Properties

Label 1089.6.a.e.1.1
Level 10891089
Weight 66
Character 1089.1
Self dual yes
Analytic conductor 174.658174.658
Analytic rank 00
Dimension 11
CM discriminant -11
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,6,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 174.657979776174.657979776
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 121)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.1
Character χ\chi == 1089.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q32.0000q457.0000q5+1024.00q16+1824.00q20981.000q23+124.000q257775.00q31+1267.00q3724708.0q4716807.0q4934806.0q53+24825.0q5932768.0q6472917.0q67+66273.0q7158368.0q80+91089.0q89+31392.0q92163183.q97+O(q100)q-32.0000 q^{4} -57.0000 q^{5} +1024.00 q^{16} +1824.00 q^{20} -981.000 q^{23} +124.000 q^{25} -7775.00 q^{31} +1267.00 q^{37} -24708.0 q^{47} -16807.0 q^{49} -34806.0 q^{53} +24825.0 q^{59} -32768.0 q^{64} -72917.0 q^{67} +66273.0 q^{71} -58368.0 q^{80} +91089.0 q^{89} +31392.0 q^{92} -163183. q^{97} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
33 0 0
44 −32.0000 −1.00000
55 −57.0000 −1.01965 −0.509823 0.860279i 0.670289π-0.670289\pi
−0.509823 + 0.860279i 0.670289π0.670289\pi
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 0 0
1010 0 0
1111 0 0
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 1024.00 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 1824.00 1.01965
2121 0 0
2222 0 0
2323 −981.000 −0.386678 −0.193339 0.981132i 0.561932π-0.561932\pi
−0.193339 + 0.981132i 0.561932π0.561932\pi
2424 0 0
2525 124.000 0.0396800
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 −7775.00 −1.45310 −0.726551 0.687112i 0.758878π-0.758878\pi
−0.726551 + 0.687112i 0.758878π0.758878\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1267.00 0.152150 0.0760751 0.997102i 0.475761π-0.475761\pi
0.0760751 + 0.997102i 0.475761π0.475761\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 −24708.0 −1.63152 −0.815761 0.578389i 0.803682π-0.803682\pi
−0.815761 + 0.578389i 0.803682π0.803682\pi
4848 0 0
4949 −16807.0 −1.00000
5050 0 0
5151 0 0
5252 0 0
5353 −34806.0 −1.70202 −0.851010 0.525150i 0.824009π-0.824009\pi
−0.851010 + 0.525150i 0.824009π0.824009\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 24825.0 0.928452 0.464226 0.885717i 0.346333π-0.346333\pi
0.464226 + 0.885717i 0.346333π0.346333\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 −32768.0 −1.00000
6565 0 0
6666 0 0
6767 −72917.0 −1.98446 −0.992229 0.124427i 0.960291π-0.960291\pi
−0.992229 + 0.124427i 0.960291π0.960291\pi
6868 0 0
6969 0 0
7070 0 0
7171 66273.0 1.56024 0.780119 0.625631i 0.215159π-0.215159\pi
0.780119 + 0.625631i 0.215159π0.215159\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 −58368.0 −1.01965
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 91089.0 1.21896 0.609482 0.792800i 0.291377π-0.291377\pi
0.609482 + 0.792800i 0.291377π0.291377\pi
9090 0 0
9191 0 0
9292 31392.0 0.386678
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −163183. −1.76094 −0.880472 0.474098i 0.842774π-0.842774\pi
−0.880472 + 0.474098i 0.842774π0.842774\pi
9898 0 0
9999 0 0
100100 −3968.00 −0.0396800
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 −180244. −1.67405 −0.837024 0.547167i 0.815706π-0.815706\pi
−0.837024 + 0.547167i 0.815706π0.815706\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 −192381. −1.41731 −0.708657 0.705553i 0.750699π-0.750699\pi
−0.708657 + 0.705553i 0.750699π0.750699\pi
114114 0 0
115115 55917.0 0.394275
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 248800. 1.45310
125125 171057. 0.979187
