Properties

Label 1100.2.cb.d.49.8
Level $1100$
Weight $2$
Character 1100.49
Analytic conductor $8.784$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(49,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.cb (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.8
Character \(\chi\) \(=\) 1100.49
Dual form 1100.2.cb.d.449.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.76353 - 2.42729i) q^{3} +(-0.992679 - 1.36631i) q^{7} +(-1.85465 - 5.70802i) q^{9} +(2.77267 - 1.81998i) q^{11} +(3.52887 - 1.14660i) q^{13} +(3.68071 + 1.19594i) q^{17} +(-5.21062 - 3.78574i) q^{19} -5.06704 q^{21} +7.43878i q^{23} +(-8.56540 - 2.78307i) q^{27} +(-2.55959 + 1.85965i) q^{29} +(0.787699 + 2.42429i) q^{31} +(0.472068 - 9.93965i) q^{33} +(-3.84954 - 5.29843i) q^{37} +(3.44014 - 10.5877i) q^{39} +(-6.93840 - 5.04104i) q^{41} +3.49875i q^{43} +(-2.49933 + 3.44003i) q^{47} +(1.28174 - 3.94479i) q^{49} +(9.39392 - 6.82509i) q^{51} +(9.24750 - 3.00470i) q^{53} +(-18.3782 + 5.97143i) q^{57} +(-2.33853 + 1.69904i) q^{59} +(1.93043 - 5.94126i) q^{61} +(-5.95783 + 8.20025i) q^{63} +10.5387i q^{67} +(18.0561 + 13.1185i) q^{69} +(2.85383 - 8.78318i) q^{71} +(-2.15062 - 2.96007i) q^{73} +(-5.23901 - 1.98166i) q^{77} +(5.23846 + 16.1223i) q^{79} +(-7.29404 + 5.29943i) q^{81} +(-11.4422 - 3.71779i) q^{83} +9.49240i q^{87} +15.5881 q^{89} +(-5.06965 - 3.68331i) q^{91} +(7.27358 + 2.36333i) q^{93} +(6.38135 - 2.07343i) q^{97} +(-15.5308 - 12.4510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 10 q^{11} - 26 q^{19} - 12 q^{21} + 14 q^{29} + 4 q^{31} + 34 q^{39} - 30 q^{41} + 48 q^{49} + 26 q^{51} - 12 q^{59} + 48 q^{61} + 106 q^{69} + 72 q^{71} + 90 q^{79} + 34 q^{81} - 36 q^{89} + 76 q^{91}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.76353 2.42729i 1.01817 1.40140i 0.104698 0.994504i \(-0.466612\pi\)
0.913476 0.406892i \(-0.133388\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.992679 1.36631i −0.375197 0.516415i 0.579107 0.815252i \(-0.303401\pi\)
−0.954304 + 0.298837i \(0.903401\pi\)
\(8\) 0 0
\(9\) −1.85465 5.70802i −0.618216 1.90267i
\(10\) 0 0
\(11\) 2.77267 1.81998i 0.835991 0.548744i
\(12\) 0 0
\(13\) 3.52887 1.14660i 0.978733 0.318010i 0.224397 0.974498i \(-0.427959\pi\)
0.754336 + 0.656488i \(0.227959\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.68071 + 1.19594i 0.892704 + 0.290057i 0.719222 0.694780i \(-0.244498\pi\)
0.173481 + 0.984837i \(0.444498\pi\)
\(18\) 0 0
\(19\) −5.21062 3.78574i −1.19540 0.868508i −0.201575 0.979473i \(-0.564606\pi\)
−0.993824 + 0.110965i \(0.964606\pi\)
\(20\) 0 0
\(21\) −5.06704 −1.10572
\(22\) 0 0
\(23\) 7.43878i 1.55109i 0.631291 + 0.775546i \(0.282525\pi\)
−0.631291 + 0.775546i \(0.717475\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −8.56540 2.78307i −1.64841 0.535601i
\(28\) 0 0
\(29\) −2.55959 + 1.85965i −0.475303 + 0.345328i −0.799505 0.600660i \(-0.794905\pi\)
0.324201 + 0.945988i \(0.394905\pi\)
\(30\) 0 0
\(31\) 0.787699 + 2.42429i 0.141475 + 0.435415i 0.996541 0.0831043i \(-0.0264835\pi\)
−0.855066 + 0.518519i \(0.826483\pi\)
\(32\) 0 0
\(33\) 0.472068 9.93965i 0.0821764 1.73027i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.84954 5.29843i −0.632860 0.871057i 0.365350 0.930870i \(-0.380949\pi\)
−0.998210 + 0.0598135i \(0.980949\pi\)
\(38\) 0 0
\(39\) 3.44014 10.5877i 0.550863 1.69538i
\(40\) 0 0
\(41\) −6.93840 5.04104i −1.08360 0.787279i −0.105290 0.994442i \(-0.533577\pi\)
−0.978306 + 0.207163i \(0.933577\pi\)
\(42\) 0 0
\(43\) 3.49875i 0.533554i 0.963758 + 0.266777i \(0.0859587\pi\)
−0.963758 + 0.266777i \(0.914041\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.49933 + 3.44003i −0.364565 + 0.501781i −0.951414 0.307916i \(-0.900368\pi\)
0.586849 + 0.809697i \(0.300368\pi\)
\(48\) 0 0
\(49\) 1.28174 3.94479i 0.183106 0.563541i
\(50\) 0 0
\(51\) 9.39392 6.82509i 1.31541 0.955703i
\(52\) 0 0
\(53\) 9.24750 3.00470i 1.27024 0.412727i 0.405109 0.914269i \(-0.367234\pi\)
0.865133 + 0.501542i \(0.167234\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −18.3782 + 5.97143i −2.43425 + 0.790935i
\(58\) 0 0
\(59\) −2.33853 + 1.69904i −0.304450 + 0.221196i −0.729512 0.683968i \(-0.760253\pi\)
0.425061 + 0.905165i \(0.360253\pi\)
\(60\) 0 0
\(61\) 1.93043 5.94126i 0.247167 0.760700i −0.748106 0.663579i \(-0.769037\pi\)
0.995273 0.0971212i \(-0.0309634\pi\)
\(62\) 0 0
\(63\) −5.95783 + 8.20025i −0.750616 + 1.03313i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.5387i 1.28750i 0.765235 + 0.643751i \(0.222623\pi\)
−0.765235 + 0.643751i \(0.777377\pi\)
\(68\) 0 0
\(69\) 18.0561 + 13.1185i 2.17369 + 1.57928i
\(70\) 0 0
\(71\) 2.85383 8.78318i 0.338687 1.04237i −0.626190 0.779670i \(-0.715387\pi\)
0.964877 0.262701i \(-0.0846133\pi\)
\(72\) 0 0
\(73\) −2.15062 2.96007i −0.251711 0.346450i 0.664399 0.747378i \(-0.268688\pi\)
−0.916110 + 0.400928i \(0.868688\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.23901 1.98166i −0.597041 0.225831i
\(78\) 0 0
