 0 0
\(886\) 6.25137e6 0.267541
\(887\) 2.73941e6 0.116909 0.0584544 0.998290i \(-0.481383\pi\)
0.0584544 + 0.998290i \(0.481383\pi\)
\(888\) 0 0
\(889\) −781840. −0.0331790
\(890\) 1.32354e6 0.0560095
\(891\) 0 0
\(892\) −7.38050e6 −0.310580
\(893\) −2.75251e6 −0.115505
\(894\) 0 0
\(895\) −1.03565e7 −0.432171
\(896\) −491520. −0.0204537
\(897\) 0 0
\(898\) −1.20180e7 −0.497325
\(899\) 3.49468e7 1.44214
\(900\) 0 0
\(901\) 2.04853e7 0.840681
\(902\) 0 0
\(903\) 0 0
\(904\) −1.39870e7 −0.569251
\(905\) −5.31022e6 −0.215522
\(906\) 0 0
\(907\) −3.13286e7 −1.26451 −0.632255 0.774760i \(-0.717871\pi\)
−0.632255 + 0.774760i \(0.717871\pi\)
\(908\) 1.36891e7 0.551012
\(909\) 0 0
\(910\) 872480. 0.0349263
\(911\) 2.49762e7 0.997081 0.498541 0.866866i \(-0.333869\pi\)
0.498541 + 0.866866i \(0.333869\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −9.78206e6 −0.387316
\(915\) 0 0
\(916\) 1.06529e7 0.419497
\(917\) 4620.00 0.000181434 0
\(918\) 0 0
\(919\) 1.10613e7 0.432032 0.216016 0.976390i \(-0.430694\pi\)
0.216016 + 0.976390i \(0.430694\pi\)
\(920\) −1.35304e7 −0.527038
\(921\) 0 0
\(922\) −3.11641e7 −1.20734
\(923\) −3.56144e7 −1.37601
\(924\) 0 0
\(925\) −3.33421e7 −1.28127
\(926\) 4.20784e6 0.161262
\(927\) 0 0
\(928\) 2.77709e7 1.05857
\(929\) 2.01739e7 0.766919 0.383460 0.923558i \(-0.374733\pi\)
0.383460 + 0.923558i \(0.374733\pi\)
\(930\) 0 0
\(931\) −6.41549e6 −0.242580
\(932\) −1.93494e7 −0.729671
\(933\) 0 0
\(934\) 1.58801e7 0.595645
\(935\) 0 0
\(936\) 0 0
\(937\) −9.10734e6 −0.338877 −0.169439 0.985541i \(-0.554195\pi\)
−0.169439 + 0.985541i \(0.554195\pi\)
\(938\) 1.19996e6 0.0445307
\(939\) 0 0
\(940\) 2.17907e6 0.0804363
\(941\) −3.67709e7 −1.35372 −0.676861 0.736110i \(-0.736660\pi\)
−0.676861 + 0.736110i \(0.736660\pi\)
\(942\) 0 0
\(943\) 5.66735e6 0.207540
\(944\) −1.65402e6 −0.0604101
\(945\) 0 0
\(946\) 0 0
\(947\) 4.95743e7 1.79631 0.898156 0.439677i \(-0.144907\pi\)
0.898156 + 0.439677i \(0.144907\pi\)
\(948\) 0 0
\(949\) −2.20875e6 −0.0796125
\(950\) 4.24550e6 0.152623
\(951\) 0 0
\(952\) −1.31712e6 −0.0471013
\(953\) 3.53787e7 1.26186 0.630928 0.775841i \(-0.282674\pi\)
0.630928 + 0.775841i \(0.282674\pi\)
\(954\) 0 0
\(955\) 8.44430e6 0.299609
\(956\) 9.14371e6 0.323577
\(957\) 0 0
\(958\) 3.41563e7 1.20242
\(959\) 2.96233e6 0.104013
\(960\) 0 0
\(961\) 1.28831e7 0.449999
\(962\) −5.53933e7 −1.92983
\(963\) 0 0
\(964\) −4.27328e6 −0.148105
\(965\) 351044. 0.0121351
\(966\) 0 0
\(967\) −2.78059e7 −0.956248 −0.478124 0.878292i \(-0.658683\pi\)
−0.478124 + 0.878292i \(0.658683\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −5.08478e6 −0.173517
\(971\) −1.56835e7 −0.533821 −0.266910 0.963721i \(-0.586003\pi\)
−0.266910 + 0.963721i \(0.586003\pi\)
\(972\) 0 0
\(973\) −3.99818e6 −0.135388
\(974\) 7.45947e6 0.251948
\(975\) 0 0
\(976\) −4.34688e6 −0.146067
\(977\) −2.01140e7 −0.674157 −0.337079 0.941476i \(-0.609439\pi\)
−0.337079 + 0.941476i \(0.609439\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 5.07893e6 0.168930
\(981\) 0 0
\(982\) −2.06291e7 −0.682655
\(983\) 2.09269e7 0.690750 0.345375 0.938465i \(-0.387752\pi\)
0.345375 + 0.938465i \(0.387752\pi\)
\(984\) 0 0
\(985\) 5.13346e6 0.168585
\(986\) 1.48835e7 0.487541
\(987\) 0 0
\(988\) −7.05331e6 −0.229880
\(989\) −1.49324e7 −0.485445
\(990\) 0 0
\(991\) −3.18663e7 −1.03074 −0.515368 0.856969i \(-0.672345\pi\)
−0.515368 + 0.856969i \(0.672345\pi\)
\(992\) 3.29882e7 1.06434
\(993\) 0 0
\(994\) −1.24092e6 −0.0398362
\(995\) 823080. 0.0263563
\(996\) 0 0
\(997\) −1.38913e6 −0.0442595 −0.0221297 0.999755i \(-0.507045\pi\)
−0.0221297 + 0.999755i \(0.507045\pi\)
\(998\) −1.81336e7 −0.576313
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.6.a.c.1.1 1
3.2 odd 2 121.6.a.b.1.1 1
11.10 odd 2 99.6.a.c.1.1 1
33.32 even 2 11.6.a.a.1.1 1
132.131 odd 2 176.6.a.c.1.1 1
165.32 odd 4 275.6.b.a.199.1 2
165.98 odd 4 275.6.b.a.199.2 2
165.164 even 2 275.6.a.a.1.1 1
231.230 odd 2 539.6.a.c.1.1 1
264.131 odd 2 704.6.a.c.1.1 1
264.197 even 2 704.6.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.6.a.a.1.1 1 33.32 even 2
99.6.a.c.1.1 1 11.10 odd 2
121.6.a.b.1.1 1 3.2 odd 2
176.6.a.c.1.1 1 132.131 odd 2
275.6.a.a.1.1 1 165.164 even 2
275.6.b.a.199.1 2 165.32 odd 4
275.6.b.a.199.2 2 165.98 odd 4
539.6.a.c.1.1 1 231.230 odd 2
704.6.a.c.1.1 1 264.131 odd 2
704.6.a.h.1.1 1 264.197 even 2
1089.6.a.c.1.1 1 1.1 even 1 trivial