Properties

Label 1100.2.n.e.801.4
Level $1100$
Weight $2$
Character 1100.801
Analytic conductor $8.784$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(201,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.n (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 13 x^{14} - 15 x^{13} + 59 x^{12} + 4 x^{11} + 369 x^{10} + 618 x^{9} + 1481 x^{8} + \cdots + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 801.4
Root \(0.927142 + 2.85345i\) of defining polynomial
Character \(\chi\) \(=\) 1100.801
Dual form 1100.2.n.e.401.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.42729 - 1.76353i) q^{3} +(-1.36631 - 0.992679i) q^{7} +(1.85465 - 5.70802i) q^{9} +(2.77267 + 1.81998i) q^{11} +(1.14660 - 3.52887i) q^{13} +(1.19594 + 3.68071i) q^{17} +(5.21062 - 3.78574i) q^{19} -5.06704 q^{21} -7.43878 q^{23} +(-2.78307 - 8.56540i) q^{27} +(2.55959 + 1.85965i) q^{29} +(0.787699 - 2.42429i) q^{31} +(9.93965 - 0.472068i) q^{33} +(-5.29843 - 3.84954i) q^{37} +(-3.44014 - 10.5877i) q^{39} +(-6.93840 + 5.04104i) q^{41} -3.49875 q^{43} +(3.44003 - 2.49933i) q^{47} +(-1.28174 - 3.94479i) q^{49} +(9.39392 + 6.82509i) q^{51} +(3.00470 - 9.24750i) q^{53} +(5.97143 - 18.3782i) q^{57} +(2.33853 + 1.69904i) q^{59} +(1.93043 + 5.94126i) q^{61} +(-8.20025 + 5.95783i) q^{63} +10.5387 q^{67} +(-18.0561 + 13.1185i) q^{69} +(2.85383 + 8.78318i) q^{71} +(2.96007 + 2.15062i) q^{73} +(-1.98166 - 5.23901i) q^{77} +(-5.23846 + 16.1223i) q^{79} +(-7.29404 - 5.29943i) q^{81} +(3.71779 + 11.4422i) q^{83} +9.49240 q^{87} -15.5881 q^{89} +(-5.06965 + 3.68331i) q^{91} +(-2.36333 - 7.27358i) q^{93} +(-2.07343 + 6.38135i) q^{97} +(15.5308 - 12.4510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 5 q^{11} - q^{13} - 8 q^{17} + 13 q^{19} - 6 q^{21} - 16 q^{23} - 37 q^{27} - 7 q^{29} + 2 q^{31} + 14 q^{33} - 8 q^{37} - 17 q^{39} - 15 q^{41} - 18 q^{47} - 24 q^{49} + 13 q^{51} - 6 q^{53}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.42729 1.76353i 1.40140 1.01817i 0.406892 0.913476i \(-0.366612\pi\)
0.994504 0.104698i \(-0.0333875\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.36631 0.992679i −0.516415 0.375197i 0.298837 0.954304i \(-0.403401\pi\)
−0.815252 + 0.579107i \(0.803401\pi\)
\(8\) 0 0
\(9\) 1.85465 5.70802i 0.618216 1.90267i
\(10\) 0 0
\(11\) 2.77267 + 1.81998i 0.835991 + 0.548744i
\(12\) 0 0
\(13\) 1.14660 3.52887i 0.318010 0.978733i −0.656488 0.754336i \(-0.727959\pi\)
0.974498 0.224397i \(-0.0720412\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.19594 + 3.68071i 0.290057 + 0.892704i 0.984837 + 0.173481i \(0.0555017\pi\)
−0.694780 + 0.719222i \(0.744498\pi\)
\(18\) 0 0
\(19\) 5.21062 3.78574i 1.19540 0.868508i 0.201575 0.979473i \(-0.435394\pi\)
0.993824 + 0.110965i \(0.0353941\pi\)
\(20\) 0 0
\(21\) −5.06704 −1.10572
\(22\) 0 0
\(23\) −7.43878 −1.55109 −0.775546 0.631291i \(-0.782525\pi\)
−0.775546 + 0.631291i \(0.782525\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −2.78307 8.56540i −0.535601 1.64841i
\(28\) 0 0
\(29\) 2.55959 + 1.85965i 0.475303 + 0.345328i 0.799505 0.600660i \(-0.205095\pi\)
−0.324201 + 0.945988i \(0.605095\pi\)
\(30\) 0 0
\(31\) 0.787699 2.42429i 0.141475 0.435415i −0.855066 0.518519i \(-0.826483\pi\)
0.996541 + 0.0831043i \(0.0264835\pi\)
\(32\) 0 0
\(33\) 9.93965 0.472068i 1.73027 0.0821764i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.29843 3.84954i −0.871057 0.632860i 0.0598135 0.998210i \(-0.480949\pi\)
−0.930870 + 0.365350i \(0.880949\pi\)
\(38\) 0 0
\(39\) −3.44014 10.5877i −0.550863 1.69538i
\(40\) 0 0
\(41\) −6.93840 + 5.04104i −1.08360 + 0.787279i −0.978306 0.207163i \(-0.933577\pi\)
−0.105290 + 0.994442i \(0.533577\pi\)
\(42\) 0 0
\(43\) −3.49875 −0.533554 −0.266777 0.963758i \(-0.585959\pi\)
−0.266777 + 0.963758i \(0.585959\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.44003 2.49933i 0.501781 0.364565i −0.307916 0.951414i \(-0.599632\pi\)
0.809697 + 0.586849i \(0.199632\pi\)
\(48\) 0 0
\(49\) −1.28174 3.94479i −0.183106 0.563541i
\(50\) 0 0
\(51\) 9.39392 + 6.82509i 1.31541 + 0.955703i
\(52\) 0 0
\(53\) 3.00470 9.24750i 0.412727 1.27024i −0.501542 0.865133i \(-0.667234\pi\)
0.914269 0.405109i \(-0.132766\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.97143 18.3782i 0.790935 2.43425i
\(58\) 0 0
\(59\) 2.33853 + 1.69904i 0.304450 + 0.221196i 0.729512 0.683968i \(-0.239747\pi\)
−0.425061 + 0.905165i \(0.639747\pi\)
\(60\) 0 0
\(61\) 1.93043 + 5.94126i 0.247167 + 0.760700i 0.995273 + 0.0971212i \(0.0309634\pi\)
−0.748106 + 0.663579i \(0.769037\pi\)
\(62\) 0 0
\(63\) −8.20025 + 5.95783i −1.03313 + 0.750616i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.5387 1.28750 0.643751 0.765235i \(-0.277377\pi\)
0.643751 + 0.765235i \(0.277377\pi\)
\(68\) 0 0
\(69\) −18.0561 + 13.1185i −2.17369 + 1.57928i
\(70\) 0 0
\(71\) 2.85383 + 8.78318i 0.338687 + 1.04237i 0.964877 + 0.262701i \(0.0846133\pi\)
−0.626190 + 0.779670i \(0.715387\pi\)
\(72\) 0 0
\(73\) 2.96007 + 2.15062i 0.346450 + 0.251711i 0.747378 0.664399i \(-0.231312\pi\)
