Properties

Label 1100.2.cb.d.449.8
Level $1100$
Weight $2$
Character 1100.449
Analytic conductor $8.784$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(49,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.cb (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 449.8
Character \(\chi\) \(=\) 1100.449
Dual form 1100.2.cb.d.49.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.76353 + 2.42729i) q^{3} +(-0.992679 + 1.36631i) q^{7} +(-1.85465 + 5.70802i) q^{9} +(2.77267 + 1.81998i) q^{11} +(3.52887 + 1.14660i) q^{13} +(3.68071 - 1.19594i) q^{17} +(-5.21062 + 3.78574i) q^{19} -5.06704 q^{21} -7.43878i q^{23} +(-8.56540 + 2.78307i) q^{27} +(-2.55959 - 1.85965i) q^{29} +(0.787699 - 2.42429i) q^{31} +(0.472068 + 9.93965i) q^{33} +(-3.84954 + 5.29843i) q^{37} +(3.44014 + 10.5877i) q^{39} +(-6.93840 + 5.04104i) q^{41} -3.49875i q^{43} +(-2.49933 - 3.44003i) q^{47} +(1.28174 + 3.94479i) q^{49} +(9.39392 + 6.82509i) q^{51} +(9.24750 + 3.00470i) q^{53} +(-18.3782 - 5.97143i) q^{57} +(-2.33853 - 1.69904i) q^{59} +(1.93043 + 5.94126i) q^{61} +(-5.95783 - 8.20025i) q^{63} -10.5387i q^{67} +(18.0561 - 13.1185i) q^{69} +(2.85383 + 8.78318i) q^{71} +(-2.15062 + 2.96007i) q^{73} +(-5.23901 + 1.98166i) q^{77} +(5.23846 - 16.1223i) q^{79} +(-7.29404 - 5.29943i) q^{81} +(-11.4422 + 3.71779i) q^{83} -9.49240i q^{87} +15.5881 q^{89} +(-5.06965 + 3.68331i) q^{91} +(7.27358 - 2.36333i) q^{93} +(6.38135 + 2.07343i) q^{97} +(-15.5308 + 12.4510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 10 q^{11} - 26 q^{19} - 12 q^{21} + 14 q^{29} + 4 q^{31} + 34 q^{39} - 30 q^{41} + 48 q^{49} + 26 q^{51} - 12 q^{59} + 48 q^{61} + 106 q^{69} + 72 q^{71} + 90 q^{79} + 34 q^{81} - 36 q^{89} + 76 q^{91}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.76353 + 2.42729i 1.01817 + 1.40140i 0.913476 + 0.406892i \(0.133388\pi\)
0.104698 + 0.994504i \(0.466612\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.992679 + 1.36631i −0.375197 + 0.516415i −0.954304 0.298837i \(-0.903401\pi\)
0.579107 + 0.815252i \(0.303401\pi\)
\(8\) 0 0
\(9\) −1.85465 + 5.70802i −0.618216 + 1.90267i
\(10\) 0 0
\(11\) 2.77267 + 1.81998i 0.835991 + 0.548744i
\(12\) 0 0
\(13\) 3.52887 + 1.14660i 0.978733 + 0.318010i 0.754336 0.656488i \(-0.227959\pi\)
0.224397 + 0.974498i \(0.427959\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.68071 1.19594i 0.892704 0.290057i 0.173481 0.984837i \(-0.444498\pi\)
0.719222 + 0.694780i \(0.244498\pi\)
\(18\) 0 0
\(19\) −5.21062 + 3.78574i −1.19540 + 0.868508i −0.993824 0.110965i \(-0.964606\pi\)
−0.201575 + 0.979473i \(0.564606\pi\)
\(20\) 0 0
\(21\) −5.06704 −1.10572
\(22\) 0 0
\(23\) 7.43878i 1.55109i −0.631291 0.775546i \(-0.717475\pi\)
0.631291 0.775546i \(-0.282525\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −8.56540 + 2.78307i −1.64841 + 0.535601i
\(28\) 0 0
\(29\) −2.55959 1.85965i −0.475303 0.345328i 0.324201 0.945988i \(-0.394905\pi\)
−0.799505 + 0.600660i \(0.794905\pi\)
\(30\) 0 0
\(31\) 0.787699 2.42429i 0.141475 0.435415i −0.855066 0.518519i \(-0.826483\pi\)
0.996541 + 0.0831043i \(0.0264835\pi\)
\(32\) 0 0
\(33\) 0.472068 + 9.93965i 0.0821764 + 1.73027i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.84954 + 5.29843i −0.632860 + 0.871057i −0.998210 0.0598135i \(-0.980949\pi\)
0.365350 + 0.930870i \(0.380949\pi\)
\(38\) 0 0
\(39\) 3.44014 + 10.5877i 0.550863 + 1.69538i
\(40\) 0 0
\(41\) −6.93840 + 5.04104i −1.08360 + 0.787279i −0.978306 0.207163i \(-0.933577\pi\)
−0.105290 + 0.994442i \(0.533577\pi\)
\(42\) 0 0
\(43\) 3.49875i 0.533554i −0.963758 0.266777i \(-0.914041\pi\)
0.963758 0.266777i \(-0.0859587\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.49933 3.44003i −0.364565 0.501781i 0.586849 0.809697i \(-0.300368\pi\)
−0.951414 + 0.307916i \(0.900368\pi\)
\(48\) 0 0
\(49\) 1.28174 + 3.94479i 0.183106 + 0.563541i
\(50\) 0 0
\(51\) 9.39392 + 6.82509i 1.31541 + 0.955703i
\(52\) 0 0
\(53\) 9.24750 + 3.00470i 1.27024 + 0.412727i 0.865133 0.501542i \(-0.167234\pi\)
0.405109 + 0.914269i \(0.367234\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −18.3782 5.97143i −2.43425 0.790935i
\(58\) 0 0
\(59\) −2.33853 1.69904i −0.304450 0.221196i 0.425061 0.905165i \(-0.360253\pi\)
−0.729512 + 0.683968i \(0.760253\pi\)
\(60\) 0 0
\(61\) 1.93043 + 5.94126i 0.247167 + 0.760700i 0.995273 + 0.0971212i \(0.0309634\pi\)
−0.748106 + 0.663579i \(0.769037\pi\)
\(62\) 0 0
\(63\) −5.95783 8.20025i −0.750616 1.03313i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.5387i 1.28750i −0.765235 0.643751i \(-0.777377\pi\)
0.765235 0.643751i \(-0.222623\pi\)
\(68\) 0 0
\(69\) 18.0561 13.1185i 2.17369 1.57928i
\(70\) 0 0
\(71\) 2.85383 + 8.78318i 0.338687 + 1.04237i 0.964877 + 0.262701i \(0.0846133\pi\)
−0.626190 + 0.779670i \(0.715387\pi\)
\(72\) 0 0
\(73\) −2.15062 + 2.96007i −0.251711 + 0.346450i −0.916110 0.400928i \(-0.868688\pi\)
0.664399 + 0.747378i \(0.268688\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.23901 + 1.98166i −0.597041 + 0.225831i