\(79\) 5.23846 + 16.1223i 0.589373 + 1.81390i 0.580949 + 0.813940i \(0.302682\pi\)
0.00842422 + 0.999965i \(0.497318\pi\)
\(80\) 0 0
\(81\) −7.29404 + 5.29943i −0.810449 + 0.588825i
\(82\) 0 0
\(83\) −11.4422 3.71779i −1.25594 0.408080i −0.395896 0.918296i \(-0.629566\pi\)
−0.860047 + 0.510215i \(0.829566\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.49240i 1.01769i
\(88\) 0 0
\(89\) 15.5881 1.65233 0.826166 0.563426i \(-0.190517\pi\)
0.826166 + 0.563426i \(0.190517\pi\)
\(90\) 0 0
\(91\) −5.06965 3.68331i −0.531443 0.386116i
\(92\) 0 0
\(93\) 7.27358 + 2.36333i 0.754235 + 0.245066i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.38135 2.07343i 0.647928 0.210525i 0.0334279 0.999441i \(-0.489358\pi\)
0.614500 + 0.788916i \(0.289358\pi\)
\(98\) 0 0
\(99\) −15.5308 12.4510i −1.56090 1.25138i
\(100\) 0 0
\(101\) 1.51211 + 4.65380i 0.150461 + 0.463071i 0.997673 0.0681843i \(-0.0217206\pi\)
−0.847212 + 0.531255i \(0.821721\pi\)
\(102\) 0 0
\(103\) 9.80269 + 13.4922i 0.965888 + 1.32943i 0.944097 + 0.329668i \(0.106937\pi\)
0.0217908 + 0.999763i \(0.493063\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.39979 + 1.92664i −0.135323 + 0.186256i −0.871300 0.490750i \(-0.836723\pi\)
0.735978 + 0.677006i \(0.236723\pi\)
\(108\) 0 0
\(109\) −15.3246 −1.46783 −0.733916 0.679240i \(-0.762309\pi\)
−0.733916 + 0.679240i \(0.762309\pi\)
\(110\) 0 0
\(111\) −19.6496 −1.86506
\(112\) 0 0
\(113\) −1.02997 + 1.41763i −0.0968910 + 0.133359i −0.854710 0.519106i \(-0.826265\pi\)
0.757819 + 0.652465i \(0.226265\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.0896 18.0163i −1.21014 1.66561i
\(118\) 0 0
\(119\) −2.01975 6.21616i −0.185150 0.569834i
\(120\) 0 0
\(121\) 4.37537 10.0924i 0.397761 0.917489i
\(122\) 0 0
\(123\) −24.4721 + 7.95148i −2.20658 + 0.716961i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.89597 + 2.89048i 0.789390 + 0.256488i 0.675844 0.737045i \(-0.263779\pi\)
0.113546 + 0.993533i \(0.463779\pi\)
\(128\) 0 0
\(129\) 8.49247 + 6.17014i 0.747720 + 0.543251i
\(130\) 0 0
\(131\) 10.3843 0.907282 0.453641 0.891185i \(-0.350125\pi\)
0.453641 + 0.891185i \(0.350125\pi\)
\(132\) 0 0
\(133\) 10.8773i 0.943184i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.7461 + 4.79131i 1.25985 + 0.409349i 0.861440 0.507859i \(-0.169563\pi\)
0.398408 + 0.917208i \(0.369563\pi\)
\(138\) 0 0
\(139\) −16.9807 + 12.3372i −1.44029 + 1.04643i −0.452305 + 0.891863i \(0.649398\pi\)
−0.987982 + 0.154567i \(0.950602\pi\)
\(140\) 0 0
\(141\) 3.94232 + 12.1332i 0.332003 + 1.02180i
\(142\) 0 0
\(143\) 7.69760 9.60161i 0.643706 0.802927i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.31476 10.0679i −0.603311 0.830387i
\(148\) 0 0
\(149\) 0.899897 2.76960i 0.0737224 0.226894i −0.907405 0.420258i \(-0.861940\pi\)
0.981127 + 0.193363i \(0.0619397\pi\)
\(150\) 0 0
\(151\) 3.65731 + 2.65719i 0.297628 + 0.216239i 0.726570 0.687093i \(-0.241113\pi\)
−0.428942 + 0.903332i \(0.641113\pi\)
\(152\) 0 0
\(153\) 23.2276i 1.87784i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.47059 7.52962i 0.436601 0.600929i −0.532852 0.846209i \(-0.678880\pi\)
0.969452 + 0.245279i \(0.0788796\pi\)
\(158\) 0 0
\(159\) 9.01497 27.7452i 0.714934 2.20034i
\(160\) 0 0
\(161\) 10.1636 7.38432i 0.801007 0.581966i
\(162\) 0 0
\(163\) 12.0321 3.90948i 0.942429 0.306214i 0.202794 0.979221i \(-0.434998\pi\)
0.739635 + 0.673008i \(0.234998\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.1672 5.25303i 1.25105 0.406492i 0.392754 0.919643i \(-0.371522\pi\)
0.858298 + 0.513152i \(0.171522\pi\)
\(168\) 0 0
\(169\) 0.621033 0.451207i 0.0477718 0.0347082i
\(170\) 0 0
\(171\) −11.9452 + 36.7636i −0.913473 + 2.81138i
\(172\) 0 0
\(173\) 7.34298 10.1067i 0.558276 0.768401i −0.432830 0.901476i \(-0.642485\pi\)
0.991106 + 0.133074i \(0.0424849\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.67259i 0.651872i
\(178\) 0 0
\(179\) 1.03046 + 0.748673i 0.0770202 + 0.0559584i 0.625629 0.780121i \(-0.284842\pi\)
−0.548609 + 0.836079i \(0.684842\pi\)
\(180\) 0 0
\(181\) −5.34282 + 16.4435i −0.397129 + 1.22224i 0.530162 + 0.847896i \(0.322131\pi\)
−0.927291 + 0.374341i \(0.877869\pi\)
\(182\) 0 0
\(183\) −11.0168 15.1633i −0.814384 1.12090i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.3820 3.38288i 0.905459 0.247381i
\(188\) 0 0
\(189\) 4.70017 + 14.4656i 0.341887 + 1.05222i
\(190\) 0 0
\(191\) 12.2106 8.87154i 0.883530 0.641922i −0.0506530 0.998716i \(-0.516130\pi\)
0.934183 + 0.356794i \(0.116130\pi\)
\(192\) 0 0
\(193\) 20.8527 + 6.77546i 1.50101 + 0.487708i 0.940313 0.340312i \(-0.110533\pi\)
0.560699 + 0.828020i \(0.310533\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4874i 1.38842i 0.719772 + 0.694210i \(0.244246\pi\)
−0.719772 + 0.694210i \(0.755754\pi\)
\(198\) 0 0
\(199\) 4.59408 0.325666 0.162833 0.986654i \(-0.447937\pi\)
0.162833 + 0.986654i \(0.447937\pi\)
\(200\) 0 0
\(201\) 25.5804 + 18.5852i 1.80430 + 1.31090i
\(202\) 0 0