−0.400928 + 0.916110i \(0.631312\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.98166 5.23901i −0.225831 0.597041i
\(78\) 0 0
\(79\) −5.23846 + 16.1223i −0.589373 + 1.81390i −0.00842422 + 0.999965i \(0.502682\pi\)
−0.580949 + 0.813940i \(0.697318\pi\)
\(80\) 0 0
\(81\) −7.29404 5.29943i −0.810449 0.588825i
\(82\) 0 0
\(83\) 3.71779 + 11.4422i 0.408080 + 1.25594i 0.918296 + 0.395896i \(0.129566\pi\)
−0.510215 + 0.860047i \(0.670434\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.49240 1.01769
\(88\) 0 0
\(89\) −15.5881 −1.65233 −0.826166 0.563426i \(-0.809483\pi\)
−0.826166 + 0.563426i \(0.809483\pi\)
\(90\) 0 0
\(91\) −5.06965 + 3.68331i −0.531443 + 0.386116i
\(92\) 0 0
\(93\) −2.36333 7.27358i −0.245066 0.754235i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.07343 + 6.38135i −0.210525 + 0.647928i 0.788916 + 0.614500i \(0.210642\pi\)
−0.999441 + 0.0334279i \(0.989358\pi\)
\(98\) 0 0
\(99\) 15.5308 12.4510i 1.56090 1.25138i
\(100\) 0 0
\(101\) 1.51211 4.65380i 0.150461 0.463071i −0.847212 0.531255i \(-0.821721\pi\)
0.997673 + 0.0681843i \(0.0217206\pi\)
\(102\) 0 0
\(103\) −13.4922 9.80269i −1.32943 0.965888i −0.999763 0.0217908i \(-0.993063\pi\)
−0.329668 0.944097i \(-0.606937\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.92664 1.39979i 0.186256 0.135323i −0.490750 0.871300i \(-0.663277\pi\)
0.677006 + 0.735978i \(0.263277\pi\)
\(108\) 0 0
\(109\) 15.3246 1.46783 0.733916 0.679240i \(-0.237691\pi\)
0.733916 + 0.679240i \(0.237691\pi\)
\(110\) 0 0
\(111\) −19.6496 −1.86506
\(112\) 0 0
\(113\) −1.41763 + 1.02997i −0.133359 + 0.0968910i −0.652465 0.757819i \(-0.726265\pi\)
0.519106 + 0.854710i \(0.326265\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −18.0163 13.0896i −1.66561 1.21014i
\(118\) 0 0
\(119\) 2.01975 6.21616i 0.185150 0.569834i
\(120\) 0 0
\(121\) 4.37537 + 10.0924i 0.397761 + 0.917489i
\(122\) 0 0
\(123\) −7.95148 + 24.4721i −0.716961 + 2.20658i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.89048 + 8.89597i 0.256488 + 0.789390i 0.993533 + 0.113546i \(0.0362208\pi\)
−0.737045 + 0.675844i \(0.763779\pi\)
\(128\) 0 0
\(129\) −8.49247 + 6.17014i −0.747720 + 0.543251i
\(130\) 0 0
\(131\) 10.3843 0.907282 0.453641 0.891185i \(-0.350125\pi\)
0.453641 + 0.891185i \(0.350125\pi\)
\(132\) 0 0
\(133\) −10.8773 −0.943184
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.79131 + 14.7461i 0.409349 + 1.25985i 0.917208 + 0.398408i \(0.130437\pi\)
−0.507859 + 0.861440i \(0.669563\pi\)
\(138\) 0 0
\(139\) 16.9807 + 12.3372i 1.44029 + 1.04643i 0.987982 + 0.154567i \(0.0493983\pi\)
0.452305 + 0.891863i \(0.350602\pi\)
\(140\) 0 0
\(141\) 3.94232 12.1332i 0.332003 1.02180i
\(142\) 0 0
\(143\) 9.60161 7.69760i 0.802927 0.643706i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −10.0679 7.31476i −0.830387 0.603311i
\(148\) 0 0
\(149\) −0.899897 2.76960i −0.0737224 0.226894i 0.907405 0.420258i \(-0.138060\pi\)
−0.981127 + 0.193363i \(0.938060\pi\)
\(150\) 0 0
\(151\) 3.65731 2.65719i 0.297628 0.216239i −0.428942 0.903332i \(-0.641113\pi\)
0.726570 + 0.687093i \(0.241113\pi\)
\(152\) 0 0
\(153\) 23.2276 1.87784
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.52962 + 5.47059i −0.600929 + 0.436601i −0.846209 0.532852i \(-0.821120\pi\)
0.245279 + 0.969452i \(0.421120\pi\)
\(158\) 0 0
\(159\) −9.01497 27.7452i −0.714934 2.20034i
\(160\) 0 0
\(161\) 10.1636 + 7.38432i 0.801007 + 0.581966i
\(162\) 0 0
\(163\) 3.90948 12.0321i 0.306214 0.942429i −0.673008 0.739635i \(-0.734998\pi\)
0.979221 0.202794i \(-0.0650021\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.25303 + 16.1672i −0.406492 + 1.25105i 0.513152 + 0.858298i \(0.328478\pi\)
−0.919643 + 0.392754i \(0.871522\pi\)
\(168\) 0 0
\(169\) −0.621033 0.451207i −0.0477718 0.0347082i
\(170\) 0 0
\(171\) −11.9452 36.7636i −0.913473 2.81138i
\(172\) 0 0
\(173\) 10.1067 7.34298i 0.768401 0.558276i −0.133074 0.991106i \(-0.542485\pi\)
0.901476 + 0.432830i \(0.142485\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.67259 0.651872
\(178\) 0 0
\(179\) −1.03046 + 0.748673i −0.0770202 + 0.0559584i −0.625629 0.780121i \(-0.715158\pi\)
0.548609 + 0.836079i \(0.315158\pi\)
\(180\) 0 0
\(181\) −5.34282 16.4435i −0.397129 1.22224i −0.927291 0.374341i \(-0.877869\pi\)
0.530162 0.847896i \(-0.322131\pi\)
\(182\) 0 0
\(183\) 15.1633 + 11.0168i 1.12090 + 0.814384i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.38288 + 12.3820i −0.247381 + 0.905459i
\(188\) 0 0
\(189\) −4.70017 + 14.4656i −0.341887 + 1.05222i
\(190\) 0 0
\(191\) 12.2106 + 8.87154i 0.883530 + 0.641922i 0.934183 0.356794i \(-0.116130\pi\)
−0.0506530 + 0.998716i \(0.516130\pi\)
\(192\) 0 0
\(193\) −6.77546 20.8527i −0.487708 1.50101i −0.828020 0.560699i \(-0.810533\pi\)
0.340312 0.940313i \(-0.389467\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4874 1.38842 0.694210 0.719772i \(-0.255754\pi\)
0.694210 + 0.719772i \(0.255754\pi\)
\(198\) 0 0