\(78\) 0 0
\(79\) 5.23846 16.1223i 0.589373 1.81390i 0.00842422 0.999965i \(-0.497318\pi\)
0.580949 0.813940i \(-0.302682\pi\)
\(80\) 0 0
\(81\) −7.29404 5.29943i −0.810449 0.588825i
\(82\) 0 0
\(83\) −11.4422 + 3.71779i −1.25594 + 0.408080i −0.860047 0.510215i \(-0.829566\pi\)
−0.395896 + 0.918296i \(0.629566\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.49240i 1.01769i
\(88\) 0 0
\(89\) 15.5881 1.65233 0.826166 0.563426i \(-0.190517\pi\)
0.826166 + 0.563426i \(0.190517\pi\)
\(90\) 0 0
\(91\) −5.06965 + 3.68331i −0.531443 + 0.386116i
\(92\) 0 0
\(93\) 7.27358 2.36333i 0.754235 0.245066i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.38135 + 2.07343i 0.647928 + 0.210525i 0.614500 0.788916i \(-0.289358\pi\)
0.0334279 + 0.999441i \(0.489358\pi\)
\(98\) 0 0
\(99\) −15.5308 + 12.4510i −1.56090 + 1.25138i
\(100\) 0 0
\(101\) 1.51211 4.65380i 0.150461 0.463071i −0.847212 0.531255i \(-0.821721\pi\)
0.997673 + 0.0681843i \(0.0217206\pi\)
\(102\) 0 0
\(103\) 9.80269 13.4922i 0.965888 1.32943i 0.0217908 0.999763i \(-0.493063\pi\)
0.944097 0.329668i \(-0.106937\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.39979 1.92664i −0.135323 0.186256i 0.735978 0.677006i \(-0.236723\pi\)
−0.871300 + 0.490750i \(0.836723\pi\)
\(108\) 0 0
\(109\) −15.3246 −1.46783 −0.733916 0.679240i \(-0.762309\pi\)
−0.733916 + 0.679240i \(0.762309\pi\)
\(110\) 0 0
\(111\) −19.6496 −1.86506
\(112\) 0 0
\(113\) −1.02997 1.41763i −0.0968910 0.133359i 0.757819 0.652465i \(-0.226265\pi\)
−0.854710 + 0.519106i \(0.826265\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.0896 + 18.0163i −1.21014 + 1.66561i
\(118\) 0 0
\(119\) −2.01975 + 6.21616i −0.185150 + 0.569834i
\(120\) 0 0
\(121\) 4.37537 + 10.0924i 0.397761 + 0.917489i
\(122\) 0 0
\(123\) −24.4721 7.95148i −2.20658 0.716961i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.89597 2.89048i 0.789390 0.256488i 0.113546 0.993533i \(-0.463779\pi\)
0.675844 + 0.737045i \(0.263779\pi\)
\(128\) 0 0
\(129\) 8.49247 6.17014i 0.747720 0.543251i
\(130\) 0 0
\(131\) 10.3843 0.907282 0.453641 0.891185i \(-0.350125\pi\)
0.453641 + 0.891185i \(0.350125\pi\)
\(132\) 0 0
\(133\) 10.8773i 0.943184i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.7461 4.79131i 1.25985 0.409349i 0.398408 0.917208i \(-0.369563\pi\)
0.861440 + 0.507859i \(0.169563\pi\)
\(138\) 0 0
\(139\) −16.9807 12.3372i −1.44029 1.04643i −0.987982 0.154567i \(-0.950602\pi\)
−0.452305 0.891863i \(-0.649398\pi\)
\(140\) 0 0
\(141\) 3.94232 12.1332i 0.332003 1.02180i
\(142\) 0 0
\(143\) 7.69760 + 9.60161i 0.643706 + 0.802927i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.31476 + 10.0679i −0.603311 + 0.830387i
\(148\) 0 0
\(149\) 0.899897 + 2.76960i 0.0737224 + 0.226894i 0.981127 0.193363i \(-0.0619397\pi\)
−0.907405 + 0.420258i \(0.861940\pi\)
\(150\) 0 0
\(151\) 3.65731 2.65719i 0.297628 0.216239i −0.428942 0.903332i \(-0.641113\pi\)
0.726570 + 0.687093i \(0.241113\pi\)
\(152\) 0 0
\(153\) 23.2276i 1.87784i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.47059 + 7.52962i 0.436601 + 0.600929i 0.969452 0.245279i \(-0.0788796\pi\)
−0.532852 + 0.846209i \(0.678880\pi\)
\(158\) 0 0
\(159\) 9.01497 + 27.7452i 0.714934 + 2.20034i
\(160\) 0 0
\(161\) 10.1636 + 7.38432i 0.801007 + 0.581966i
\(162\) 0 0
\(163\) 12.0321 + 3.90948i 0.942429 + 0.306214i 0.739635 0.673008i \(-0.234998\pi\)
0.202794 + 0.979221i \(0.434998\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.1672 + 5.25303i 1.25105 + 0.406492i 0.858298 0.513152i \(-0.171522\pi\)
0.392754 + 0.919643i \(0.371522\pi\)
\(168\) 0 0
\(169\) 0.621033 + 0.451207i 0.0477718 + 0.0347082i
\(170\) 0 0
\(171\) −11.9452 36.7636i −0.913473 2.81138i
\(172\) 0 0
\(173\) 7.34298 + 10.1067i 0.558276 + 0.768401i 0.991106 0.133074i \(-0.0424849\pi\)
−0.432830 + 0.901476i \(0.642485\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.67259i 0.651872i
\(178\) 0 0
\(179\) 1.03046 0.748673i 0.0770202 0.0559584i −0.548609 0.836079i \(-0.684842\pi\)
0.625629 + 0.780121i \(0.284842\pi\)
\(180\) 0 0
\(181\) −5.34282 16.4435i −0.397129 1.22224i −0.927291 0.374341i \(-0.877869\pi\)
0.530162 0.847896i \(-0.322131\pi\)
\(182\) 0 0
\(183\) −11.0168 + 15.1633i −0.814384 + 1.12090i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.3820 + 3.38288i 0.905459 + 0.247381i
\(188\) 0 0
\(189\) 4.70017 14.4656i 0.341887 1.05222i
\(190\) 0 0
\(191\) 12.2106 + 8.87154i 0.883530 + 0.641922i 0.934183 0.356794i \(-0.116130\pi\)
−0.0506530 + 0.998716i \(0.516130\pi\)
\(192\) 0 0
\(193\) 20.8527 6.77546i 1.50101 0.487708i 0.560699 0.828020i \(-0.310533\pi\)
0.940313 + 0.340312i \(0.110533\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4874i 1.38842i −0.719772 0.694210i \(-0.755754\pi\)
0.719772 0.694210i \(-0.244246\pi\)
\(198\) 0 0
\(199\) 4.59408 0.325666 0.162833 0.986654i \(-0.447937\pi\)
0.162833 + 0.986654i \(0.447937\pi\)
\(200\) 0 0
\(201\) 25.5804 18.5852i 1.80430 1.31090i
\(202\) 0 0