\(203\) 5.08170 + 1.65114i 0.356665 + 0.115888i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 42.4607 13.7963i 2.95122 0.958910i
\(208\) 0 0
\(209\) −21.3373 1.01338i −1.47593 0.0700970i
\(210\) 0 0
\(211\) −7.77574 23.9313i −0.535304 1.64750i −0.742991 0.669301i \(-0.766594\pi\)
0.207687 0.978195i \(-0.433406\pi\)
\(212\) 0 0
\(213\) −16.2865 22.4165i −1.11593 1.53595i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.53039 3.48278i 0.171774 0.236426i
\(218\) 0 0
\(219\) −10.9776 −0.741800
\(220\) 0 0
\(221\) 14.3600 0.965960
\(222\) 0 0
\(223\) −15.2157 + 20.9426i −1.01892 + 1.40242i −0.105960 + 0.994370i \(0.533792\pi\)
−0.912959 + 0.408051i \(0.866208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.4444 19.8810i −0.958710 1.31955i −0.947548 0.319614i \(-0.896447\pi\)
−0.0111621 0.999938i \(-0.503553\pi\)
\(228\) 0 0
\(229\) −3.90485 12.0179i −0.258040 0.794165i −0.993215 0.116289i \(-0.962900\pi\)
0.735175 0.677877i \(-0.237100\pi\)
\(230\) 0 0
\(231\) −14.0492 + 9.22189i −0.924370 + 0.606756i
\(232\) 0 0
\(233\) −6.07238 + 1.97304i −0.397815 + 0.129258i −0.501090 0.865395i \(-0.667068\pi\)
0.103276 + 0.994653i \(0.467068\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 48.3718 + 15.7169i 3.14208 + 1.02092i
\(238\) 0 0
\(239\) 10.9264 + 7.93851i 0.706771 + 0.513499i 0.882130 0.471005i \(-0.156109\pi\)
−0.175359 + 0.984505i \(0.556109\pi\)
\(240\) 0 0
\(241\) −26.7883 −1.72559 −0.862793 0.505557i \(-0.831287\pi\)
−0.862793 + 0.505557i \(0.831287\pi\)
\(242\) 0 0
\(243\) 0.0318587i 0.00204373i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −22.7284 7.38489i −1.44617 0.469889i
\(248\) 0 0
\(249\) −29.2028 + 21.2171i −1.85065 + 1.34458i
\(250\) 0 0
\(251\) 2.03249 + 6.25535i 0.128289 + 0.394834i 0.994486 0.104869i \(-0.0334424\pi\)
−0.866197 + 0.499703i \(0.833442\pi\)
\(252\) 0 0
\(253\) 13.5384 + 20.6253i 0.851152 + 1.29670i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.3084 + 15.5647i 0.705399 + 0.970898i 0.999884 + 0.0152419i \(0.00485184\pi\)
−0.294485 + 0.955656i \(0.595148\pi\)
\(258\) 0 0
\(259\) −3.41792 + 10.5193i −0.212379 + 0.653637i
\(260\) 0 0
\(261\) 15.3621 + 11.1612i 0.950887 + 0.690860i
\(262\) 0 0
\(263\) 4.89929i 0.302103i 0.988526 + 0.151052i \(0.0482660\pi\)
−0.988526 + 0.151052i \(0.951734\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 27.4900 37.8368i 1.68236 2.31557i
\(268\) 0 0
\(269\) −1.13958 + 3.50727i −0.0694814 + 0.213842i −0.979768 0.200137i \(-0.935861\pi\)
0.910286 + 0.413979i \(0.135861\pi\)
\(270\) 0 0
\(271\) −3.28380 + 2.38582i −0.199477 + 0.144928i −0.683040 0.730381i \(-0.739342\pi\)
0.483563 + 0.875310i \(0.339342\pi\)
\(272\) 0 0
\(273\) −17.8809 + 5.80987i −1.08220 + 0.351629i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.2373 + 3.32631i −0.615101 + 0.199859i −0.599964 0.800027i \(-0.704819\pi\)
−0.0151373 + 0.999885i \(0.504819\pi\)
\(278\) 0 0
\(279\) 12.3770 8.99240i 0.740991 0.538361i
\(280\) 0 0
\(281\) −4.18268 + 12.8730i −0.249518 + 0.767936i 0.745343 + 0.666681i \(0.232286\pi\)
−0.994860 + 0.101255i \(0.967714\pi\)
\(282\) 0 0
\(283\) −6.57386 + 9.04814i −0.390775 + 0.537856i −0.958399 0.285432i \(-0.907863\pi\)
0.567624 + 0.823288i \(0.307863\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.4841i 0.854970i
\(288\) 0 0
\(289\) −1.63591 1.18856i −0.0962302 0.0699154i
\(290\) 0 0
\(291\) 6.22089 19.1459i 0.364675 1.12236i
\(292\) 0 0
\(293\) −5.67584 7.81212i −0.331586 0.456389i 0.610374 0.792113i \(-0.291019\pi\)
−0.941960 + 0.335724i \(0.891019\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −28.8141 + 7.87231i −1.67196 + 0.456798i
\(298\) 0 0
\(299\) 8.52931 + 26.2505i 0.493262 + 1.51811i
\(300\) 0 0
\(301\) 4.78036 3.47313i 0.275535 0.200188i
\(302\) 0 0
\(303\) 13.9628 + 4.53678i 0.802141 + 0.260631i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.20959i 0.297327i −0.988888 0.148664i \(-0.952503\pi\)
0.988888 0.148664i \(-0.0474971\pi\)
\(308\) 0 0
\(309\) 50.0369 2.84650
\(310\) 0 0
\(311\) −19.5453 14.2005i −1.10831 0.805237i −0.125917 0.992041i \(-0.540187\pi\)
−0.982397 + 0.186803i \(0.940187\pi\)
\(312\) 0 0
\(313\) 12.4633 + 4.04956i 0.704465 + 0.228895i 0.639275 0.768978i \(-0.279235\pi\)
0.0651903 + 0.997873i \(0.479235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.73454 2.18818i 0.378249 0.122901i −0.113721 0.993513i \(-0.536277\pi\)
0.491970 + 0.870612i \(0.336277\pi\)
\(318\) 0 0
\(319\) −3.71236 + 9.81458i −0.207853 + 0.549511i
\(320\) 0 0
\(321\) 2.20795 + 6.79538i 0.123236 + 0.379281i
\(322\) 0 0
\(323\) −14.6513 20.1658i −0.815220 1.12205i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −27.0254 + 37.1973i −1.49451 + 2.05701i
\(328\) 0 0
\(329\) 7.18117 0.395911
\(330\) 0 0
\(331\) −1.76299 −0.0969025 −0.0484513 0.998826i \(-0.515429\pi\)
−0.0484513 + 0.998826i \(0.515429\pi\)
\(332\) 0 0
\(333\) −23.1040 + 31.8000i −1.26609 + 1.74263i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.97253 9.59687i −0.379818 0.522775i 0.575718 0.817648i \(-0.304722\pi\)