\(199\) −4.59408 −0.325666 −0.162833 0.986654i \(-0.552063\pi\)
−0.162833 + 0.986654i \(0.552063\pi\)
\(200\) 0 0
\(201\) 25.5804 18.5852i 1.80430 1.31090i
\(202\) 0 0
\(203\) −1.65114 5.08170i −0.115888 0.356665i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −13.7963 + 42.4607i −0.958910 + 2.95122i
\(208\) 0 0
\(209\) 21.3373 1.01338i 1.47593 0.0700970i
\(210\) 0 0
\(211\) −7.77574 + 23.9313i −0.535304 + 1.64750i 0.207687 + 0.978195i \(0.433406\pi\)
−0.742991 + 0.669301i \(0.766594\pi\)
\(212\) 0 0
\(213\) 22.4165 + 16.2865i 1.53595 + 1.11593i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.48278 + 2.53039i −0.236426 + 0.171774i
\(218\) 0 0
\(219\) 10.9776 0.741800
\(220\) 0 0
\(221\) 14.3600 0.965960
\(222\) 0 0
\(223\) −20.9426 + 15.2157i −1.40242 + 1.01892i −0.408051 + 0.912959i \(0.633792\pi\)
−0.994370 + 0.105960i \(0.966208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.8810 14.4444i −1.31955 0.958710i −0.999938 0.0111621i \(-0.996447\pi\)
−0.319614 0.947548i \(-0.603553\pi\)
\(228\) 0 0
\(229\) 3.90485 12.0179i 0.258040 0.794165i −0.735175 0.677877i \(-0.762900\pi\)
0.993215 0.116289i \(-0.0370997\pi\)
\(230\) 0 0
\(231\) −14.0492 9.22189i −0.924370 0.606756i
\(232\) 0 0
\(233\) −1.97304 + 6.07238i −0.129258 + 0.397815i −0.994653 0.103276i \(-0.967068\pi\)
0.865395 + 0.501090i \(0.167068\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 15.7169 + 48.3718i 1.02092 + 3.14208i
\(238\) 0 0
\(239\) −10.9264 + 7.93851i −0.706771 + 0.513499i −0.882130 0.471005i \(-0.843891\pi\)
0.175359 + 0.984505i \(0.443891\pi\)
\(240\) 0 0
\(241\) −26.7883 −1.72559 −0.862793 0.505557i \(-0.831287\pi\)
−0.862793 + 0.505557i \(0.831287\pi\)
\(242\) 0 0
\(243\) −0.0318587 −0.00204373
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.38489 22.7284i −0.469889 1.44617i
\(248\) 0 0
\(249\) 29.2028 + 21.2171i 1.85065 + 1.34458i
\(250\) 0 0
\(251\) 2.03249 6.25535i 0.128289 0.394834i −0.866197 0.499703i \(-0.833442\pi\)
0.994486 + 0.104869i \(0.0334424\pi\)
\(252\) 0 0
\(253\) −20.6253 13.5384i −1.29670 0.851152i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.5647 + 11.3084i 0.970898 + 0.705399i 0.955656 0.294485i \(-0.0951482\pi\)
0.0152419 + 0.999884i \(0.495148\pi\)
\(258\) 0 0
\(259\) 3.41792 + 10.5193i 0.212379 + 0.653637i
\(260\) 0 0
\(261\) 15.3621 11.1612i 0.950887 0.690860i
\(262\) 0 0
\(263\) −4.89929 −0.302103 −0.151052 0.988526i \(-0.548266\pi\)
−0.151052 + 0.988526i \(0.548266\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −37.8368 + 27.4900i −2.31557 + 1.68236i
\(268\) 0 0
\(269\) 1.13958 + 3.50727i 0.0694814 + 0.213842i 0.979768 0.200137i \(-0.0641387\pi\)
−0.910286 + 0.413979i \(0.864139\pi\)
\(270\) 0 0
\(271\) −3.28380 2.38582i −0.199477 0.144928i 0.483563 0.875310i \(-0.339342\pi\)
−0.683040 + 0.730381i \(0.739342\pi\)
\(272\) 0 0
\(273\) −5.80987 + 17.8809i −0.351629 + 1.08220i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.32631 10.2373i 0.199859 0.615101i −0.800027 0.599964i \(-0.795181\pi\)
0.999885 0.0151373i \(-0.00481852\pi\)
\(278\) 0 0
\(279\) −12.3770 8.99240i −0.740991 0.538361i
\(280\) 0 0
\(281\) −4.18268 12.8730i −0.249518 0.767936i −0.994860 0.101255i \(-0.967714\pi\)
0.745343 0.666681i \(-0.232286\pi\)
\(282\) 0 0
\(283\) −9.04814 + 6.57386i −0.537856 + 0.390775i −0.823288 0.567624i \(-0.807863\pi\)
0.285432 + 0.958399i \(0.407863\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.4841 0.854970
\(288\) 0 0
\(289\) 1.63591 1.18856i 0.0962302 0.0699154i
\(290\) 0 0
\(291\) 6.22089 + 19.1459i 0.364675 + 1.12236i
\(292\) 0 0
\(293\) 7.81212 + 5.67584i 0.456389 + 0.331586i 0.792113 0.610374i \(-0.208981\pi\)
−0.335724 + 0.941960i \(0.608981\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.87231 28.8141i 0.456798 1.67196i
\(298\) 0 0
\(299\) −8.52931 + 26.2505i −0.493262 + 1.51811i
\(300\) 0 0
\(301\) 4.78036 + 3.47313i 0.275535 + 0.200188i
\(302\) 0 0
\(303\) −4.53678 13.9628i −0.260631 0.802141i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5.20959 −0.297327 −0.148664 0.988888i \(-0.547497\pi\)
−0.148664 + 0.988888i \(0.547497\pi\)
\(308\) 0 0
\(309\) −50.0369 −2.84650
\(310\) 0 0
\(311\) −19.5453 + 14.2005i −1.10831 + 0.805237i −0.982397 0.186803i \(-0.940187\pi\)
−0.125917 + 0.992041i \(0.540187\pi\)
\(312\) 0 0
\(313\) −4.04956 12.4633i −0.228895 0.704465i −0.997873 0.0651903i \(-0.979235\pi\)
0.768978 0.639275i \(-0.220765\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.18818 + 6.73454i −0.122901 + 0.378249i −0.993513 0.113721i \(-0.963723\pi\)
0.870612 + 0.491970i \(0.163723\pi\)
\(318\) 0 0
\(319\) 3.71236 + 9.81458i 0.207853 + 0.549511i
\(320\) 0 0
\(321\) 2.20795 6.79538i 0.123236 0.379281i
\(322\) 0 0
\(323\) 20.1658 + 14.6513i 1.12205 + 0.815220i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 37.1973 27.0254i 2.05701 1.49451i
\(328\) 0 0
\(329\) −7.18117 −0.395911
\(330\) 0 0
\(331\) −1.76299 −0.0969025 −0.0484513 0.998826i \(-0.515429\pi\)
−0.0484513 + 0.998826i \(0.515429\pi\)
\(332\) 0 0