\(203\) 5.08170 1.65114i 0.356665 0.115888i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 42.4607 + 13.7963i 2.95122 + 0.958910i
\(208\) 0 0
\(209\) −21.3373 + 1.01338i −1.47593 + 0.0700970i
\(210\) 0 0
\(211\) −7.77574 + 23.9313i −0.535304 + 1.64750i 0.207687 + 0.978195i \(0.433406\pi\)
−0.742991 + 0.669301i \(0.766594\pi\)
\(212\) 0 0
\(213\) −16.2865 + 22.4165i −1.11593 + 1.53595i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.53039 + 3.48278i 0.171774 + 0.236426i
\(218\) 0 0
\(219\) −10.9776 −0.741800
\(220\) 0 0
\(221\) 14.3600 0.965960
\(222\) 0 0
\(223\) −15.2157 20.9426i −1.01892 1.40242i −0.912959 0.408051i \(-0.866208\pi\)
−0.105960 0.994370i \(-0.533792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.4444 + 19.8810i −0.958710 + 1.31955i −0.0111621 + 0.999938i \(0.503553\pi\)
−0.947548 + 0.319614i \(0.896447\pi\)
\(228\) 0 0
\(229\) −3.90485 + 12.0179i −0.258040 + 0.794165i 0.735175 + 0.677877i \(0.237100\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(230\) 0 0
\(231\) −14.0492 9.22189i −0.924370 0.606756i
\(232\) 0 0
\(233\) −6.07238 1.97304i −0.397815 0.129258i 0.103276 0.994653i \(-0.467068\pi\)
−0.501090 + 0.865395i \(0.667068\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 48.3718 15.7169i 3.14208 1.02092i
\(238\) 0 0
\(239\) 10.9264 7.93851i 0.706771 0.513499i −0.175359 0.984505i \(-0.556109\pi\)
0.882130 + 0.471005i \(0.156109\pi\)
\(240\) 0 0
\(241\) −26.7883 −1.72559 −0.862793 0.505557i \(-0.831287\pi\)
−0.862793 + 0.505557i \(0.831287\pi\)
\(242\) 0 0
\(243\) 0.0318587i 0.00204373i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −22.7284 + 7.38489i −1.44617 + 0.469889i
\(248\) 0 0
\(249\) −29.2028 21.2171i −1.85065 1.34458i
\(250\) 0 0
\(251\) 2.03249 6.25535i 0.128289 0.394834i −0.866197 0.499703i \(-0.833442\pi\)
0.994486 + 0.104869i \(0.0334424\pi\)
\(252\) 0 0
\(253\) 13.5384 20.6253i 0.851152 1.29670i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3084 15.5647i 0.705399 0.970898i −0.294485 0.955656i \(-0.595148\pi\)
0.999884 0.0152419i \(-0.00485184\pi\)
\(258\) 0 0
\(259\) −3.41792 10.5193i −0.212379 0.653637i
\(260\) 0 0
\(261\) 15.3621 11.1612i 0.950887 0.690860i
\(262\) 0 0
\(263\) 4.89929i 0.302103i −0.988526 0.151052i \(-0.951734\pi\)
0.988526 0.151052i \(-0.0482660\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 27.4900 + 37.8368i 1.68236 + 2.31557i
\(268\) 0 0
\(269\) −1.13958 3.50727i −0.0694814 0.213842i 0.910286 0.413979i \(-0.135861\pi\)
−0.979768 + 0.200137i \(0.935861\pi\)
\(270\) 0 0
\(271\) −3.28380 2.38582i −0.199477 0.144928i 0.483563 0.875310i \(-0.339342\pi\)
−0.683040 + 0.730381i \(0.739342\pi\)
\(272\) 0 0
\(273\) −17.8809 5.80987i −1.08220 0.351629i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.2373 3.32631i −0.615101 0.199859i −0.0151373 0.999885i \(-0.504819\pi\)
−0.599964 + 0.800027i \(0.704819\pi\)
\(278\) 0 0
\(279\) 12.3770 + 8.99240i 0.740991 + 0.538361i
\(280\) 0 0
\(281\) −4.18268 12.8730i −0.249518 0.767936i −0.994860 0.101255i \(-0.967714\pi\)
0.745343 0.666681i \(-0.232286\pi\)
\(282\) 0 0
\(283\) −6.57386 9.04814i −0.390775 0.537856i 0.567624 0.823288i \(-0.307863\pi\)
−0.958399 + 0.285432i \(0.907863\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.4841i 0.854970i
\(288\) 0 0
\(289\) −1.63591 + 1.18856i −0.0962302 + 0.0699154i
\(290\) 0 0
\(291\) 6.22089 + 19.1459i 0.364675 + 1.12236i
\(292\) 0 0
\(293\) −5.67584 + 7.81212i −0.331586 + 0.456389i −0.941960 0.335724i \(-0.891019\pi\)
0.610374 + 0.792113i \(0.291019\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −28.8141 7.87231i −1.67196 0.456798i
\(298\) 0 0
\(299\) 8.52931 26.2505i 0.493262 1.51811i
\(300\) 0 0
\(301\) 4.78036 + 3.47313i 0.275535 + 0.200188i
\(302\) 0 0
\(303\) 13.9628 4.53678i 0.802141 0.260631i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.20959i 0.297327i 0.988888 + 0.148664i \(0.0474971\pi\)
−0.988888 + 0.148664i \(0.952503\pi\)
\(308\) 0 0
\(309\) 50.0369 2.84650
\(310\) 0 0
\(311\) −19.5453 + 14.2005i −1.10831 + 0.805237i −0.982397 0.186803i \(-0.940187\pi\)
−0.125917 + 0.992041i \(0.540187\pi\)
\(312\) 0 0
\(313\) 12.4633 4.04956i 0.704465 0.228895i 0.0651903 0.997873i \(-0.479235\pi\)
0.639275 + 0.768978i \(0.279235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.73454 + 2.18818i 0.378249 + 0.122901i 0.491970 0.870612i \(-0.336277\pi\)
−0.113721 + 0.993513i \(0.536277\pi\)
\(318\) 0 0
\(319\) −3.71236 9.81458i −0.207853 0.549511i
\(320\) 0 0
\(321\) 2.20795 6.79538i 0.123236 0.379281i
\(322\) 0 0
\(323\) −14.6513 + 20.1658i −0.815220 + 1.12205i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −27.0254 37.1973i −1.49451 2.05701i
\(328\) 0 0
\(329\) 7.18117 0.395911
\(330\) 0 0
\(331\) −1.76299 −0.0969025 −0.0484513 0.998826i \(-0.515429\pi\)
−0.0484513 + 0.998826i \(0.515429\pi\)
\(332\) 0 0
\(333\) −23.1040 31.8000i −1.26609 1.74263i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.97253 + 9.59687i −0.379818 + 0.522775i −0.955536 0.294874i \(-0.904722\pi\)