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 263283. 1.19845 0.599227 0.800579i 0.295475π-0.295475\pi
0.599227 + 0.800579i 0.295475π0.295475\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −40544.0 −0.152150
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 443175. 1.48165
156156 0 0
157157 280117. 0.906965 0.453482 0.891265i 0.350182π-0.350182\pi
0.453482 + 0.891265i 0.350182π0.350182\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 164144. 0.483900 0.241950 0.970289i 0.422213π-0.422213\pi
0.241950 + 0.970289i 0.422213π0.422213\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −371293. −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 840189. 1.95995 0.979974 0.199127i 0.0638106π-0.0638106\pi
0.979974 + 0.199127i 0.0638106π0.0638106\pi
180180 0 0
181181 279875. 0.634991 0.317496 0.948260i 0.397158π-0.397158\pi
0.317496 + 0.948260i 0.397158π0.397158\pi
182182 0 0
183183 0 0
184184 0 0
185185 −72219.0 −0.155139
186186 0 0
187187 0 0
188188 790656. 1.63152
189189 0 0
190190 0 0
191191 272325. 0.540137 0.270069 0.962841i 0.412954π-0.412954\pi
0.270069 + 0.962841i 0.412954π0.412954\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 537824. 1.00000
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 799900. 1.43187 0.715934 0.698168i 0.246001π-0.246001\pi
0.715934 + 0.698168i 0.246001π0.246001\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 1.11379e6 1.70202
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −247531. −0.333325 −0.166662 0.986014i 0.553299π-0.553299\pi
−0.166662 + 0.986014i 0.553299π0.553299\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −1.17102e6 −1.47563 −0.737815 0.675003i 0.764142π-0.764142\pi
−0.737815 + 0.675003i 0.764142π0.764142\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 1.40836e6 1.66358
236236 −794400. −0.928452
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 0 0
244244 0 0
245245 957999. 1.01965
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −1.84812e6 −1.85160 −0.925799 0.378017i 0.876606π-0.876606\pi
−0.925799 + 0.378017i 0.876606π0.876606\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.04858e6 1.00000
257257 −339858. −0.320970 −0.160485 0.987038i 0.551306π-0.551306\pi
−0.160485 + 0.987038i 0.551306π0.551306\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 1.98394e6 1.73546
266266 0 0
267267 0 0
268268 2.33334e6 1.98446
269269 1.16085e6 0.978127 0.489064 0.872248i 0.337339π-0.337339\pi
0.489064 + 0.872248i 0.337339π0.337339\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 −2.12074e6 −1.56024
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −1.41986e6 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 −1.41502e6 −0.946693
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 3.36505e6 1.97284 0.986418 0.164257i 0.0525226π-0.0525226\pi
0.986418 + 0.164257i 0.0525226π0.0525226\pi
312312 0 0
313313 1.04882e6 0.605117 0.302559 0.953131i 0.402159π-0.402159\pi
0.302559 + 0.953131i 0.402159π0.402159\pi
314314 0 0
315315 0 0
316316 0 0
317317 −3.28263e6 −1.83474 −0.917369 0.398037i 0.869691π-0.869691\pi
−0.917369 + 0.398037i 0.869691π0.869691\pi
318318 0 0
319319 0 0
320320 1.86778e6 1.01965
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 736925. 0.369703 0.184852 0.982766i 0.440820π-0.440820\pi
0.184852 + 0.982766i 0.440820π0.440820\pi
332332 0 0
333333 0 0
334334 0 0
335335 4.15627e6 2.02345
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 4.37977e6 1.87074 0.935372 0.353665i 0.115065π-0.115065\pi
0.935372 + 0.353665i 0.115065π0.115065\pi
354354 0 0
355355 −3.77756e6 −1.59089
356356 −2.91485e6 −1.21896