−0.955536 + 0.294874i \(0.904722\pi\)
\(338\) 0 0
\(339\) 1.62461 + 5.00005i 0.0882369 + 0.271565i
\(340\) 0 0
\(341\) 6.59617 + 5.28815i 0.357203 + 0.286369i
\(342\) 0 0
\(343\) −17.9055 + 5.81784i −0.966804 + 0.314134i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.74747 + 2.51731i 0.415906 + 0.135136i 0.509493 0.860475i \(-0.329833\pi\)
−0.0935864 + 0.995611i \(0.529833\pi\)
\(348\) 0 0
\(349\) 13.8784 + 10.0832i 0.742893 + 0.539743i 0.893616 0.448833i \(-0.148160\pi\)
−0.150723 + 0.988576i \(0.548160\pi\)
\(350\) 0 0
\(351\) −33.4173 −1.78368
\(352\) 0 0
\(353\) 9.89553i 0.526686i −0.964702 0.263343i \(-0.915175\pi\)
0.964702 0.263343i \(-0.0848251\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −18.6503 6.05985i −0.987079 0.320721i
\(358\) 0 0
\(359\) 30.2411 21.9715i 1.59607 1.15961i 0.701506 0.712664i \(-0.252512\pi\)
0.894561 0.446946i \(-0.147488\pi\)
\(360\) 0 0
\(361\) 6.94745 + 21.3821i 0.365655 + 1.12537i
\(362\) 0 0
\(363\) −16.7810 28.4185i −0.880777 1.49158i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.3951 + 15.6840i 0.594819 + 0.818698i 0.995222 0.0976415i \(-0.0311299\pi\)
−0.400403 + 0.916339i \(0.631130\pi\)
\(368\) 0 0
\(369\) −15.9061 + 48.9539i −0.828038 + 2.54844i
\(370\) 0 0
\(371\) −13.2851 9.65221i −0.689730 0.501118i
\(372\) 0 0
\(373\) 1.02733i 0.0531933i 0.999646 + 0.0265967i \(0.00846698\pi\)
−0.999646 + 0.0265967i \(0.991533\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.90018 + 9.49729i −0.355378 + 0.489135i
\(378\) 0 0
\(379\) −2.32646 + 7.16010i −0.119502 + 0.367790i −0.992859 0.119290i \(-0.961938\pi\)
0.873357 + 0.487080i \(0.161938\pi\)
\(380\) 0 0
\(381\) 22.7043 16.4957i 1.16318 0.845098i
\(382\) 0 0
\(383\) −14.3960 + 4.67756i −0.735603 + 0.239012i −0.652775 0.757552i \(-0.726395\pi\)
−0.0828281 + 0.996564i \(0.526395\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.9709 6.48895i 1.01518 0.329852i
\(388\) 0 0
\(389\) 4.11088 2.98673i 0.208430 0.151433i −0.478673 0.877993i \(-0.658882\pi\)
0.687103 + 0.726560i \(0.258882\pi\)
\(390\) 0 0
\(391\) −8.89630 + 27.3800i −0.449905 + 1.38467i
\(392\) 0 0
\(393\) 18.3130 25.2057i 0.923771 1.27146i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.78023i 0.290101i −0.989424 0.145051i \(-0.953665\pi\)
0.989424 0.145051i \(-0.0463345\pi\)
\(398\) 0 0
\(399\) 26.4024 + 19.1825i 1.32177 + 0.960326i
\(400\) 0 0
\(401\) 7.23049 22.2532i 0.361074 1.11127i −0.591330 0.806430i \(-0.701397\pi\)
0.952403 0.304841i \(-0.0986032\pi\)
\(402\) 0 0
\(403\) 5.55938 + 7.65183i 0.276932 + 0.381165i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.3165 7.68472i −1.00705 0.380917i
\(408\) 0 0
\(409\) −2.63551 8.11126i −0.130318 0.401076i 0.864515 0.502607i \(-0.167626\pi\)
−0.994832 + 0.101531i \(0.967626\pi\)
\(410\) 0 0
\(411\) 37.6352 27.3435i 1.85641 1.34876i
\(412\) 0 0
\(413\) 4.64282 + 1.50854i 0.228458 + 0.0742305i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 62.9742i 3.08386i
\(418\) 0 0
\(419\) −26.9789 −1.31801 −0.659003 0.752141i \(-0.729021\pi\)
−0.659003 + 0.752141i \(0.729021\pi\)
\(420\) 0 0
\(421\) 18.6021 + 13.5152i 0.906612 + 0.658692i 0.940156 0.340745i \(-0.110679\pi\)
−0.0335437 + 0.999437i \(0.510679\pi\)
\(422\) 0 0
\(423\) 24.2712 + 7.88618i 1.18010 + 0.383439i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0339 + 3.26020i −0.485573 + 0.157772i
\(428\) 0 0
\(429\) −9.73094 35.6170i −0.469814 1.71961i
\(430\) 0 0
\(431\) 0.655391 + 2.01708i 0.0315691 + 0.0971596i 0.965600 0.260034i \(-0.0837337\pi\)
−0.934030 + 0.357193i \(0.883734\pi\)
\(432\) 0 0
\(433\) 16.0975 + 22.1563i 0.773597 + 1.06476i 0.995960 + 0.0898005i \(0.0286230\pi\)
−0.222363 + 0.974964i \(0.571377\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.1613 38.7607i 1.34714 1.85417i
\(438\) 0 0
\(439\) −31.5257 −1.50464 −0.752319 0.658799i \(-0.771065\pi\)
−0.752319 + 0.658799i \(0.771065\pi\)
\(440\) 0 0
\(441\) −24.8941 −1.18543
\(442\) 0 0
\(443\) −3.95050 + 5.43740i −0.187694 + 0.258339i −0.892486 0.451076i \(-0.851040\pi\)
0.704792 + 0.709414i \(0.251040\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.13562 7.06858i −0.242907 0.334332i
\(448\) 0 0
\(449\) −3.99069 12.2821i −0.188332 0.579627i 0.811658 0.584133i \(-0.198565\pi\)
−0.999990 + 0.00450672i \(0.998565\pi\)
\(450\) 0 0
\(451\) −28.4125 1.34940i −1.33789 0.0635409i
\(452\) 0 0
\(453\) 12.8996 4.19132i 0.606074 0.196925i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.6090 3.44706i −0.496267 0.161247i 0.0501808 0.998740i \(-0.484020\pi\)
−0.546448 + 0.837493i \(0.684020\pi\)
\(458\) 0 0
\(459\) −28.1984 20.4873i −1.31619 0.956267i
\(460\) 0 0
\(461\) 11.7060 0.545205 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(462\) 0 0
\(463\) 10.7840i 0.501173i 0.968094 + 0.250586i \(0.0806234\pi\)
−0.968094 + 0.250586i \(0.919377\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8907 6.46289i −0.920433 0.299067i −0.189789 0.981825i \(-0.560780\pi\)