0.575718 + 0.817648i \(0.304722\pi\)
\(338\) 0 0
\(339\) 1.62461 5.00005i 0.0882369 0.271565i
\(340\) 0 0
\(341\) 6.59617 5.28815i 0.357203 0.286369i
\(342\) 0 0
\(343\) −17.9055 5.81784i −0.966804 0.314134i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.74747 2.51731i 0.415906 0.135136i −0.0935864 0.995611i \(-0.529833\pi\)
0.509493 + 0.860475i \(0.329833\pi\)
\(348\) 0 0
\(349\) 13.8784 10.0832i 0.742893 0.539743i −0.150723 0.988576i \(-0.548160\pi\)
0.893616 + 0.448833i \(0.148160\pi\)
\(350\) 0 0
\(351\) −33.4173 −1.78368
\(352\) 0 0
\(353\) 9.89553i 0.526686i 0.964702 + 0.263343i \(0.0848251\pi\)
−0.964702 + 0.263343i \(0.915175\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −18.6503 + 6.05985i −0.987079 + 0.320721i
\(358\) 0 0
\(359\) 30.2411 + 21.9715i 1.59607 + 1.15961i 0.894561 + 0.446946i \(0.147488\pi\)
0.701506 + 0.712664i \(0.252512\pi\)
\(360\) 0 0
\(361\) 6.94745 21.3821i 0.365655 1.12537i
\(362\) 0 0
\(363\) −16.7810 + 28.4185i −0.880777 + 1.49158i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.3951 15.6840i 0.594819 0.818698i −0.400403 0.916339i \(-0.631130\pi\)
0.995222 + 0.0976415i \(0.0311299\pi\)
\(368\) 0 0
\(369\) −15.9061 48.9539i −0.828038 2.54844i
\(370\) 0 0
\(371\) −13.2851 + 9.65221i −0.689730 + 0.501118i
\(372\) 0 0
\(373\) 1.02733i 0.0531933i −0.999646 0.0265967i \(-0.991533\pi\)
0.999646 0.0265967i \(-0.00846698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.90018 9.49729i −0.355378 0.489135i
\(378\) 0 0
\(379\) −2.32646 7.16010i −0.119502 0.367790i 0.873357 0.487080i \(-0.161938\pi\)
−0.992859 + 0.119290i \(0.961938\pi\)
\(380\) 0 0
\(381\) 22.7043 + 16.4957i 1.16318 + 0.845098i
\(382\) 0 0
\(383\) −14.3960 4.67756i −0.735603 0.239012i −0.0828281 0.996564i \(-0.526395\pi\)
−0.652775 + 0.757552i \(0.726395\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.9709 + 6.48895i 1.01518 + 0.329852i
\(388\) 0 0
\(389\) 4.11088 + 2.98673i 0.208430 + 0.151433i 0.687103 0.726560i \(-0.258882\pi\)
−0.478673 + 0.877993i \(0.658882\pi\)
\(390\) 0 0
\(391\) −8.89630 27.3800i −0.449905 1.38467i
\(392\) 0 0
\(393\) 18.3130 + 25.2057i 0.923771 + 1.27146i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.78023i 0.290101i 0.989424 + 0.145051i \(0.0463345\pi\)
−0.989424 + 0.145051i \(0.953665\pi\)
\(398\) 0 0
\(399\) 26.4024 19.1825i 1.32177 0.960326i
\(400\) 0 0
\(401\) 7.23049 + 22.2532i 0.361074 + 1.11127i 0.952403 + 0.304841i \(0.0986032\pi\)
−0.591330 + 0.806430i \(0.701397\pi\)
\(402\) 0 0
\(403\) 5.55938 7.65183i 0.276932 0.381165i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.3165 + 7.68472i −1.00705 + 0.380917i
\(408\) 0 0
\(409\) −2.63551 + 8.11126i −0.130318 + 0.401076i −0.994832 0.101531i \(-0.967626\pi\)
0.864515 + 0.502607i \(0.167626\pi\)
\(410\) 0 0
\(411\) 37.6352 + 27.3435i 1.85641 + 1.34876i
\(412\) 0 0
\(413\) 4.64282 1.50854i 0.228458 0.0742305i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 62.9742i 3.08386i
\(418\) 0 0
\(419\) −26.9789 −1.31801 −0.659003 0.752141i \(-0.729021\pi\)
−0.659003 + 0.752141i \(0.729021\pi\)
\(420\) 0 0
\(421\) 18.6021 13.5152i 0.906612 0.658692i −0.0335437 0.999437i \(-0.510679\pi\)
0.940156 + 0.340745i \(0.110679\pi\)
\(422\) 0 0
\(423\) 24.2712 7.88618i 1.18010 0.383439i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0339 3.26020i −0.485573 0.157772i
\(428\) 0 0
\(429\) −9.73094 + 35.6170i −0.469814 + 1.71961i
\(430\) 0 0
\(431\) 0.655391 2.01708i 0.0315691 0.0971596i −0.934030 0.357193i \(-0.883734\pi\)
0.965600 + 0.260034i \(0.0837337\pi\)
\(432\) 0 0
\(433\) 16.0975 22.1563i 0.773597 1.06476i −0.222363 0.974964i \(-0.571377\pi\)
0.995960 0.0898005i \(-0.0286230\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.1613 + 38.7607i 1.34714 + 1.85417i
\(438\) 0 0
\(439\) −31.5257 −1.50464 −0.752319 0.658799i \(-0.771065\pi\)
−0.752319 + 0.658799i \(0.771065\pi\)
\(440\) 0 0
\(441\) −24.8941 −1.18543
\(442\) 0 0
\(443\) −3.95050 5.43740i −0.187694 0.258339i 0.704792 0.709414i \(-0.251040\pi\)
−0.892486 + 0.451076i \(0.851040\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.13562 + 7.06858i −0.242907 + 0.334332i
\(448\) 0 0
\(449\) −3.99069 + 12.2821i −0.188332 + 0.579627i −0.999990 0.00450672i \(-0.998565\pi\)
0.811658 + 0.584133i \(0.198565\pi\)
\(450\) 0 0
\(451\) −28.4125 + 1.34940i −1.33789 + 0.0635409i
\(452\) 0 0
\(453\) 12.8996 + 4.19132i 0.606074 + 0.196925i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.6090 + 3.44706i −0.496267 + 0.161247i −0.546448 0.837493i \(-0.684020\pi\)
0.0501808 + 0.998740i \(0.484020\pi\)
\(458\) 0 0
\(459\) −28.1984 + 20.4873i −1.31619 + 0.956267i
\(460\) 0 0
\(461\) 11.7060 0.545205 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(462\) 0 0
\(463\) 10.7840i 0.501173i −0.968094 0.250586i \(-0.919377\pi\)
0.968094 0.250586i \(-0.0806234\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8907 + 6.46289i −0.920433 + 0.299067i −0.730644 0.682758i \(-0.760780\pi\)