\(333\) −31.8000 + 23.1040i −1.74263 + 1.26609i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9.59687 6.97253i −0.522775 0.379818i 0.294874 0.955536i \(-0.404722\pi\)
−0.817648 + 0.575718i \(0.804722\pi\)
\(338\) 0 0
\(339\) −1.62461 + 5.00005i −0.0882369 + 0.271565i
\(340\) 0 0
\(341\) 6.59617 5.28815i 0.357203 0.286369i
\(342\) 0 0
\(343\) −5.81784 + 17.9055i −0.314134 + 0.966804i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.51731 + 7.74747i 0.135136 + 0.415906i 0.995611 0.0935864i \(-0.0298331\pi\)
−0.860475 + 0.509493i \(0.829833\pi\)
\(348\) 0 0
\(349\) −13.8784 + 10.0832i −0.742893 + 0.539743i −0.893616 0.448833i \(-0.851840\pi\)
0.150723 + 0.988576i \(0.451840\pi\)
\(350\) 0 0
\(351\) −33.4173 −1.78368
\(352\) 0 0
\(353\) 9.89553 0.526686 0.263343 0.964702i \(-0.415175\pi\)
0.263343 + 0.964702i \(0.415175\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.05985 18.6503i −0.320721 0.987079i
\(358\) 0 0
\(359\) −30.2411 21.9715i −1.59607 1.15961i −0.894561 0.446946i \(-0.852512\pi\)
−0.701506 0.712664i \(-0.747488\pi\)
\(360\) 0 0
\(361\) 6.94745 21.3821i 0.365655 1.12537i
\(362\) 0 0
\(363\) 28.4185 + 16.7810i 1.49158 + 0.880777i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 15.6840 + 11.3951i 0.818698 + 0.594819i 0.916339 0.400403i \(-0.131130\pi\)
−0.0976415 + 0.995222i \(0.531130\pi\)
\(368\) 0 0
\(369\) 15.9061 + 48.9539i 0.828038 + 2.54844i
\(370\) 0 0
\(371\) −13.2851 + 9.65221i −0.689730 + 0.501118i
\(372\) 0 0
\(373\) −1.02733 −0.0531933 −0.0265967 0.999646i \(-0.508467\pi\)
−0.0265967 + 0.999646i \(0.508467\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.49729 6.90018i 0.489135 0.355378i
\(378\) 0 0
\(379\) 2.32646 + 7.16010i 0.119502 + 0.367790i 0.992859 0.119290i \(-0.0380620\pi\)
−0.873357 + 0.487080i \(0.838062\pi\)
\(380\) 0 0
\(381\) 22.7043 + 16.4957i 1.16318 + 0.845098i
\(382\) 0 0
\(383\) −4.67756 + 14.3960i −0.239012 + 0.735603i 0.757552 + 0.652775i \(0.226395\pi\)
−0.996564 + 0.0828281i \(0.973605\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.48895 + 19.9709i −0.329852 + 1.01518i
\(388\) 0 0
\(389\) −4.11088 2.98673i −0.208430 0.151433i 0.478673 0.877993i \(-0.341118\pi\)
−0.687103 + 0.726560i \(0.741118\pi\)
\(390\) 0 0
\(391\) −8.89630 27.3800i −0.449905 1.38467i
\(392\) 0 0
\(393\) 25.2057 18.3130i 1.27146 0.923771i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −5.78023 −0.290101 −0.145051 0.989424i \(-0.546335\pi\)
−0.145051 + 0.989424i \(0.546335\pi\)
\(398\) 0 0
\(399\) −26.4024 + 19.1825i −1.32177 + 0.960326i
\(400\) 0 0
\(401\) 7.23049 + 22.2532i 0.361074 + 1.11127i 0.952403 + 0.304841i \(0.0986032\pi\)
−0.591330 + 0.806430i \(0.701397\pi\)
\(402\) 0 0
\(403\) −7.65183 5.55938i −0.381165 0.276932i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.68472 20.3165i −0.380917 1.00705i
\(408\) 0 0
\(409\) 2.63551 8.11126i 0.130318 0.401076i −0.864515 0.502607i \(-0.832374\pi\)
0.994832 + 0.101531i \(0.0323742\pi\)
\(410\) 0 0
\(411\) 37.6352 + 27.3435i 1.85641 + 1.34876i
\(412\) 0 0
\(413\) −1.50854 4.64282i −0.0742305 0.228458i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 62.9742 3.08386
\(418\) 0 0
\(419\) 26.9789 1.31801 0.659003 0.752141i \(-0.270979\pi\)
0.659003 + 0.752141i \(0.270979\pi\)
\(420\) 0 0
\(421\) 18.6021 13.5152i 0.906612 0.658692i −0.0335437 0.999437i \(-0.510679\pi\)
0.940156 + 0.340745i \(0.110679\pi\)
\(422\) 0 0
\(423\) −7.88618 24.2712i −0.383439 1.18010i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.26020 10.0339i 0.157772 0.485573i
\(428\) 0 0
\(429\) 9.73094 35.6170i 0.469814 1.71961i
\(430\) 0 0
\(431\) 0.655391 2.01708i 0.0315691 0.0971596i −0.934030 0.357193i \(-0.883734\pi\)
0.965600 + 0.260034i \(0.0837337\pi\)
\(432\) 0 0
\(433\) −22.1563 16.0975i −1.06476 0.773597i −0.0898005 0.995960i \(-0.528623\pi\)
−0.974964 + 0.222363i \(0.928623\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −38.7607 + 28.1613i −1.85417 + 1.34714i
\(438\) 0 0
\(439\) 31.5257 1.50464 0.752319 0.658799i \(-0.228935\pi\)
0.752319 + 0.658799i \(0.228935\pi\)
\(440\) 0 0
\(441\) −24.8941 −1.18543
\(442\) 0 0
\(443\) −5.43740 + 3.95050i −0.258339 + 0.187694i −0.709414 0.704792i \(-0.751040\pi\)
0.451076 + 0.892486i \(0.351040\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.06858 5.13562i −0.334332 0.242907i
\(448\) 0 0
\(449\) 3.99069 12.2821i 0.188332 0.579627i −0.811658 0.584133i \(-0.801435\pi\)
0.999990 + 0.00450672i \(0.00143454\pi\)
\(450\) 0 0
\(451\) −28.4125 + 1.34940i −1.33789 + 0.0635409i
\(452\) 0 0
\(453\) 4.19132 12.8996i 0.196925 0.606074i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.44706 10.6090i −0.161247 0.496267i 0.837493 0.546448i \(-0.184020\pi\)
−0.998740 + 0.0501808i \(0.984020\pi\)
\(458\) 0 0
\(459\) 28.1984 20.4873i 1.31619 0.956267i
\(460\) 0 0
\(461\) 11.7060 0.545205 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(462\) 0 0
\(463\) −10.7840 −0.501173 −0.250586 0.968094i \(-0.580623\pi\)