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −2.47610e6 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −1.31317e6 −0.508926 −0.254463 0.967082i 0.581899π-0.581899\pi
−0.254463 + 0.967082i 0.581899π0.581899\pi
368368 −1.00454e6 −0.386678
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.88862e6 0.675379 0.337690 0.941258i 0.390355π-0.390355\pi
0.337690 + 0.941258i 0.390355π0.390355\pi
380380 0 0
381381 0 0
382382 0 0
383383 −5.23267e6 −1.82275 −0.911373 0.411581i 0.864977π-0.864977\pi
−0.911373 + 0.411581i 0.864977π0.864977\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 5.22186e6 1.76094
389389 5.54408e6 1.85761 0.928806 0.370566i 0.120836π-0.120836\pi
0.928806 + 0.370566i 0.120836π0.120836\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.56024e6 0.496839 0.248420 0.968653i 0.420089π-0.420089\pi
0.248420 + 0.968653i 0.420089π0.420089\pi
398398 0 0
399399 0 0
400400 126976. 0.0396800
401401 5.71485e6 1.77478 0.887389 0.461022i 0.152517π-0.152517\pi
0.887389 + 0.461022i 0.152517π0.152517\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 0 0
412412 5.76781e6 1.67405
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −68664.0 −0.0191071 −0.00955353 0.999954i 0.503041π-0.503041\pi
−0.00955353 + 0.999954i 0.503041π0.503041\pi
420420 0 0
421421 6.85705e6 1.88552 0.942762 0.333466i 0.108218π-0.108218\pi
0.942762 + 0.333466i 0.108218π0.108218\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −5.10513e6 −1.30854 −0.654270 0.756261i 0.727024π-0.727024\pi
−0.654270 + 0.756261i 0.727024π0.727024\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 −4.17713e6 −1.01127 −0.505637 0.862746i 0.668742π-0.668742\pi
−0.505637 + 0.862746i 0.668742π0.668742\pi
444444 0 0
445445 −5.19207e6 −1.24291
446446 0 0
447447 0 0
448448 0 0
449449 3.63476e6 0.850864 0.425432 0.904990i 0.360122π-0.360122\pi
0.425432 + 0.904990i 0.360122π0.360122\pi
450450 0 0
451451 0 0
452452 6.15619e6 1.41731
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 −1.78934e6 −0.394275
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 7.10982e6 1.54137 0.770684 0.637218i 0.219915π-0.219915\pi
0.770684 + 0.637218i 0.219915π0.219915\pi
464464 0 0
465465 0 0
466466 0 0
467467 3.20853e6 0.680792 0.340396 0.940282i 0.389439π-0.389439\pi
0.340396 + 0.940282i 0.389439π0.389439\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 9.30143e6 1.79554
486486 0 0
487487 4.40023e6 0.840724 0.420362 0.907357i 0.361903π-0.361903\pi
0.420362 + 0.907357i 0.361903π0.361903\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −7.96160e6 −1.45310
497497 0 0
498498 0 0
499499 −7.47980e6 −1.34474 −0.672370 0.740215i 0.734724π-0.734724\pi
−0.672370 + 0.740215i 0.734724π0.734724\pi
500500 −5.47382e6 −0.979187
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 1.09082e7 1.86621 0.933103 0.359609i 0.117090π-0.117090\pi
0.933103 + 0.359609i 0.117090π0.117090\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 1.02739e7 1.70694
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 1.23256e7 1.98936 0.994679 0.103024i 0.0328519π-0.0328519\pi
0.994679 + 0.103024i 0.0328519π0.0328519\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −5.47398e6 −0.850480
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 −8.42506e6 −1.19845
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 1.09657e7 1.44516
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 −121644. −0.0153434
576576 0 0
577577 −8.05397e6 −1.00709 −0.503547 0.863968i 0.667972π-0.667972\pi
−0.503547 + 0.863968i 0.667972π0.667972\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 1.29130e7 1.54679 0.773396 0.633923i 0.218556π-0.218556\pi