−0.189789 + 0.981825i \(0.560780\pi\)
\(468\) 0 0
\(469\) 14.3990 + 10.4615i 0.664885 + 0.483067i
\(470\) 0 0
\(471\) −8.62903 + 26.5574i −0.397605 + 1.22370i
\(472\) 0 0
\(473\) 6.36764 9.70086i 0.292784 0.446046i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −34.3017 + 47.2123i −1.57057 + 2.16170i
\(478\) 0 0
\(479\) 3.47943 + 10.7086i 0.158979 + 0.489288i 0.998542 0.0539745i \(-0.0171890\pi\)
−0.839563 + 0.543262i \(0.817189\pi\)
\(480\) 0 0
\(481\) −19.6597 + 14.2836i −0.896406 + 0.651277i
\(482\) 0 0
\(483\) 37.6926i 1.71507i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.99978 + 6.88160i 0.226562 + 0.311835i 0.907131 0.420848i \(-0.138268\pi\)
−0.680569 + 0.732684i \(0.738268\pi\)
\(488\) 0 0
\(489\) 11.7296 + 36.0999i 0.530430 + 1.63250i
\(490\) 0 0
\(491\) −11.2974 8.20808i −0.509847 0.370425i 0.302919 0.953016i \(-0.402039\pi\)
−0.812765 + 0.582591i \(0.802039\pi\)
\(492\) 0 0
\(493\) −11.6451 3.78373i −0.524470 0.170411i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.8334 4.81968i −0.665371 0.216192i
\(498\) 0 0
\(499\) −4.47304 3.24985i −0.200241 0.145483i 0.483146 0.875540i \(-0.339494\pi\)
−0.683387 + 0.730056i \(0.739494\pi\)
\(500\) 0 0
\(501\) 15.7606 + 48.5062i 0.704133 + 2.16710i
\(502\) 0 0
\(503\) 5.40452 + 7.43868i 0.240976 + 0.331674i 0.912325 0.409466i \(-0.134285\pi\)
−0.671350 + 0.741141i \(0.734285\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.30314i 0.102286i
\(508\) 0 0
\(509\) 8.96759 6.51534i 0.397482 0.288787i −0.371033 0.928620i \(-0.620996\pi\)
0.768514 + 0.639832i \(0.220996\pi\)
\(510\) 0 0
\(511\) −1.90949 5.87681i −0.0844709 0.259975i
\(512\) 0 0
\(513\) 34.0951 46.9279i 1.50534 2.07192i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.669030 14.0868i −0.0294239 0.619537i
\(518\) 0 0
\(519\) −11.5824 + 35.6471i −0.508413 + 1.56473i
\(520\) 0 0
\(521\) −14.8879 10.8167i −0.652252 0.473889i 0.211786 0.977316i \(-0.432072\pi\)
−0.864038 + 0.503427i \(0.832072\pi\)
\(522\) 0 0
\(523\) −23.4323 + 7.61361i −1.02462 + 0.332920i −0.772662 0.634818i \(-0.781075\pi\)
−0.251960 + 0.967738i \(0.581075\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.86514i 0.429732i
\(528\) 0 0
\(529\) −32.3354 −1.40589
\(530\) 0 0
\(531\) 14.0353 10.1972i 0.609080 0.442523i
\(532\) 0 0
\(533\) −30.2648 + 9.83363i −1.31091 + 0.425942i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.63449 + 1.18092i 0.156840 + 0.0509604i
\(538\) 0 0
\(539\) −3.62559 + 13.2703i −0.156165 + 0.571593i
\(540\) 0 0
\(541\) 2.02811 6.24188i 0.0871953 0.268360i −0.897946 0.440106i \(-0.854941\pi\)
0.985141 + 0.171746i \(0.0549409\pi\)
\(542\) 0 0
\(543\) 30.4910 41.9672i 1.30849 1.80098i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.383526 + 0.527878i 0.0163984 + 0.0225704i 0.817137 0.576443i \(-0.195560\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(548\) 0 0
\(549\) −37.4931 −1.60017
\(550\) 0 0
\(551\) 20.3772 0.868098
\(552\) 0 0
\(553\) 16.8279 + 23.1617i 0.715596 + 0.984934i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.00048 1.37704i 0.0423915 0.0583469i −0.787295 0.616576i \(-0.788519\pi\)
0.829687 + 0.558230i \(0.188519\pi\)
\(558\) 0 0
\(559\) 4.01166 12.3466i 0.169675 0.522207i
\(560\) 0 0
\(561\) 13.6247 + 36.0204i 0.575236 + 1.52078i
\(562\) 0 0
\(563\) 41.5681 + 13.5063i 1.75189 + 0.569222i 0.996309 0.0858390i \(-0.0273571\pi\)
0.755576 + 0.655061i \(0.227357\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 14.4813 4.70525i 0.608157 0.197602i
\(568\) 0 0
\(569\) −25.3587 + 18.4242i −1.06309 + 0.772382i −0.974658 0.223700i \(-0.928187\pi\)
−0.0884349 + 0.996082i \(0.528187\pi\)
\(570\) 0 0
\(571\) 9.86361 0.412779 0.206390 0.978470i \(-0.433829\pi\)
0.206390 + 0.978470i \(0.433829\pi\)
\(572\) 0 0
\(573\) 45.2840i 1.89176i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.5274 + 7.96943i −1.02109 + 0.331772i −0.771261 0.636519i \(-0.780374\pi\)
−0.249827 + 0.968290i \(0.580374\pi\)
\(578\) 0 0
\(579\) 53.2204 + 38.6669i 2.21176 + 1.60694i
\(580\) 0 0
\(581\) 6.27878 19.3241i 0.260488 0.801698i
\(582\) 0 0
\(583\) 20.1718 + 25.1613i 0.835429 + 1.04207i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.625301 + 0.860653i −0.0258089 + 0.0355229i −0.821726 0.569882i \(-0.806989\pi\)
0.795918 + 0.605405i \(0.206989\pi\)
\(588\) 0 0
\(589\) 5.07332 + 15.6141i 0.209043 + 0.643367i
\(590\) 0 0
\(591\) 47.3016 34.3666i 1.94573 1.41365i
\(592\) 0 0
\(593\) 19.7906i 0.812702i 0.913717 + 0.406351i \(0.133199\pi\)
−0.913717 + 0.406351i \(0.866801\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.10180 + 11.1512i 0.331585 + 0.456387i
\(598\) 0 0
\(599\) 1.40163 + 4.31378i 0.0572692 + 0.176256i 0.975599 0.219559i \(-0.0704619\pi\)
−0.918330 + 0.395816i \(0.870462\pi\)
\(600\) 0 0
\(601\) −38.2474 27.7883i −1.56014 1.13351i −0.935892 0.352286i \(-0.885404\pi\)
−0.624251 0.781224i \(-0.714596\pi\)
\(602\) 0 0