−0.730644 + 0.682758i \(0.760780\pi\)
\(468\) 0 0
\(469\) 14.3990 10.4615i 0.664885 0.483067i
\(470\) 0 0
\(471\) −8.62903 26.5574i −0.397605 1.22370i
\(472\) 0 0
\(473\) 6.36764 + 9.70086i 0.292784 + 0.446046i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −34.3017 47.2123i −1.57057 2.16170i
\(478\) 0 0
\(479\) 3.47943 10.7086i 0.158979 0.489288i −0.839563 0.543262i \(-0.817189\pi\)
0.998542 + 0.0539745i \(0.0171890\pi\)
\(480\) 0 0
\(481\) −19.6597 14.2836i −0.896406 0.651277i
\(482\) 0 0
\(483\) 37.6926i 1.71507i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.99978 6.88160i 0.226562 0.311835i −0.680569 0.732684i \(-0.738268\pi\)
0.907131 + 0.420848i \(0.138268\pi\)
\(488\) 0 0
\(489\) 11.7296 36.0999i 0.530430 1.63250i
\(490\) 0 0
\(491\) −11.2974 + 8.20808i −0.509847 + 0.370425i −0.812765 0.582591i \(-0.802039\pi\)
0.302919 + 0.953016i \(0.402039\pi\)
\(492\) 0 0
\(493\) −11.6451 + 3.78373i −0.524470 + 0.170411i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.8334 + 4.81968i −0.665371 + 0.216192i
\(498\) 0 0
\(499\) −4.47304 + 3.24985i −0.200241 + 0.145483i −0.683387 0.730056i \(-0.739494\pi\)
0.483146 + 0.875540i \(0.339494\pi\)
\(500\) 0 0
\(501\) 15.7606 48.5062i 0.704133 2.16710i
\(502\) 0 0
\(503\) 5.40452 7.43868i 0.240976 0.331674i −0.671350 0.741141i \(-0.734285\pi\)
0.912325 + 0.409466i \(0.134285\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.30314i 0.102286i
\(508\) 0 0
\(509\) 8.96759 + 6.51534i 0.397482 + 0.288787i 0.768514 0.639832i \(-0.220996\pi\)
−0.371033 + 0.928620i \(0.620996\pi\)
\(510\) 0 0
\(511\) −1.90949 + 5.87681i −0.0844709 + 0.259975i
\(512\) 0 0
\(513\) 34.0951 + 46.9279i 1.50534 + 2.07192i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.669030 + 14.0868i −0.0294239 + 0.619537i
\(518\) 0 0
\(519\) −11.5824 35.6471i −0.508413 1.56473i
\(520\) 0 0
\(521\) −14.8879 + 10.8167i −0.652252 + 0.473889i −0.864038 0.503427i \(-0.832072\pi\)
0.211786 + 0.977316i \(0.432072\pi\)
\(522\) 0 0
\(523\) −23.4323 7.61361i −1.02462 0.332920i −0.251960 0.967738i \(-0.581075\pi\)
−0.772662 + 0.634818i \(0.781075\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.86514i 0.429732i
\(528\) 0 0
\(529\) −32.3354 −1.40589
\(530\) 0 0
\(531\) 14.0353 + 10.1972i 0.609080 + 0.442523i
\(532\) 0 0
\(533\) −30.2648 9.83363i −1.31091 0.425942i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.63449 1.18092i 0.156840 0.0509604i
\(538\) 0 0
\(539\) −3.62559 13.2703i −0.156165 0.571593i
\(540\) 0 0
\(541\) 2.02811 + 6.24188i 0.0871953 + 0.268360i 0.985141 0.171746i \(-0.0549409\pi\)
−0.897946 + 0.440106i \(0.854941\pi\)
\(542\) 0 0
\(543\) 30.4910 + 41.9672i 1.30849 + 1.80098i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.383526 0.527878i 0.0163984 0.0225704i −0.800739 0.599013i \(-0.795560\pi\)
0.817137 + 0.576443i \(0.195560\pi\)
\(548\) 0 0
\(549\) −37.4931 −1.60017
\(550\) 0 0
\(551\) 20.3772 0.868098
\(552\) 0 0
\(553\) 16.8279 23.1617i 0.715596 0.984934i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.00048 + 1.37704i 0.0423915 + 0.0583469i 0.829687 0.558230i \(-0.188519\pi\)
−0.787295 + 0.616576i \(0.788519\pi\)
\(558\) 0 0
\(559\) 4.01166 + 12.3466i 0.169675 + 0.522207i
\(560\) 0 0
\(561\) 13.6247 36.0204i 0.575236 1.52078i
\(562\) 0 0
\(563\) 41.5681 13.5063i 1.75189 0.569222i 0.755576 0.655061i \(-0.227357\pi\)
0.996309 + 0.0858390i \(0.0273571\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 14.4813 + 4.70525i 0.608157 + 0.197602i
\(568\) 0 0
\(569\) −25.3587 18.4242i −1.06309 0.772382i −0.0884349 0.996082i \(-0.528187\pi\)
−0.974658 + 0.223700i \(0.928187\pi\)
\(570\) 0 0
\(571\) 9.86361 0.412779 0.206390 0.978470i \(-0.433829\pi\)
0.206390 + 0.978470i \(0.433829\pi\)
\(572\) 0 0
\(573\) 45.2840i 1.89176i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.5274 7.96943i −1.02109 0.331772i −0.249827 0.968290i \(-0.580374\pi\)
−0.771261 + 0.636519i \(0.780374\pi\)
\(578\) 0 0
\(579\) 53.2204 38.6669i 2.21176 1.60694i
\(580\) 0 0
\(581\) 6.27878 + 19.3241i 0.260488 + 0.801698i
\(582\) 0 0
\(583\) 20.1718 25.1613i 0.835429 1.04207i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.625301 0.860653i −0.0258089 0.0355229i 0.795918 0.605405i \(-0.206989\pi\)
−0.821726 + 0.569882i \(0.806989\pi\)
\(588\) 0 0
\(589\) 5.07332 15.6141i 0.209043 0.643367i
\(590\) 0 0
\(591\) 47.3016 + 34.3666i 1.94573 + 1.41365i
\(592\) 0 0
\(593\) 19.7906i 0.812702i −0.913717 0.406351i \(-0.866801\pi\)
0.913717 0.406351i \(-0.133199\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.10180 11.1512i 0.331585 0.456387i
\(598\) 0 0
\(599\) 1.40163 4.31378i 0.0572692 0.176256i −0.918330 0.395816i \(-0.870462\pi\)
0.975599 + 0.219559i \(0.0704619\pi\)
\(600\) 0 0
\(601\) −38.2474 + 27.7883i −1.56014 + 1.13351i −0.624251 + 0.781224i \(0.714596\pi\)
−0.935892 + 0.352286i \(0.885404\pi\)
\(602\) 0 0
\(603\) 60.1549 19.5455i 2.44970 0.795954i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.0424 3.91282i 0.488787 0.158817i −0.0542464 0.998528i \(-0.517276\pi\)