0.773396 + 0.633923i 0.218556π0.218556\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.29741e6 0.152150
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −1.46844e7 −1.67220 −0.836100 0.548577i 0.815170π-0.815170\pi
−0.836100 + 0.548577i 0.815170π0.815170\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.79256e7 −1.89566 −0.947829 0.318781i 0.896727π-0.896727\pi
−0.947829 + 0.318781i 0.896727π0.896727\pi
618618 0 0
619619 −1.91271e6 −0.200642 −0.100321 0.994955i 0.531987π-0.531987\pi
−0.100321 + 0.994955i 0.531987π0.531987\pi
620620 −1.41816e7 −1.48165
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −1.01377e7 −1.03811
626626 0 0
627627 0 0
628628 −8.96374e6 −0.906965
629629 0 0
630630 0 0
631631 1.28703e7 1.28681 0.643405 0.765526i 0.277521π-0.277521\pi
0.643405 + 0.765526i 0.277521π0.277521\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −1.50793e7 −1.44956 −0.724779 0.688982i 0.758058π-0.758058\pi
−0.724779 + 0.688982i 0.758058π0.758058\pi
642642 0 0
643643 −2.09678e7 −1.99998 −0.999988 0.00489569i 0.998442π-0.998442\pi
−0.999988 + 0.00489569i 0.998442π0.998442\pi
644644 0 0
645645 0 0
646646 0 0
647647 7.18662e6 0.674938 0.337469 0.941337i 0.390429π-0.390429\pi
0.337469 + 0.941337i 0.390429π0.390429\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −5.25261e6 −0.483900
653653 −2.06540e7 −1.89549 −0.947746 0.319026i 0.896644π-0.896644\pi
−0.947746 + 0.319026i 0.896644π0.896644\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 2.15101e7 1.91487 0.957433 0.288657i 0.0932086π-0.0932086\pi
0.957433 + 0.288657i 0.0932086π0.0932086\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 1.18814e7 1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −1.67323e7 −1.37248 −0.686238 0.727377i 0.740739π-0.740739\pi
−0.686238 + 0.727377i 0.740739π0.740739\pi
684684 0 0
685685 −1.50071e7 −1.22200
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 2.50313e7 1.99429 0.997146 0.0754971i 0.0240544π-0.0240544\pi
0.997146 + 0.0754971i 0.0240544π0.0240544\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 2.59156e7 1.93618 0.968091 0.250598i 0.0806271π-0.0806271\pi
0.968091 + 0.250598i 0.0806271π0.0806271\pi
710710 0 0
711711 0 0
712712 0 0
713713 7.62728e6 0.561883
714714 0 0
715715 0 0
716716 −2.68860e7 −1.95995
717717 0 0
718718 0 0
719719 30039.0 0.00216702 0.00108351 0.999999i 0.499655π-0.499655\pi
0.00108351 + 0.999999i 0.499655π0.499655\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −8.95600e6 −0.634991
725725 0 0
726726 0 0
727727 −1.70878e7 −1.19908 −0.599542 0.800343i 0.704651π-0.704651\pi
−0.599542 + 0.800343i 0.704651π0.704651\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 2.31101e6 0.155139
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −2.56094e7 −1.65691 −0.828455 0.560055i 0.810780π-0.810780\pi
−0.828455 + 0.560055i 0.810780π0.810780\pi
752752 −2.53010e7 −1.63152
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.95760e7 1.24161 0.620805 0.783965i 0.286806π-0.286806\pi
0.620805 + 0.783965i 0.286806π0.286806\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 −8.71440e6 −0.540137
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 0 0
772772 0 0
773773 −1.18995e7 −0.716275 −0.358137 0.933669i 0.616588π-0.616588\pi
−0.358137 + 0.933669i 0.616588π0.616588\pi
774774 0 0
775775 −964100. −0.0576591
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.72104e7 −1.00000
785785 −1.59667e7 −0.924784
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −2.55968e7 −1.43187