−0.250586 + 0.968094i \(0.580623\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.46289 19.8907i −0.299067 0.920433i −0.981825 0.189789i \(-0.939220\pi\)
0.682758 0.730644i \(-0.260780\pi\)
\(468\) 0 0
\(469\) −14.3990 10.4615i −0.664885 0.483067i
\(470\) 0 0
\(471\) −8.62903 + 26.5574i −0.397605 + 1.22370i
\(472\) 0 0
\(473\) −9.70086 6.36764i −0.446046 0.292784i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −47.2123 34.3017i −2.16170 1.57057i
\(478\) 0 0
\(479\) −3.47943 10.7086i −0.158979 0.489288i 0.839563 0.543262i \(-0.182811\pi\)
−0.998542 + 0.0539745i \(0.982811\pi\)
\(480\) 0 0
\(481\) −19.6597 + 14.2836i −0.896406 + 0.651277i
\(482\) 0 0
\(483\) 37.6926 1.71507
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.88160 + 4.99978i −0.311835 + 0.226562i −0.732684 0.680569i \(-0.761732\pi\)
0.420848 + 0.907131i \(0.361732\pi\)
\(488\) 0 0
\(489\) −11.7296 36.0999i −0.530430 1.63250i
\(490\) 0 0
\(491\) −11.2974 8.20808i −0.509847 0.370425i 0.302919 0.953016i \(-0.402039\pi\)
−0.812765 + 0.582591i \(0.802039\pi\)
\(492\) 0 0
\(493\) −3.78373 + 11.6451i −0.170411 + 0.524470i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.81968 14.8334i 0.216192 0.665371i
\(498\) 0 0
\(499\) 4.47304 + 3.24985i 0.200241 + 0.145483i 0.683387 0.730056i \(-0.260506\pi\)
−0.483146 + 0.875540i \(0.660506\pi\)
\(500\) 0 0
\(501\) 15.7606 + 48.5062i 0.704133 + 2.16710i
\(502\) 0 0
\(503\) 7.43868 5.40452i 0.331674 0.240976i −0.409466 0.912325i \(-0.634285\pi\)
0.741141 + 0.671350i \(0.234285\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.30314 −0.102286
\(508\) 0 0
\(509\) −8.96759 + 6.51534i −0.397482 + 0.288787i −0.768514 0.639832i \(-0.779004\pi\)
0.371033 + 0.928620i \(0.379004\pi\)
\(510\) 0 0
\(511\) −1.90949 5.87681i −0.0844709 0.259975i
\(512\) 0 0
\(513\) −46.9279 34.0951i −2.07192 1.50534i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 14.0868 0.669030i 0.619537 0.0294239i
\(518\) 0 0
\(519\) 11.5824 35.6471i 0.508413 1.56473i
\(520\) 0 0
\(521\) −14.8879 10.8167i −0.652252 0.473889i 0.211786 0.977316i \(-0.432072\pi\)
−0.864038 + 0.503427i \(0.832072\pi\)
\(522\) 0 0
\(523\) 7.61361 + 23.4323i 0.332920 + 1.02462i 0.967738 + 0.251960i \(0.0810751\pi\)
−0.634818 + 0.772662i \(0.718925\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.86514 0.429732
\(528\) 0 0
\(529\) 32.3354 1.40589
\(530\) 0 0
\(531\) 14.0353 10.1972i 0.609080 0.442523i
\(532\) 0 0
\(533\) 9.83363 + 30.2648i 0.425942 + 1.31091i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.18092 + 3.63449i −0.0509604 + 0.156840i
\(538\) 0 0
\(539\) 3.62559 13.2703i 0.156165 0.571593i
\(540\) 0 0
\(541\) 2.02811 6.24188i 0.0871953 0.268360i −0.897946 0.440106i \(-0.854941\pi\)
0.985141 + 0.171746i \(0.0549409\pi\)
\(542\) 0 0
\(543\) −41.9672 30.4910i −1.80098 1.30849i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.527878 + 0.383526i −0.0225704 + 0.0163984i −0.599013 0.800739i \(-0.704440\pi\)
0.576443 + 0.817137i \(0.304440\pi\)
\(548\) 0 0
\(549\) 37.4931 1.60017
\(550\) 0 0
\(551\) 20.3772 0.868098
\(552\) 0 0
\(553\) 23.1617 16.8279i 0.984934 0.715596i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.37704 + 1.00048i 0.0583469 + 0.0423915i 0.616576 0.787295i \(-0.288519\pi\)
−0.558230 + 0.829687i \(0.688519\pi\)
\(558\) 0 0
\(559\) −4.01166 + 12.3466i −0.169675 + 0.522207i
\(560\) 0 0
\(561\) 13.6247 + 36.0204i 0.575236 + 1.52078i
\(562\) 0 0
\(563\) 13.5063 41.5681i 0.569222 1.75189i −0.0858390 0.996309i \(-0.527357\pi\)
0.655061 0.755576i \(-0.272643\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.70525 + 14.4813i 0.197602 + 0.608157i
\(568\) 0 0
\(569\) 25.3587 18.4242i 1.06309 0.772382i 0.0884349 0.996082i \(-0.471813\pi\)
0.974658 + 0.223700i \(0.0718135\pi\)
\(570\) 0 0
\(571\) 9.86361 0.412779 0.206390 0.978470i \(-0.433829\pi\)
0.206390 + 0.978470i \(0.433829\pi\)
\(572\) 0 0
\(573\) 45.2840 1.89176
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.96943 24.5274i −0.331772 1.02109i −0.968290 0.249827i \(-0.919626\pi\)
0.636519 0.771261i \(-0.280374\pi\)
\(578\) 0 0
\(579\) −53.2204 38.6669i −2.21176 1.60694i
\(580\) 0 0
\(581\) 6.27878 19.3241i 0.260488 0.801698i
\(582\) 0 0
\(583\) 25.1613 20.1718i 1.04207 0.835429i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.860653 0.625301i −0.0355229 0.0258089i 0.569882 0.821726i \(-0.306989\pi\)
−0.605405 + 0.795918i \(0.706989\pi\)
\(588\) 0 0
\(589\) −5.07332 15.6141i −0.209043 0.643367i
\(590\) 0 0
\(591\) 47.3016 34.3666i 1.94573 1.41365i
\(592\) 0 0
\(593\) 19.7906 0.812702 0.406351 0.913717i \(-0.366801\pi\)
0.406351 + 0.913717i \(0.366801\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.1512 + 8.10180i −0.456387 + 0.331585i
\(598\) 0 0
\(599\) −1.40163 4.31378i −0.0572692 0.176256i 0.918330 0.395816i \(-0.129538\pi\)
−0.975599 + 0.219559i \(0.929538\pi\)
\(600\) 0 0
\(601\) −38.2474 27.7883i −1.56014 1.13351i −0.935892 0.352286i \(-0.885404\pi\)
−0.624251 0.781224i \(-0.714596\pi\)
\(602\) 0 0