\(603\) 60.1549 + 19.5455i 2.44970 + 0.795954i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0424 + 3.91282i 0.488787 + 0.158817i 0.543033 0.839711i \(-0.317276\pi\)
−0.0542464 + 0.998528i \(0.517276\pi\)
\(608\) 0 0
\(609\) 12.9695 + 9.42291i 0.525552 + 0.381836i
\(610\) 0 0
\(611\) −4.87548 15.0052i −0.197241 0.607045i
\(612\) 0 0
\(613\) −6.78018 9.33212i −0.273849 0.376921i 0.649835 0.760075i \(-0.274838\pi\)
−0.923684 + 0.383154i \(0.874838\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.58142i 0.385733i 0.981225 + 0.192867i \(0.0617785\pi\)
−0.981225 + 0.192867i \(0.938221\pi\)
\(618\) 0 0
\(619\) −0.972177 + 0.706328i −0.0390751 + 0.0283897i −0.607151 0.794586i \(-0.707688\pi\)
0.568076 + 0.822976i \(0.307688\pi\)
\(620\) 0 0
\(621\) 20.7026 + 63.7161i 0.830767 + 2.55684i
\(622\) 0 0
\(623\) −15.4740 + 21.2981i −0.619951 + 0.853289i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −40.0887 50.0046i −1.60099 1.99699i
\(628\) 0 0
\(629\) −7.83245 + 24.1058i −0.312300 + 0.961161i
\(630\) 0 0
\(631\) −11.5819 8.41474i −0.461068 0.334985i 0.332882 0.942968i \(-0.391979\pi\)
−0.793950 + 0.607983i \(0.791979\pi\)
\(632\) 0 0
\(633\) −71.8009 + 23.3295i −2.85383 + 0.927265i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.3903i 0.609786i
\(638\) 0 0
\(639\) −55.4274 −2.19267
\(640\) 0 0
\(641\) 29.9553 21.7638i 1.18316 0.859618i 0.190637 0.981661i \(-0.438945\pi\)
0.992525 + 0.122043i \(0.0389445\pi\)
\(642\) 0 0
\(643\) 4.25667 1.38308i 0.167867 0.0545432i −0.223878 0.974617i \(-0.571872\pi\)
0.391745 + 0.920074i \(0.371872\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.1713 8.82850i −1.06822 0.347084i −0.278423 0.960458i \(-0.589812\pi\)
−0.789792 + 0.613374i \(0.789812\pi\)
\(648\) 0 0
\(649\) −3.39175 8.96694i −0.133138 0.351983i
\(650\) 0 0
\(651\) −3.99130 + 12.2840i −0.156431 + 0.481446i
\(652\) 0 0
\(653\) −0.396454 + 0.545672i −0.0155144 + 0.0213538i −0.816704 0.577057i \(-0.804201\pi\)
0.801189 + 0.598411i \(0.204201\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.9075 17.7657i −0.503570 0.693105i
\(658\) 0 0
\(659\) 30.4518 1.18623 0.593117 0.805116i \(-0.297897\pi\)
0.593117 + 0.805116i \(0.297897\pi\)
\(660\) 0 0
\(661\) −29.2772 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(662\) 0 0
\(663\) 25.3243 + 34.8559i 0.983515 + 1.35369i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.8335 + 19.0402i −0.535636 + 0.737239i
\(668\) 0 0
\(669\) 24.0005 73.8658i 0.927912 2.85582i
\(670\) 0 0
\(671\) −5.46051 + 19.9865i −0.210801 + 0.771569i
\(672\) 0 0
\(673\) 1.52112 + 0.494242i 0.0586349 + 0.0190516i 0.338188 0.941079i \(-0.390186\pi\)
−0.279553 + 0.960130i \(0.590186\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.91287 3.22089i 0.380982 0.123789i −0.112264 0.993678i \(-0.535810\pi\)
0.493246 + 0.869890i \(0.335810\pi\)
\(678\) 0 0
\(679\) −9.16757 + 6.66063i −0.351819 + 0.255612i
\(680\) 0 0
\(681\) −73.7302 −2.82535
\(682\) 0 0
\(683\) 38.4144i 1.46988i −0.678130 0.734942i \(-0.737209\pi\)
0.678130 0.734942i \(-0.262791\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −36.0573 + 11.7157i −1.37567 + 0.446982i
\(688\) 0 0
\(689\) 29.1881 + 21.2064i 1.11198 + 0.807899i
\(690\) 0 0
\(691\) 5.37655 16.5473i 0.204534 0.629490i −0.795199 0.606349i \(-0.792633\pi\)
0.999732 0.0231407i \(-0.00736657\pi\)
\(692\) 0 0
\(693\) −1.59481 33.5797i −0.0605819 1.27559i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −19.5095 + 26.8525i −0.738974 + 1.01711i
\(698\) 0 0
\(699\) −5.91969 18.2189i −0.223903 0.689103i
\(700\) 0 0
\(701\) −41.3290 + 30.0273i −1.56098 + 1.13412i −0.625771 + 0.780007i \(0.715216\pi\)
−0.935204 + 0.354109i \(0.884784\pi\)
\(702\) 0 0
\(703\) 42.1815i 1.59090i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.85748 + 6.68574i 0.182684 + 0.251443i
\(708\) 0 0
\(709\) 3.11182 + 9.57719i 0.116867 + 0.359679i 0.992332 0.123603i \(-0.0394448\pi\)
−0.875465 + 0.483281i \(0.839445\pi\)
\(710\) 0 0
\(711\) 82.3111 + 59.8025i 3.08691 + 2.24277i
\(712\) 0 0
\(713\) −18.0337 5.85952i −0.675369 0.219441i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 38.5381 + 12.5218i 1.43923 + 0.467635i
\(718\) 0 0
\(719\) −17.8912 12.9987i −0.667230 0.484771i 0.201867 0.979413i \(-0.435299\pi\)
−0.869097 + 0.494642i \(0.835299\pi\)
\(720\) 0 0
\(721\) 8.70361 + 26.7869i 0.324139 + 0.997598i
\(722\) 0 0
\(723\) −47.2420 65.0230i −1.75695 2.41823i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 25.8714i 0.959517i 0.877401 + 0.479758i \(0.159276\pi\)
−0.877401 + 0.479758i \(0.840724\pi\)
\(728\) 0 0
\(729\) −21.8048 + 15.8421i −0.807585 + 0.586745i
\(730\) 0 0
\(731\) −4.18428 12.8779i −0.154761 0.476306i
\(732\) 0 0
\(733\) 21.4566 29.5324i 0.792516 1.09080i −0.201274 0.979535i \(-0.564508\pi\)
0.993790 0.111270i \(-0.0354917\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.1801 29.2202i 0.706508 1.07634i
\(738\) 0 0
\(739\) −5.51149 + 16.9626i −0.202743 + 0.623980i 0.797055 + 0.603907i \(0.206390\pi\)
−0.999799 + 0.0200734i \(0.993610\pi\)