797797 9.42078e6 0.525341 0.262670 0.964886i 0.415397π-0.415397\pi
0.262670 + 0.964886i 0.415397π0.415397\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 −9.35621e6 −0.493408
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 3.57048e7 1.83750 0.918749 0.394843i 0.129201π-0.129201\pi
0.918749 + 0.394843i 0.129201π0.129201\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 1.90687e7 0.963684 0.481842 0.876258i 0.339968π-0.339968\pi
0.481842 + 0.876258i 0.339968π0.339968\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −3.93590e7 −1.93036 −0.965182 0.261577i 0.915757π-0.915757\pi
−0.965182 + 0.261577i 0.915757π0.915757\pi
840840 0 0
841841 −2.05111e7 −1.00000
842842 0 0
843843 0 0
844844 0 0
845845 2.11637e7 1.01965
846846 0 0
847847 0 0
848848 −3.56413e7 −1.70202
849849 0 0
850850 0 0
851851 −1.24293e6 −0.0588331
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 −1.50484e7 −0.695835 −0.347918 0.937525i 0.613111π-0.613111\pi
−0.347918 + 0.937525i 0.613111π0.613111\pi
860860 0 0
861861 0 0
862862 0 0
863863 −6.79604e6 −0.310620 −0.155310 0.987866i 0.549638π-0.549638\pi
−0.155310 + 0.987866i 0.549638π0.549638\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 −7.12278e6 −0.309179 −0.154589 0.987979i 0.549405π-0.549405\pi
−0.154589 + 0.987979i 0.549405π0.549405\pi
882882 0 0
883883 6.29994e6 0.271916 0.135958 0.990715i 0.456589π-0.456589\pi
0.135958 + 0.990715i 0.456589π0.456589\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 7.92099e6 0.333325
893893 0 0
894894 0 0
895895 −4.78908e7 −1.99845
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 −1.59529e7 −0.647467
906906 0 0
907907 3.06168e7 1.23578 0.617891 0.786264i 0.287987π-0.287987\pi
0.617891 + 0.786264i 0.287987π0.287987\pi
908908 0 0
909909 0 0
910910 0 0
911911 4.26963e7 1.70449 0.852245 0.523143i 0.175241π-0.175241\pi
0.852245 + 0.523143i 0.175241π0.175241\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 3.74728e7 1.47563
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 157108. 0.00603732
926926 0 0
927927 0 0
928928 0 0
929929 −2.83412e7 −1.07740 −0.538702 0.842497i 0.681085π-0.681085\pi
−0.538702 + 0.842497i 0.681085π0.681085\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 −4.50674e7 −1.66358
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 2.54208e7 0.928452
945945 0 0
946946 0 0
947947 1.96062e7 0.710427 0.355213 0.934785i 0.384408π-0.384408\pi
0.355213 + 0.934785i 0.384408π0.384408\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 −1.55225e7 −0.550749
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 3.18215e7 1.11151
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 −4.57445e7 −1.55701 −0.778504 0.627639i 0.784021π-0.784021\pi
−0.778504 + 0.627639i 0.784021π0.784021\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 4.70589e7 1.57727 0.788633 0.614864i 0.210789π-0.210789\pi
0.788633 + 0.614864i 0.210789π0.210789\pi
978978 0 0
979979 0 0
980980 −3.06560e7 −1.01965
981981 0 0
982982 0 0
983983 6.05507e7 1.99864 0.999322 0.0368136i 0.0117208π-0.0117208\pi
0.999322 + 0.0368136i 0.0117208π0.0117208\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −6.17681e7 −1.99793 −0.998965 0.0454936i 0.985514π-0.985514\pi
−0.998965 + 0.0454936i 0.985514π0.985514\pi
992992 0 0
993993 0 0
994994 0 0
995995 −4.55943e7 −1.46000
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.6.a.e.1.1 1
3.2 odd 2 121.6.a.a.1.1 1
11.10 odd 2 CM 1089.6.a.e.1.1 1
33.32 even 2 121.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.6.a.a.1.1 1 3.2 odd 2
121.6.a.a.1.1 1 33.32 even 2
1089.6.a.e.1.1 1 1.1 even 1 trivial
1089.6.a.e.1.1 1 11.10 odd 2 CM