\(603\) 19.5455 60.1549i 0.795954 2.44970i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.91282 + 12.0424i −0.158817 + 0.488787i −0.998528 0.0542464i \(-0.982724\pi\)
0.839711 + 0.543033i \(0.182724\pi\)
\(608\) 0 0
\(609\) −12.9695 9.42291i −0.525552 0.381836i
\(610\) 0 0
\(611\) −4.87548 15.0052i −0.197241 0.607045i
\(612\) 0 0
\(613\) −9.33212 + 6.78018i −0.376921 + 0.273849i −0.760075 0.649835i \(-0.774838\pi\)
0.383154 + 0.923684i \(0.374838\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.58142 −0.385733 −0.192867 0.981225i \(-0.561779\pi\)
−0.192867 + 0.981225i \(0.561779\pi\)
\(618\) 0 0
\(619\) 0.972177 0.706328i 0.0390751 0.0283897i −0.568076 0.822976i \(-0.692312\pi\)
0.607151 + 0.794586i \(0.292312\pi\)
\(620\) 0 0
\(621\) 20.7026 + 63.7161i 0.830767 + 2.55684i
\(622\) 0 0
\(623\) 21.2981 + 15.4740i 0.853289 + 0.619951i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 50.0046 40.0887i 1.99699 1.60099i
\(628\) 0 0
\(629\) 7.83245 24.1058i 0.312300 0.961161i
\(630\) 0 0
\(631\) −11.5819 8.41474i −0.461068 0.334985i 0.332882 0.942968i \(-0.391979\pi\)
−0.793950 + 0.607983i \(0.791979\pi\)
\(632\) 0 0
\(633\) 23.3295 + 71.8009i 0.927265 + 2.85383i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.3903 −0.609786
\(638\) 0 0
\(639\) 55.4274 2.19267
\(640\) 0 0
\(641\) 29.9553 21.7638i 1.18316 0.859618i 0.190637 0.981661i \(-0.438945\pi\)
0.992525 + 0.122043i \(0.0389445\pi\)
\(642\) 0 0
\(643\) −1.38308 4.25667i −0.0545432 0.167867i 0.920074 0.391745i \(-0.128128\pi\)
−0.974617 + 0.223878i \(0.928128\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.82850 27.1713i 0.347084 1.06822i −0.613374 0.789792i \(-0.710188\pi\)
0.960458 0.278423i \(-0.0898118\pi\)
\(648\) 0 0
\(649\) 3.39175 + 8.96694i 0.133138 + 0.351983i
\(650\) 0 0
\(651\) −3.99130 + 12.2840i −0.156431 + 0.481446i
\(652\) 0 0
\(653\) 0.545672 + 0.396454i 0.0213538 + 0.0155144i 0.598411 0.801189i \(-0.295799\pi\)
−0.577057 + 0.816704i \(0.695799\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 17.7657 12.9075i 0.693105 0.503570i
\(658\) 0 0
\(659\) −30.4518 −1.18623 −0.593117 0.805116i \(-0.702103\pi\)
−0.593117 + 0.805116i \(0.702103\pi\)
\(660\) 0 0
\(661\) −29.2772 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(662\) 0 0
\(663\) 34.8559 25.3243i 1.35369 0.983515i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19.0402 13.8335i −0.737239 0.535636i
\(668\) 0 0
\(669\) −24.0005 + 73.8658i −0.927912 + 2.85582i
\(670\) 0 0
\(671\) −5.46051 + 19.9865i −0.210801 + 0.771569i
\(672\) 0 0
\(673\) 0.494242 1.52112i 0.0190516 0.0586349i −0.941079 0.338188i \(-0.890186\pi\)
0.960130 + 0.279553i \(0.0901862\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.22089 + 9.91287i 0.123789 + 0.380982i 0.993678 0.112264i \(-0.0358102\pi\)
−0.869890 + 0.493246i \(0.835810\pi\)
\(678\) 0 0
\(679\) 9.16757 6.66063i 0.351819 0.255612i
\(680\) 0 0
\(681\) −73.7302 −2.82535
\(682\) 0 0
\(683\) −38.4144 −1.46988 −0.734942 0.678130i \(-0.762791\pi\)
−0.734942 + 0.678130i \(0.762791\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.7157 36.0573i −0.446982 1.37567i
\(688\) 0 0
\(689\) −29.1881 21.2064i −1.11198 0.807899i
\(690\) 0 0
\(691\) 5.37655 16.5473i 0.204534 0.629490i −0.795199 0.606349i \(-0.792633\pi\)
0.999732 0.0231407i \(-0.00736657\pi\)
\(692\) 0 0
\(693\) −33.5797 + 1.59481i −1.27559 + 0.0605819i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −26.8525 19.5095i −1.01711 0.738974i
\(698\) 0 0
\(699\) 5.91969 + 18.2189i 0.223903 + 0.689103i
\(700\) 0 0
\(701\) −41.3290 + 30.0273i −1.56098 + 1.13412i −0.625771 + 0.780007i \(0.715216\pi\)
−0.935204 + 0.354109i \(0.884784\pi\)
\(702\) 0 0
\(703\) −42.1815 −1.59090
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.68574 + 4.85748i −0.251443 + 0.182684i
\(708\) 0 0
\(709\) −3.11182 9.57719i −0.116867 0.359679i 0.875465 0.483281i \(-0.160555\pi\)
−0.992332 + 0.123603i \(0.960555\pi\)
\(710\) 0 0
\(711\) 82.3111 + 59.8025i 3.08691 + 2.24277i
\(712\) 0 0
\(713\) −5.85952 + 18.0337i −0.219441 + 0.675369i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.5218 + 38.5381i −0.467635 + 1.43923i
\(718\) 0 0
\(719\) 17.8912 + 12.9987i 0.667230 + 0.484771i 0.869097 0.494642i \(-0.164701\pi\)
−0.201867 + 0.979413i \(0.564701\pi\)
\(720\) 0 0
\(721\) 8.70361 + 26.7869i 0.324139 + 0.997598i
\(722\) 0 0
\(723\) −65.0230 + 47.2420i −2.41823 + 1.75695i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −25.8714 −0.959517 −0.479758 0.877401i \(-0.659276\pi\)
−0.479758 + 0.877401i \(0.659276\pi\)
\(728\) 0 0
\(729\) 21.8048 15.8421i 0.807585 0.586745i
\(730\) 0 0
\(731\) −4.18428 12.8779i −0.154761 0.476306i
\(732\) 0 0
\(733\) −29.5324 21.4566i −1.09080 0.792516i −0.111270 0.993790i \(-0.535492\pi\)
−0.979535 + 0.201274i \(0.935492\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.2202 + 19.1801i 1.07634 + 0.706508i
\(738\) 0 0
\(739\) 5.51149 16.9626i 0.202743 0.623980i −0.797055 0.603907i \(-0.793610\pi\)