\(740\) 0 0
\(741\) −58.0074 42.1448i −2.13096 1.54823i
\(742\) 0 0
\(743\) −37.6450 + 12.2316i −1.38106 + 0.448733i −0.903018 0.429604i \(-0.858653\pi\)
−0.478042 + 0.878337i \(0.658653\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 72.2074i 2.64193i
\(748\) 0 0
\(749\) 4.02192 0.146958
\(750\) 0 0
\(751\) 5.73271 4.16506i 0.209190 0.151985i −0.478257 0.878220i \(-0.658731\pi\)
0.687447 + 0.726235i \(0.258731\pi\)
\(752\) 0 0
\(753\) 18.7679 6.09806i 0.683940 0.222226i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.53982 2.44983i −0.274039 0.0890407i 0.168774 0.985655i \(-0.446019\pi\)
−0.442813 + 0.896614i \(0.646019\pi\)
\(758\) 0 0
\(759\) 73.9388 3.51161i 2.68381 0.127463i
\(760\) 0 0
\(761\) 9.04626 27.8415i 0.327927 1.00925i −0.642175 0.766558i \(-0.721968\pi\)
0.970102 0.242697i \(-0.0780321\pi\)
\(762\) 0 0
\(763\) 15.2124 20.9381i 0.550727 0.758010i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.30425 8.67705i −0.227633 0.313310i
\(768\) 0 0
\(769\) 3.78340 0.136433 0.0682165 0.997671i \(-0.478269\pi\)
0.0682165 + 0.997671i \(0.478269\pi\)
\(770\) 0 0
\(771\) 57.7227 2.07883
\(772\) 0 0
\(773\) −1.51617 2.08683i −0.0545329 0.0750581i 0.780880 0.624682i \(-0.214771\pi\)
−0.835413 + 0.549623i \(0.814771\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 19.5057 26.8474i 0.699765 0.963143i
\(778\) 0 0
\(779\) 17.0693 52.5340i 0.611572 1.88222i
\(780\) 0 0
\(781\) −8.07247 + 29.5467i −0.288856 + 1.05726i
\(782\) 0 0
\(783\) 27.0994 + 8.80513i 0.968454 + 0.314670i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −13.0248 + 4.23200i −0.464282 + 0.150854i −0.531811 0.846863i \(-0.678488\pi\)
0.0675291 + 0.997717i \(0.478488\pi\)
\(788\) 0 0
\(789\) 11.8920 8.64005i 0.423367 0.307594i
\(790\) 0 0
\(791\) 2.95933 0.105222
\(792\) 0 0
\(793\) 23.1794i 0.823124i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44.0779 + 14.3218i −1.56132 + 0.507303i −0.957160 0.289561i \(-0.906491\pi\)
−0.604159 + 0.796864i \(0.706491\pi\)
\(798\) 0 0
\(799\) −13.3134 9.67274i −0.470993 0.342197i
\(800\) 0 0
\(801\) −28.9104 + 88.9771i −1.02150 + 3.14385i
\(802\) 0 0
\(803\) −11.3502 + 4.29322i −0.400541 + 0.151504i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.50347 8.95126i 0.228933 0.315099i
\(808\) 0 0
\(809\) −2.35528 7.24879i −0.0828071 0.254854i 0.901078 0.433658i \(-0.142777\pi\)
−0.983885 + 0.178804i \(0.942777\pi\)
\(810\) 0 0
\(811\) −23.5550 + 17.1137i −0.827127 + 0.600943i −0.918745 0.394851i \(-0.870796\pi\)
0.0916180 + 0.995794i \(0.470796\pi\)
\(812\) 0 0
\(813\) 12.1782i 0.427108i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 13.2453 + 18.2307i 0.463396 + 0.637810i
\(818\) 0 0
\(819\) −11.6220 35.7689i −0.406106 1.24987i
\(820\) 0 0
\(821\) −39.7129 28.8531i −1.38599 1.00698i −0.996292 0.0860379i \(-0.972579\pi\)
−0.389698 0.920943i \(-0.627421\pi\)
\(822\) 0 0
\(823\) −53.1942 17.2838i −1.85423 0.602476i −0.996015 0.0891893i \(-0.971572\pi\)
−0.858217 0.513287i \(-0.828428\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.3419 5.95965i −0.637811 0.207237i −0.0277792 0.999614i \(-0.508844\pi\)
−0.610032 + 0.792377i \(0.708844\pi\)
\(828\) 0 0
\(829\) −13.8870 10.0895i −0.482316 0.350423i 0.319906 0.947449i \(-0.396349\pi\)
−0.802222 + 0.597026i \(0.796349\pi\)
\(830\) 0 0
\(831\) −9.97991 30.7150i −0.346199 1.06549i
\(832\) 0 0
\(833\) 9.43543 + 12.9868i 0.326918 + 0.449964i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22.9572i 0.793517i
\(838\) 0 0
\(839\) 30.5653 22.2070i 1.05523 0.766671i 0.0820317 0.996630i \(-0.473859\pi\)
0.973200 + 0.229959i \(0.0738591\pi\)
\(840\) 0 0
\(841\) −5.86830 18.0608i −0.202355 0.622785i
\(842\) 0 0
\(843\) 23.8701 32.8544i 0.822131 1.13157i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −18.1326 4.04041i −0.623044 0.138830i
\(848\) 0 0
\(849\) 10.3693 31.9133i 0.355872 1.09526i
\(850\) 0 0
\(851\) 39.4139 + 28.6358i 1.35109 + 0.981624i
\(852\) 0 0
\(853\) −10.0519 + 3.26607i −0.344171 + 0.111828i −0.476002 0.879444i \(-0.657914\pi\)
0.131831 + 0.991272i \(0.457914\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.6489i 0.500395i −0.968195 0.250198i \(-0.919504\pi\)
0.968195 0.250198i \(-0.0804956\pi\)
\(858\) 0 0
\(859\) 1.44844 0.0494202 0.0247101 0.999695i \(-0.492134\pi\)
0.0247101 + 0.999695i \(0.492134\pi\)
\(860\) 0 0
\(861\) 35.1571 25.5432i 1.19815 0.870508i
\(862\) 0 0
\(863\) −45.9954 + 14.9448i −1.56570 + 0.508727i −0.958323 0.285687i \(-0.907778\pi\)
−0.607377 + 0.794414i \(0.707778\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.76996 1.87477i −0.195958 0.0636707i
\(868\) 0 0
\(869\) 43.8668 35.1680i 1.48808 1.19299i
\(870\) 0 0
\(871\) 12.0836 37.1896i 0.409438 1.26012i
\(872\) 0 0
\(873\) −23.6703 + 32.5794i −0.801120 + 1.10265i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.47976 + 6.16586i 0.151271 + 0.208206i 0.877926 0.478795i \(-0.158926\pi\)
−0.726656 + 0.687002i \(0.758926\pi\)
\(878\) 0 0