0.543033 + 0.839711i \(0.317276\pi\)
\(608\) 0 0
\(609\) 12.9695 9.42291i 0.525552 0.381836i
\(610\) 0 0
\(611\) −4.87548 + 15.0052i −0.197241 + 0.607045i
\(612\) 0 0
\(613\) −6.78018 + 9.33212i −0.273849 + 0.376921i −0.923684 0.383154i \(-0.874838\pi\)
0.649835 + 0.760075i \(0.274838\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.58142i 0.385733i −0.981225 0.192867i \(-0.938221\pi\)
0.981225 0.192867i \(-0.0617785\pi\)
\(618\) 0 0
\(619\) −0.972177 0.706328i −0.0390751 0.0283897i 0.568076 0.822976i \(-0.307688\pi\)
−0.607151 + 0.794586i \(0.707688\pi\)
\(620\) 0 0
\(621\) 20.7026 63.7161i 0.830767 2.55684i
\(622\) 0 0
\(623\) −15.4740 21.2981i −0.619951 0.853289i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −40.0887 + 50.0046i −1.60099 + 1.99699i
\(628\) 0 0
\(629\) −7.83245 24.1058i −0.312300 0.961161i
\(630\) 0 0
\(631\) −11.5819 + 8.41474i −0.461068 + 0.334985i −0.793950 0.607983i \(-0.791979\pi\)
0.332882 + 0.942968i \(0.391979\pi\)
\(632\) 0 0
\(633\) −71.8009 23.3295i −2.85383 0.927265i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.3903i 0.609786i
\(638\) 0 0
\(639\) −55.4274 −2.19267
\(640\) 0 0
\(641\) 29.9553 + 21.7638i 1.18316 + 0.859618i 0.992525 0.122043i \(-0.0389445\pi\)
0.190637 + 0.981661i \(0.438945\pi\)
\(642\) 0 0
\(643\) 4.25667 + 1.38308i 0.167867 + 0.0545432i 0.391745 0.920074i \(-0.371872\pi\)
−0.223878 + 0.974617i \(0.571872\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.1713 + 8.82850i −1.06822 + 0.347084i −0.789792 0.613374i \(-0.789812\pi\)
−0.278423 + 0.960458i \(0.589812\pi\)
\(648\) 0 0
\(649\) −3.39175 + 8.96694i −0.133138 + 0.351983i
\(650\) 0 0
\(651\) −3.99130 12.2840i −0.156431 0.481446i
\(652\) 0 0
\(653\) −0.396454 0.545672i −0.0155144 0.0213538i 0.801189 0.598411i \(-0.204201\pi\)
−0.816704 + 0.577057i \(0.804201\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.9075 + 17.7657i −0.503570 + 0.693105i
\(658\) 0 0
\(659\) 30.4518 1.18623 0.593117 0.805116i \(-0.297897\pi\)
0.593117 + 0.805116i \(0.297897\pi\)
\(660\) 0 0
\(661\) −29.2772 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(662\) 0 0
\(663\) 25.3243 34.8559i 0.983515 1.35369i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.8335 19.0402i −0.535636 0.737239i
\(668\) 0 0
\(669\) 24.0005 + 73.8658i 0.927912 + 2.85582i
\(670\) 0 0
\(671\) −5.46051 19.9865i −0.210801 0.771569i
\(672\) 0 0
\(673\) 1.52112 0.494242i 0.0586349 0.0190516i −0.279553 0.960130i \(-0.590186\pi\)
0.338188 + 0.941079i \(0.390186\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.91287 + 3.22089i 0.380982 + 0.123789i 0.493246 0.869890i \(-0.335810\pi\)
−0.112264 + 0.993678i \(0.535810\pi\)
\(678\) 0 0
\(679\) −9.16757 6.66063i −0.351819 0.255612i
\(680\) 0 0
\(681\) −73.7302 −2.82535
\(682\) 0 0
\(683\) 38.4144i 1.46988i 0.678130 + 0.734942i \(0.262791\pi\)
−0.678130 + 0.734942i \(0.737209\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −36.0573 11.7157i −1.37567 0.446982i
\(688\) 0 0
\(689\) 29.1881 21.2064i 1.11198 0.807899i
\(690\) 0 0
\(691\) 5.37655 + 16.5473i 0.204534 + 0.629490i 0.999732 + 0.0231407i \(0.00736657\pi\)
−0.795199 + 0.606349i \(0.792633\pi\)
\(692\) 0 0
\(693\) −1.59481 + 33.5797i −0.0605819 + 1.27559i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −19.5095 26.8525i −0.738974 1.01711i
\(698\) 0 0
\(699\) −5.91969 + 18.2189i −0.223903 + 0.689103i
\(700\) 0 0
\(701\) −41.3290 30.0273i −1.56098 1.13412i −0.935204 0.354109i \(-0.884784\pi\)
−0.625771 0.780007i \(-0.715216\pi\)
\(702\) 0 0
\(703\) 42.1815i 1.59090i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.85748 6.68574i 0.182684 0.251443i
\(708\) 0 0
\(709\) 3.11182 9.57719i 0.116867 0.359679i −0.875465 0.483281i \(-0.839445\pi\)
0.992332 + 0.123603i \(0.0394448\pi\)
\(710\) 0 0
\(711\) 82.3111 59.8025i 3.08691 2.24277i
\(712\) 0 0
\(713\) −18.0337 + 5.85952i −0.675369 + 0.219441i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 38.5381 12.5218i 1.43923 0.467635i
\(718\) 0 0
\(719\) −17.8912 + 12.9987i −0.667230 + 0.484771i −0.869097 0.494642i \(-0.835299\pi\)
0.201867 + 0.979413i \(0.435299\pi\)
\(720\) 0 0
\(721\) 8.70361 26.7869i 0.324139 0.997598i
\(722\) 0 0
\(723\) −47.2420 + 65.0230i −1.75695 + 2.41823i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 25.8714i 0.959517i −0.877401 0.479758i \(-0.840724\pi\)
0.877401 0.479758i \(-0.159276\pi\)
\(728\) 0 0
\(729\) −21.8048 15.8421i −0.807585 0.586745i
\(730\) 0 0
\(731\) −4.18428 + 12.8779i −0.154761 + 0.476306i
\(732\) 0 0
\(733\) 21.4566 + 29.5324i 0.792516 + 1.09080i 0.993790 + 0.111270i \(0.0354917\pi\)
−0.201274 + 0.979535i \(0.564508\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.1801 + 29.2202i 0.706508 + 1.07634i
\(738\) 0 0
\(739\) −5.51149 16.9626i −0.202743 0.623980i −0.999799 0.0200734i \(-0.993610\pi\)
0.797055 0.603907i \(-0.206390\pi\)
\(740\) 0 0
\(741\) −58.0074 + 42.1448i −2.13096 + 1.54823i