0.999799 0.0200734i \(-0.00639000\pi\)
\(740\) 0 0
\(741\) −58.0074 42.1448i −2.13096 1.54823i
\(742\) 0 0
\(743\) 12.2316 + 37.6450i 0.448733 + 1.38106i 0.878337 + 0.478042i \(0.158653\pi\)
−0.429604 + 0.903018i \(0.641347\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 72.2074 2.64193
\(748\) 0 0
\(749\) −4.02192 −0.146958
\(750\) 0 0
\(751\) 5.73271 4.16506i 0.209190 0.151985i −0.478257 0.878220i \(-0.658731\pi\)
0.687447 + 0.726235i \(0.258731\pi\)
\(752\) 0 0
\(753\) −6.09806 18.7679i −0.222226 0.683940i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.44983 7.53982i 0.0890407 0.274039i −0.896614 0.442813i \(-0.853981\pi\)
0.985655 + 0.168774i \(0.0539806\pi\)
\(758\) 0 0
\(759\) −73.9388 + 3.51161i −2.68381 + 0.127463i
\(760\) 0 0
\(761\) 9.04626 27.8415i 0.327927 1.00925i −0.642175 0.766558i \(-0.721968\pi\)
0.970102 0.242697i \(-0.0780321\pi\)
\(762\) 0 0
\(763\) −20.9381 15.2124i −0.758010 0.550727i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.67705 6.30425i 0.313310 0.227633i
\(768\) 0 0
\(769\) −3.78340 −0.136433 −0.0682165 0.997671i \(-0.521731\pi\)
−0.0682165 + 0.997671i \(0.521731\pi\)
\(770\) 0 0
\(771\) 57.7227 2.07883
\(772\) 0 0
\(773\) −2.08683 + 1.51617i −0.0750581 + 0.0545329i −0.624682 0.780880i \(-0.714771\pi\)
0.549623 + 0.835413i \(0.314771\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 26.8474 + 19.5057i 0.963143 + 0.699765i
\(778\) 0 0
\(779\) −17.0693 + 52.5340i −0.611572 + 1.88222i
\(780\) 0 0
\(781\) −8.07247 + 29.5467i −0.288856 + 1.05726i
\(782\) 0 0
\(783\) 8.80513 27.0994i 0.314670 0.968454i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4.23200 13.0248i −0.150854 0.464282i 0.846863 0.531811i \(-0.178488\pi\)
−0.997717 + 0.0675291i \(0.978488\pi\)
\(788\) 0 0
\(789\) −11.8920 + 8.64005i −0.423367 + 0.307594i
\(790\) 0 0
\(791\) 2.95933 0.105222
\(792\) 0 0
\(793\) 23.1794 0.823124
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.3218 44.0779i −0.507303 1.56132i −0.796864 0.604159i \(-0.793509\pi\)
0.289561 0.957160i \(-0.406491\pi\)
\(798\) 0 0
\(799\) 13.3134 + 9.67274i 0.470993 + 0.342197i
\(800\) 0 0
\(801\) −28.9104 + 88.9771i −1.02150 + 3.14385i
\(802\) 0 0
\(803\) 4.29322 + 11.3502i 0.151504 + 0.400541i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.95126 + 6.50347i 0.315099 + 0.228933i
\(808\) 0 0
\(809\) 2.35528 + 7.24879i 0.0828071 + 0.254854i 0.983885 0.178804i \(-0.0572227\pi\)
−0.901078 + 0.433658i \(0.857223\pi\)
\(810\) 0 0
\(811\) −23.5550 + 17.1137i −0.827127 + 0.600943i −0.918745 0.394851i \(-0.870796\pi\)
0.0916180 + 0.995794i \(0.470796\pi\)
\(812\) 0 0
\(813\) −12.1782 −0.427108
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −18.2307 + 13.2453i −0.637810 + 0.463396i
\(818\) 0 0
\(819\) 11.6220 + 35.7689i 0.406106 + 1.24987i
\(820\) 0 0
\(821\) −39.7129 28.8531i −1.38599 1.00698i −0.996292 0.0860379i \(-0.972579\pi\)
−0.389698 0.920943i \(-0.627421\pi\)
\(822\) 0 0
\(823\) −17.2838 + 53.1942i −0.602476 + 1.85423i −0.0891893 + 0.996015i \(0.528428\pi\)
−0.513287 + 0.858217i \(0.671572\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.95965 18.3419i 0.207237 0.637811i −0.792377 0.610032i \(-0.791156\pi\)
0.999614 0.0277792i \(-0.00884352\pi\)
\(828\) 0 0
\(829\) 13.8870 + 10.0895i 0.482316 + 0.350423i 0.802222 0.597026i \(-0.203651\pi\)
−0.319906 + 0.947449i \(0.603651\pi\)
\(830\) 0 0
\(831\) −9.97991 30.7150i −0.346199 1.06549i
\(832\) 0 0
\(833\) 12.9868 9.43543i 0.449964 0.326918i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −22.9572 −0.793517
\(838\) 0 0
\(839\) −30.5653 + 22.2070i −1.05523 + 0.766671i −0.973200 0.229959i \(-0.926141\pi\)
−0.0820317 + 0.996630i \(0.526141\pi\)
\(840\) 0 0
\(841\) −5.86830 18.0608i −0.202355 0.622785i
\(842\) 0 0
\(843\) −32.8544 23.8701i −1.13157 0.822131i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.04041 18.1326i 0.138830 0.623044i
\(848\) 0 0
\(849\) −10.3693 + 31.9133i −0.355872 + 1.09526i
\(850\) 0 0
\(851\) 39.4139 + 28.6358i 1.35109 + 0.981624i
\(852\) 0 0
\(853\) 3.26607 + 10.0519i 0.111828 + 0.344171i 0.991272 0.131831i \(-0.0420855\pi\)
−0.879444 + 0.476002i \(0.842086\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.6489 0.500395 0.250198 0.968195i \(-0.419504\pi\)
0.250198 + 0.968195i \(0.419504\pi\)
\(858\) 0 0
\(859\) −1.44844 −0.0494202 −0.0247101 0.999695i \(-0.507866\pi\)
−0.0247101 + 0.999695i \(0.507866\pi\)
\(860\) 0 0
\(861\) 35.1571 25.5432i 1.19815 0.870508i
\(862\) 0 0
\(863\) 14.9448 + 45.9954i 0.508727 + 1.56570i 0.794414 + 0.607377i \(0.207778\pi\)
−0.285687 + 0.958323i \(0.592222\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.87477 5.76996i 0.0636707 0.195958i
\(868\) 0 0
\(869\) −43.8668 + 35.1680i −1.48808 + 1.19299i
\(870\) 0 0
\(871\) 12.0836 37.1896i 0.409438 1.26012i
\(872\) 0 0
\(873\) 32.5794 + 23.6703i 1.10265 + 0.801120i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.16586 + 4.47976i −0.208206 + 0.151271i −0.687002 0.726656i \(-0.741074\pi\)