\(879\) −28.9718 −0.977194
\(880\) 0 0
\(881\) −14.1585 −0.477013 −0.238506 0.971141i \(-0.576658\pi\)
−0.238506 + 0.971141i \(0.576658\pi\)
\(882\) 0 0
\(883\) 17.8847 + 24.6162i 0.601868 + 0.828400i 0.995878 0.0907061i \(-0.0289124\pi\)
−0.394010 + 0.919106i \(0.628912\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.4474 40.5308i 0.988746 1.36089i 0.0567640 0.998388i \(-0.481922\pi\)
0.931982 0.362504i \(-0.118078\pi\)
\(888\) 0 0
\(889\) −4.88157 + 15.0239i −0.163723 + 0.503886i
\(890\) 0 0
\(891\) −10.5791 27.9685i −0.354413 0.936981i
\(892\) 0 0
\(893\) 26.0462 + 8.46291i 0.871601 + 0.283200i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 78.7592 25.5904i 2.62969 0.854440i
\(898\) 0 0
\(899\) −6.52451 + 4.74033i −0.217605 + 0.158099i
\(900\) 0 0
\(901\) 37.6308 1.25366
\(902\) 0 0
\(903\) 17.7283i 0.589960i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33.8559 11.0004i 1.12417 0.365264i 0.312810 0.949816i \(-0.398730\pi\)
0.811356 + 0.584552i \(0.198730\pi\)
\(908\) 0 0
\(909\) 23.7596 + 17.2623i 0.788055 + 0.572556i
\(910\) 0 0
\(911\) 14.7216 45.3086i 0.487750 1.50114i −0.340208 0.940350i \(-0.610498\pi\)
0.827958 0.560790i \(-0.189502\pi\)
\(912\) 0 0
\(913\) −38.4917 10.5163i −1.27389 0.348039i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.3083 + 14.1881i −0.340410 + 0.468534i
\(918\) 0 0
\(919\) −17.3383 53.3617i −0.571937 1.76024i −0.646380 0.763016i \(-0.723718\pi\)
0.0744426 0.997225i \(-0.476282\pi\)
\(920\) 0 0
\(921\) −12.6452 + 9.18726i −0.416673 + 0.302731i
\(922\) 0 0
\(923\) 34.2669i 1.12791i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 58.8335 + 80.9773i 1.93235 + 2.65965i
\(928\) 0 0
\(929\) 8.31625 + 25.5948i 0.272847 + 0.839737i 0.989781 + 0.142596i \(0.0455450\pi\)
−0.716934 + 0.697141i \(0.754455\pi\)
\(930\) 0 0
\(931\) −21.6126 15.7025i −0.708325 0.514628i
\(932\) 0 0
\(933\) −68.9375 22.3992i −2.25691 0.733316i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.72349 2.18459i −0.219647 0.0713676i 0.197126 0.980378i \(-0.436839\pi\)
−0.416773 + 0.909010i \(0.636839\pi\)
\(938\) 0 0
\(939\) 31.8088 + 23.1104i 1.03804 + 0.754180i
\(940\) 0 0
\(941\) −4.39849 13.5372i −0.143387 0.441298i 0.853413 0.521235i \(-0.174528\pi\)
−0.996800 + 0.0799361i \(0.974528\pi\)
\(942\) 0 0
\(943\) 37.4992 + 51.6132i 1.22114 + 1.68076i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.1617i 0.460194i 0.973168 + 0.230097i \(0.0739044\pi\)
−0.973168 + 0.230097i \(0.926096\pi\)
\(948\) 0 0
\(949\) −10.9833 + 7.97982i −0.356533 + 0.259036i
\(950\) 0 0
\(951\) 6.56520 + 20.2056i 0.212891 + 0.655211i
\(952\) 0 0
\(953\) −0.186709 + 0.256983i −0.00604809 + 0.00832448i −0.812030 0.583615i \(-0.801638\pi\)
0.805982 + 0.591940i \(0.201638\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.2760 26.3193i 0.558452 0.850781i
\(958\) 0 0
\(959\) −8.09179 + 24.9040i −0.261298 + 0.804191i
\(960\) 0 0
\(961\) 19.8228 + 14.4021i 0.639446 + 0.464585i
\(962\) 0 0
\(963\) 13.5934 4.41678i 0.438042 0.142329i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.3690i 1.20171i −0.799359 0.600853i \(-0.794828\pi\)
0.799359 0.600853i \(-0.205172\pi\)
\(968\) 0 0
\(969\) −74.7862 −2.40248
\(970\) 0 0
\(971\) −24.6036 + 17.8756i −0.789568 + 0.573655i −0.907835 0.419327i \(-0.862266\pi\)
0.118267 + 0.992982i \(0.462266\pi\)
\(972\) 0 0
\(973\) 33.7129 10.9540i 1.08078 0.351168i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.5171 + 6.66642i 0.656401 + 0.213278i 0.618235 0.785994i \(-0.287848\pi\)
0.0381668 + 0.999271i \(0.487848\pi\)
\(978\) 0 0
\(979\) 43.2205 + 28.3699i 1.38133 + 0.906707i
\(980\) 0 0
\(981\) 28.4218 87.4732i 0.907437 2.79281i
\(982\) 0 0
\(983\) 6.78715 9.34171i 0.216477 0.297954i −0.686944 0.726711i \(-0.741048\pi\)
0.903420 + 0.428756i \(0.141048\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 12.6642 + 17.4308i 0.403106 + 0.554828i
\(988\) 0 0
\(989\) −26.0264 −0.827591
\(990\) 0 0
\(991\) 10.6881 0.339518 0.169759 0.985486i \(-0.445701\pi\)
0.169759 + 0.985486i \(0.445701\pi\)
\(992\) 0 0
\(993\) −3.10908 4.27928i −0.0986636 0.135799i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.0593 + 27.6093i −0.635285 + 0.874394i −0.998353 0.0573683i \(-0.981729\pi\)
0.363069 + 0.931762i \(0.381729\pi\)
\(998\) 0 0
\(999\) 18.2269 56.0967i 0.576674 1.77482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.cb.d.449.8 32
5.2 odd 4 1100.2.n.e.801.4 yes 16
5.3 odd 4 1100.2.n.d.801.1 yes 16
5.4 even 2 inner 1100.2.cb.d.449.1 32
11.5 even 5 inner 1100.2.cb.d.49.1 32
55.27 odd 20 1100.2.n.e.401.4 yes 16
55.38 odd 20 1100.2.n.d.401.1 16
55.49 even 10 inner 1100.2.cb.d.49.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.n.d.401.1 16 55.38 odd 20
1100.2.n.d.801.1 yes 16 5.3 odd 4
1100.2.n.e.401.4 yes 16 55.27 odd 20
1100.2.n.e.801.4 yes 16 5.2 odd 4
1100.2.cb.d.49.1 32 11.5 even 5 inner
1100.2.cb.d.49.8 32 55.49 even 10 inner
1100.2.cb.d.449.1 32 5.4 even 2 inner
1100.2.cb.d.449.8 32 1.1 even 1 trivial