\(742\) 0 0
\(743\) −37.6450 12.2316i −1.38106 0.448733i −0.478042 0.878337i \(-0.658653\pi\)
−0.903018 + 0.429604i \(0.858653\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 72.2074i 2.64193i
\(748\) 0 0
\(749\) 4.02192 0.146958
\(750\) 0 0
\(751\) 5.73271 + 4.16506i 0.209190 + 0.151985i 0.687447 0.726235i \(-0.258731\pi\)
−0.478257 + 0.878220i \(0.658731\pi\)
\(752\) 0 0
\(753\) 18.7679 + 6.09806i 0.683940 + 0.222226i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.53982 + 2.44983i −0.274039 + 0.0890407i −0.442813 0.896614i \(-0.646019\pi\)
0.168774 + 0.985655i \(0.446019\pi\)
\(758\) 0 0
\(759\) 73.9388 + 3.51161i 2.68381 + 0.127463i
\(760\) 0 0
\(761\) 9.04626 + 27.8415i 0.327927 + 1.00925i 0.970102 + 0.242697i \(0.0780321\pi\)
−0.642175 + 0.766558i \(0.721968\pi\)
\(762\) 0 0
\(763\) 15.2124 + 20.9381i 0.550727 + 0.758010i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.30425 + 8.67705i −0.227633 + 0.313310i
\(768\) 0 0
\(769\) 3.78340 0.136433 0.0682165 0.997671i \(-0.478269\pi\)
0.0682165 + 0.997671i \(0.478269\pi\)
\(770\) 0 0
\(771\) 57.7227 2.07883
\(772\) 0 0
\(773\) −1.51617 + 2.08683i −0.0545329 + 0.0750581i −0.835413 0.549623i \(-0.814771\pi\)
0.780880 + 0.624682i \(0.214771\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 19.5057 + 26.8474i 0.699765 + 0.963143i
\(778\) 0 0
\(779\) 17.0693 + 52.5340i 0.611572 + 1.88222i
\(780\) 0 0
\(781\) −8.07247 29.5467i −0.288856 1.05726i
\(782\) 0 0
\(783\) 27.0994 8.80513i 0.968454 0.314670i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −13.0248 4.23200i −0.464282 0.150854i 0.0675291 0.997717i \(-0.478488\pi\)
−0.531811 + 0.846863i \(0.678488\pi\)
\(788\) 0 0
\(789\) 11.8920 + 8.64005i 0.423367 + 0.307594i
\(790\) 0 0
\(791\) 2.95933 0.105222
\(792\) 0 0
\(793\) 23.1794i 0.823124i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −44.0779 14.3218i −1.56132 0.507303i −0.604159 0.796864i \(-0.706491\pi\)
−0.957160 + 0.289561i \(0.906491\pi\)
\(798\) 0 0
\(799\) −13.3134 + 9.67274i −0.470993 + 0.342197i
\(800\) 0 0
\(801\) −28.9104 88.9771i −1.02150 3.14385i
\(802\) 0 0
\(803\) −11.3502 4.29322i −0.400541 0.151504i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.50347 + 8.95126i 0.228933 + 0.315099i
\(808\) 0 0
\(809\) −2.35528 + 7.24879i −0.0828071 + 0.254854i −0.983885 0.178804i \(-0.942777\pi\)
0.901078 + 0.433658i \(0.142777\pi\)
\(810\) 0 0
\(811\) −23.5550 17.1137i −0.827127 0.600943i 0.0916180 0.995794i \(-0.470796\pi\)
−0.918745 + 0.394851i \(0.870796\pi\)
\(812\) 0 0
\(813\) 12.1782i 0.427108i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 13.2453 18.2307i 0.463396 0.637810i
\(818\) 0 0
\(819\) −11.6220 + 35.7689i −0.406106 + 1.24987i
\(820\) 0 0
\(821\) −39.7129 + 28.8531i −1.38599 + 1.00698i −0.389698 + 0.920943i \(0.627421\pi\)
−0.996292 + 0.0860379i \(0.972579\pi\)
\(822\) 0 0
\(823\) −53.1942 + 17.2838i −1.85423 + 0.602476i −0.858217 + 0.513287i \(0.828428\pi\)
−0.996015 + 0.0891893i \(0.971572\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.3419 + 5.95965i −0.637811 + 0.207237i −0.610032 0.792377i \(-0.708844\pi\)
−0.0277792 + 0.999614i \(0.508844\pi\)
\(828\) 0 0
\(829\) −13.8870 + 10.0895i −0.482316 + 0.350423i −0.802222 0.597026i \(-0.796349\pi\)
0.319906 + 0.947449i \(0.396349\pi\)
\(830\) 0 0
\(831\) −9.97991 + 30.7150i −0.346199 + 1.06549i
\(832\) 0 0
\(833\) 9.43543 12.9868i 0.326918 0.449964i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22.9572i 0.793517i
\(838\) 0 0
\(839\) 30.5653 + 22.2070i 1.05523 + 0.766671i 0.973200 0.229959i \(-0.0738591\pi\)
0.0820317 + 0.996630i \(0.473859\pi\)
\(840\) 0 0
\(841\) −5.86830 + 18.0608i −0.202355 + 0.622785i
\(842\) 0 0
\(843\) 23.8701 + 32.8544i 0.822131 + 1.13157i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −18.1326 + 4.04041i −0.623044 + 0.138830i
\(848\) 0 0
\(849\) 10.3693 + 31.9133i 0.355872 + 1.09526i
\(850\) 0 0
\(851\) 39.4139 28.6358i 1.35109 0.981624i
\(852\) 0 0
\(853\) −10.0519 3.26607i −0.344171 0.111828i 0.131831 0.991272i \(-0.457914\pi\)
−0.476002 + 0.879444i \(0.657914\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.6489i 0.500395i 0.968195 + 0.250198i \(0.0804956\pi\)
−0.968195 + 0.250198i \(0.919504\pi\)
\(858\) 0 0
\(859\) 1.44844 0.0494202 0.0247101 0.999695i \(-0.492134\pi\)
0.0247101 + 0.999695i \(0.492134\pi\)
\(860\) 0 0
\(861\) 35.1571 + 25.5432i 1.19815 + 0.870508i
\(862\) 0 0
\(863\) −45.9954 14.9448i −1.56570 0.508727i −0.607377 0.794414i \(-0.707778\pi\)
−0.958323 + 0.285687i \(0.907778\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −5.76996 + 1.87477i −0.195958 + 0.0636707i
\(868\) 0 0
\(869\) 43.8668 + 35.1680i 1.48808 + 1.19299i
\(870\) 0 0
\(871\) 12.0836 + 37.1896i 0.409438 + 1.26012i
\(872\) 0 0
\(873\) −23.6703 32.5794i −0.801120 1.10265i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.47976 6.16586i 0.151271 0.208206i −0.726656 0.687002i \(-0.758926\pi\)
0.877926 + 0.478795i \(0.158926\pi\)
\(878\) 0 0