0.478795 + 0.877926i \(0.341074\pi\)
\(878\) 0 0
\(879\) 28.9718 0.977194
\(880\) 0 0
\(881\) −14.1585 −0.477013 −0.238506 0.971141i \(-0.576658\pi\)
−0.238506 + 0.971141i \(0.576658\pi\)
\(882\) 0 0
\(883\) 24.6162 17.8847i 0.828400 0.601868i −0.0907061 0.995878i \(-0.528912\pi\)
0.919106 + 0.394010i \(0.128912\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.5308 + 29.4474i 1.36089 + 0.988746i 0.998388 + 0.0567640i \(0.0180782\pi\)
0.362504 + 0.931982i \(0.381922\pi\)
\(888\) 0 0
\(889\) 4.88157 15.0239i 0.163723 0.503886i
\(890\) 0 0
\(891\) −10.5791 27.9685i −0.354413 0.936981i
\(892\) 0 0
\(893\) 8.46291 26.0462i 0.283200 0.871601i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 25.5904 + 78.7592i 0.854440 + 2.62969i
\(898\) 0 0
\(899\) 6.52451 4.74033i 0.217605 0.158099i
\(900\) 0 0
\(901\) 37.6308 1.25366
\(902\) 0 0
\(903\) 17.7283 0.589960
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 11.0004 + 33.8559i 0.365264 + 1.12417i 0.949816 + 0.312810i \(0.101270\pi\)
−0.584552 + 0.811356i \(0.698730\pi\)
\(908\) 0 0
\(909\) −23.7596 17.2623i −0.788055 0.572556i
\(910\) 0 0
\(911\) 14.7216 45.3086i 0.487750 1.50114i −0.340208 0.940350i \(-0.610498\pi\)
0.827958 0.560790i \(-0.189502\pi\)
\(912\) 0 0
\(913\) −10.5163 + 38.4917i −0.348039 + 1.27389i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.1881 10.3083i −0.468534 0.340410i
\(918\) 0 0
\(919\) 17.3383 + 53.3617i 0.571937 + 1.76024i 0.646380 + 0.763016i \(0.276282\pi\)
−0.0744426 + 0.997225i \(0.523718\pi\)
\(920\) 0 0
\(921\) −12.6452 + 9.18726i −0.416673 + 0.302731i
\(922\) 0 0
\(923\) 34.2669 1.12791
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −80.9773 + 58.8335i −2.65965 + 1.93235i
\(928\) 0 0
\(929\) −8.31625 25.5948i −0.272847 0.839737i −0.989781 0.142596i \(-0.954455\pi\)
0.716934 0.697141i \(-0.245545\pi\)
\(930\) 0 0
\(931\) −21.6126 15.7025i −0.708325 0.514628i
\(932\) 0 0
\(933\) −22.3992 + 68.9375i −0.733316 + 2.25691i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.18459 6.72349i 0.0713676 0.219647i −0.909010 0.416773i \(-0.863161\pi\)
0.980378 + 0.197126i \(0.0631609\pi\)
\(938\) 0 0
\(939\) −31.8088 23.1104i −1.03804 0.754180i
\(940\) 0 0
\(941\) −4.39849 13.5372i −0.143387 0.441298i 0.853413 0.521235i \(-0.174528\pi\)
−0.996800 + 0.0799361i \(0.974528\pi\)
\(942\) 0 0
\(943\) 51.6132 37.4992i 1.68076 1.22114i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.1617 −0.460194 −0.230097 0.973168i \(-0.573904\pi\)
−0.230097 + 0.973168i \(0.573904\pi\)
\(948\) 0 0
\(949\) 10.9833 7.97982i 0.356533 0.259036i
\(950\) 0 0
\(951\) 6.56520 + 20.2056i 0.212891 + 0.655211i
\(952\) 0 0
\(953\) 0.256983 + 0.186709i 0.00832448 + 0.00604809i 0.591940 0.805982i \(-0.298362\pi\)
−0.583615 + 0.812030i \(0.698362\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 26.3193 + 17.2760i 0.850781 + 0.558452i
\(958\) 0 0
\(959\) 8.09179 24.9040i 0.261298 0.804191i
\(960\) 0 0
\(961\) 19.8228 + 14.4021i 0.639446 + 0.464585i
\(962\) 0 0
\(963\) −4.41678 13.5934i −0.142329 0.438042i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.3690 1.20171 0.600853 0.799359i \(-0.294828\pi\)
0.600853 + 0.799359i \(0.294828\pi\)
\(968\) 0 0
\(969\) 74.7862 2.40248
\(970\) 0 0
\(971\) −24.6036 + 17.8756i −0.789568 + 0.573655i −0.907835 0.419327i \(-0.862266\pi\)
0.118267 + 0.992982i \(0.462266\pi\)
\(972\) 0 0
\(973\) −10.9540 33.7129i −0.351168 1.08078i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.66642 + 20.5171i −0.213278 + 0.656401i 0.785994 + 0.618235i \(0.212152\pi\)
−0.999271 + 0.0381668i \(0.987848\pi\)
\(978\) 0 0
\(979\) −43.2205 28.3699i −1.38133 0.906707i
\(980\) 0 0
\(981\) 28.4218 87.4732i 0.907437 2.79281i
\(982\) 0 0
\(983\) −9.34171 6.78715i −0.297954 0.216477i 0.428756 0.903420i \(-0.358952\pi\)
−0.726711 + 0.686944i \(0.758952\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −17.4308 + 12.6642i −0.554828 + 0.403106i
\(988\) 0 0
\(989\) 26.0264 0.827591
\(990\) 0 0
\(991\) 10.6881 0.339518 0.169759 0.985486i \(-0.445701\pi\)
0.169759 + 0.985486i \(0.445701\pi\)
\(992\) 0 0
\(993\) −4.27928 + 3.10908i −0.135799 + 0.0986636i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −27.6093 20.0593i −0.874394 0.635285i 0.0573683 0.998353i \(-0.481729\pi\)
−0.931762 + 0.363069i \(0.881729\pi\)
\(998\) 0 0
\(999\) −18.2269 + 56.0967i −0.576674 + 1.77482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.n.e.801.4 yes 16
5.2 odd 4 1100.2.cb.d.449.1 32
5.3 odd 4 1100.2.cb.d.449.8 32
5.4 even 2 1100.2.n.d.801.1 yes 16
11.5 even 5 inner 1100.2.n.e.401.4 yes 16
55.27 odd 20 1100.2.cb.d.49.8 32
55.38 odd 20 1100.2.cb.d.49.1 32
55.49 even 10 1100.2.n.d.401.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.n.d.401.1 16 55.49 even 10
1100.2.n.d.801.1 yes 16 5.4 even 2
1100.2.n.e.401.4 yes 16 11.5 even 5 inner
1100.2.n.e.801.4 yes 16 1.1 even 1 trivial
1100.2.cb.d.49.1 32 55.38 odd 20
1100.2.cb.d.49.8 32 55.27 odd 20
1100.2.cb.d.449.1 32 5.2 odd 4
1100.2.cb.d.449.8 32 5.3 odd 4