\(879\) −28.9718 −0.977194
\(880\) 0 0
\(881\) −14.1585 −0.477013 −0.238506 0.971141i \(-0.576658\pi\)
−0.238506 + 0.971141i \(0.576658\pi\)
\(882\) 0 0
\(883\) 17.8847 24.6162i 0.601868 0.828400i −0.394010 0.919106i \(-0.628912\pi\)
0.995878 + 0.0907061i \(0.0289124\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.4474 + 40.5308i 0.988746 + 1.36089i 0.931982 + 0.362504i \(0.118078\pi\)
0.0567640 + 0.998388i \(0.481922\pi\)
\(888\) 0 0
\(889\) −4.88157 15.0239i −0.163723 0.503886i
\(890\) 0 0
\(891\) −10.5791 + 27.9685i −0.354413 + 0.936981i
\(892\) 0 0
\(893\) 26.0462 8.46291i 0.871601 0.283200i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 78.7592 + 25.5904i 2.62969 + 0.854440i
\(898\) 0 0
\(899\) −6.52451 4.74033i −0.217605 0.158099i
\(900\) 0 0
\(901\) 37.6308 1.25366
\(902\) 0 0
\(903\) 17.7283i 0.589960i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33.8559 + 11.0004i 1.12417 + 0.365264i 0.811356 0.584552i \(-0.198730\pi\)
0.312810 + 0.949816i \(0.398730\pi\)
\(908\) 0 0
\(909\) 23.7596 17.2623i 0.788055 0.572556i
\(910\) 0 0
\(911\) 14.7216 + 45.3086i 0.487750 + 1.50114i 0.827958 + 0.560790i \(0.189502\pi\)
−0.340208 + 0.940350i \(0.610498\pi\)
\(912\) 0 0
\(913\) −38.4917 + 10.5163i −1.27389 + 0.348039i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.3083 14.1881i −0.340410 0.468534i
\(918\) 0 0
\(919\) −17.3383 + 53.3617i −0.571937 + 1.76024i 0.0744426 + 0.997225i \(0.476282\pi\)
−0.646380 + 0.763016i \(0.723718\pi\)
\(920\) 0 0
\(921\) −12.6452 9.18726i −0.416673 0.302731i
\(922\) 0 0
\(923\) 34.2669i 1.12791i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 58.8335 80.9773i 1.93235 2.65965i
\(928\) 0 0
\(929\) 8.31625 25.5948i 0.272847 0.839737i −0.716934 0.697141i \(-0.754455\pi\)
0.989781 0.142596i \(-0.0455450\pi\)
\(930\) 0 0
\(931\) −21.6126 + 15.7025i −0.708325 + 0.514628i
\(932\) 0 0
\(933\) −68.9375 + 22.3992i −2.25691 + 0.733316i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.72349 + 2.18459i −0.219647 + 0.0713676i −0.416773 0.909010i \(-0.636839\pi\)
0.197126 + 0.980378i \(0.436839\pi\)
\(938\) 0 0
\(939\) 31.8088 23.1104i 1.03804 0.754180i
\(940\) 0 0
\(941\) −4.39849 + 13.5372i −0.143387 + 0.441298i −0.996800 0.0799361i \(-0.974528\pi\)
0.853413 + 0.521235i \(0.174528\pi\)
\(942\) 0 0
\(943\) 37.4992 51.6132i 1.22114 1.68076i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.1617i 0.460194i −0.973168 0.230097i \(-0.926096\pi\)
0.973168 0.230097i \(-0.0739044\pi\)
\(948\) 0 0
\(949\) −10.9833 7.97982i −0.356533 0.259036i
\(950\) 0 0
\(951\) 6.56520 20.2056i 0.212891 0.655211i
\(952\) 0 0
\(953\) −0.186709 0.256983i −0.00604809 0.00832448i 0.805982 0.591940i \(-0.201638\pi\)
−0.812030 + 0.583615i \(0.801638\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 17.2760 + 26.3193i 0.558452 + 0.850781i
\(958\) 0 0
\(959\) −8.09179 24.9040i −0.261298 0.804191i
\(960\) 0 0
\(961\) 19.8228 14.4021i 0.639446 0.464585i
\(962\) 0 0
\(963\) 13.5934 + 4.41678i 0.438042 + 0.142329i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.3690i 1.20171i 0.799359 + 0.600853i \(0.205172\pi\)
−0.799359 + 0.600853i \(0.794828\pi\)
\(968\) 0 0
\(969\) −74.7862 −2.40248
\(970\) 0 0
\(971\) −24.6036 17.8756i −0.789568 0.573655i 0.118267 0.992982i \(-0.462266\pi\)
−0.907835 + 0.419327i \(0.862266\pi\)
\(972\) 0 0
\(973\) 33.7129 + 10.9540i 1.08078 + 0.351168i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.5171 6.66642i 0.656401 0.213278i 0.0381668 0.999271i \(-0.487848\pi\)
0.618235 + 0.785994i \(0.287848\pi\)
\(978\) 0 0
\(979\) 43.2205 28.3699i 1.38133 0.906707i
\(980\) 0 0
\(981\) 28.4218 + 87.4732i 0.907437 + 2.79281i
\(982\) 0 0
\(983\) 6.78715 + 9.34171i 0.216477 + 0.297954i 0.903420 0.428756i \(-0.141048\pi\)
−0.686944 + 0.726711i \(0.741048\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 12.6642 17.4308i 0.403106 0.554828i
\(988\) 0 0
\(989\) −26.0264 −0.827591
\(990\) 0 0
\(991\) 10.6881 0.339518 0.169759 0.985486i \(-0.445701\pi\)
0.169759 + 0.985486i \(0.445701\pi\)
\(992\) 0 0
\(993\) −3.10908 + 4.27928i −0.0986636 + 0.135799i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.0593 27.6093i −0.635285 0.874394i 0.363069 0.931762i \(-0.381729\pi\)
−0.998353 + 0.0573683i \(0.981729\pi\)
\(998\) 0 0
\(999\) 18.2269 + 56.0967i 0.576674 + 1.77482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.cb.d.49.8 32
5.2 odd 4 1100.2.n.d.401.1 16
5.3 odd 4 1100.2.n.e.401.4 yes 16
5.4 even 2 inner 1100.2.cb.d.49.1 32
11.9 even 5 inner 1100.2.cb.d.449.1 32
55.9 even 10 inner 1100.2.cb.d.449.8 32
55.42 odd 20 1100.2.n.d.801.1 yes 16
55.53 odd 20 1100.2.n.e.801.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.n.d.401.1 16 5.2 odd 4
1100.2.n.d.801.1 yes 16 55.42 odd 20
1100.2.n.e.401.4 yes 16 5.3 odd 4
1100.2.n.e.801.4 yes 16 55.53 odd 20
1100.2.cb.d.49.1 32 5.4 even 2 inner
1100.2.cb.d.49.8 32 1.1 even 1 trivial
1100.2.cb.d.449.1 32 11.9 even 5 inner
1100.2.cb.d.449.8 32 55.9 even 10 inner